Climate change as an environmental threat on the central plains of the Carpathian Basin based on regional water balances

  • Hop Quang Tran University of Szeged, Faculty of Science and Informatics, Department of Geoinformatics, Physical and Environmental Geography
  • Zsolt Zoltán Fehér University of Debrecen, Arid Land Research Center
  • Norbert Túri Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management
  • János Rakonczai University of Szeged, Faculty of Science and Informatics, Department of Geoinformatics, Physical and Environmental Geography
Keywords: landscape sensitivity, shallow groundwater storage, GIS, modelling, MIKE-SHE

Abstract


Climate change is an essential environmental challenge nowadays. Its effects are already being felt in multiple ways. In the future, we will also have to adapt to its effects because of our farming and our daily lives. In our research, we assessed the climate sensitivity of the lowland areas of Hungary through the changes in landscapes and the changes in groundwater resources that have the greatest impact on agriculture, using data from more than half of a century. We have quantified that at the mid-territory level (5-10 thousand km2) the groundwater resources show up to 3-5 km3/year changes in both positive and negative directions due to climatic effects. This significantly exceeds the anthropogenic water uses (the total water use of Hungary is about 5 km3 per year), so the effect of climate is the determining factor in the changes of regional water resources. Future changes in water circulation were modelled using the MIKE-SHE model in two micro-regions in Hungary. We have found that already at the level of the small catchments presented in our study, the water shortage increases by hundreds of millions of m3 per year due to the expected increase in temperature (mainly due to the increase in evapotranspiration), which cannot be compensated by current water supply solutions. Model simulations have confirmed previous results showing that groundwater movements play a very important role even in lowland landscapes. Based on our research, we would like to draw the attention of decision-makers and agricultural experts to the fact that current methods (irrigation, regional water transfers) are not sufficient for successful adaptation to climate change. So, it is not the limited precipitation but the inappropriate agricultural practices that cause a real threat in a changing climate. Based on our research, we have made a proposal for the adaptation of agriculture to climate change.

References

Bartholy, J. & Pongrácz, R. (2017). A közelmúlt és a jövő országos éghajlati trendjei. [Recent and future climate trends of Hungary]. Erdészeti Lapok, 152(5), 134–136. http://erdeszetilapok.oszk.hu/01824/pdf/EPA01192_erdeszeti_lapok_2017-05_134-136.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Bartholy, J., Pongrácz, R., Gelybó, Gy. & Szabó, P. (2008). Analysis of expected climate change in the Charpathian Basin using the PRUDENCE results. Időjárás/Quarterly Journal of the Hungarian Meteorogical Service, 112(3-4), 249-264. https://www.met.hu/downloads.php?fn=/metadmin/newspaper/2013/07/055709504d11a1fe875754a267a7ef08-112-3-4-7-bartholy.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Blanka, V., Mezősi, G., Loibl, W., Szépszó, G., Csorba, P., Burghard, M., Bata, T., Nagy, R. & Vass, R. (2012). Meso-region scale change of climate in the 21th century and its potential impacts on the environment in the Carpathian basin. In: Rakonczai, J. & Ladányi, Zs. (eds.). Review of climate change research program at the University of Szeged (2010–2012). 25–41. http://www.geo.u-szeged.hu/images/kutatas/kiadvanyok_tartalom/Review_of_climate_change/klimavaltozas_konyv.pdf" target="_blank" rel="noopener">http://www.geo.u-szeged.hu/images/kutatas/kiadvanyok_tartalom/Review_of_climate_change/klimavaltozas_konyv.pdf>

Csorvási A., Illy, T., Sábitz, J., Szabó, P., Szépszó, G. & Zsebeházi G., (2016). A jövőre vonatkozó projekciók eredményeinek együttes kiértékelése, bizonytalanságok számszerűsítése. [Joint evaluation of the results of the projections for the future, quantification of uncertainties] RCMTéR (EEA-C13-10.) https://www.met.hu/downloads.php?fn=/RCMTeR/doc/reports/D4.2_C13-10_kozos-kiertekeles_projekcio.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

DHI Group. (2017). MIKE SHE Volume 1: User Guide. https://manuals.mikepoweredbydhi.help/2017/Water_Resources/MIKE_SHE_Printed_V1.pdf"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Djurović, N. & Stričević, R. (2004). Actual state of drainage system on the experimental field “Radmilovac” and priority works to be done for the improvement of its working characteristics. Journal of Agricultural Sciences, 49(2), 169-177. DOI: 10.2298/JAS0402169D

EC. (2007). Green Paper. Adapting to Climate Change in Europe – Options for EU Action. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52007DC0354&from=EN"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Farkas, J. Zs., Hoyk, E. & Rakonczai, J. (2017): Geographical analysis of climate vulnerability at a regional scale: the case of the Southern Great Plain in Hungary. Hungarian Geographical Bulletin, 66(2), 129-144. https://doi.org/10.15201/hungeobull.66.2.3"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Fehér, Zs. & Rakonczai, J. (2019). Analysing the sensitivity of Hungarian landscapes based on climate change induced shallow groundwater fluctuation.  Hungarian Geographical Bulletin, 68(4), 355-372.  https://doi.org/10.15201/hungeobull.68.4.3"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;">>

Fehér, Zs. (2015). Talajvízkészletek változásának geostatisztikai alapú elemzése – a rendelkezésre álló információk természete és feldolgozása. [Geostatistical analysis of shallow groundwater fluctuations – the nature and processing of available informations] Hidrológiai Közlöny, 85(2), 15-31. (in Hungarian)

Fehér, Zs. (2019). A Dél-Alföld talajvíz idősorainak nagy léptékű, geostatisztikai alapú modellezése. Két megközelítés nem folytonos monitoring adatok együttes térbeli és időbeli sztochasztikus szimulációjára. [Large scale geostatistical modelling of the shallow groundwater time series on the Southern Great Hungarian Plain. Two approaches for spatiotemporal stochastic simulation of a non-complete monitoring dataset]. PhD doctoral dissertation. (in Hungarian) https://doktori.bibl.u-szeged.hu/id/eprint/10122/1/FeherZs_Disszertacio.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Fricke, C., Pongrácz, R. & Unger, J. (2022). Comparision of daily and monthly infra-urban thermal reactions based on LCZ classification using surface and air temperature data. Geographica Pannonica. 26(1), 1–11. http://www.dgt.uns.ac.rs/dokumentacija/pannonica/papers/volume26_1_1.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Gál, T., Skrabit, N., Molnár, G. & Unger, J. (2021). Projections of the urban and intra-urban scale thermal effects of climate change int he 21st century for cities in Carpathian Basin. Hungarian Geographical Bulletin, 70(1), 19–33. https://ojs.mtak.hu/index.php/hungeobull/article/view/4920/4466"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Gálya, B., Tamás, J., Blaskó, L., Riczu, P., Nistor, S., Fehér, J., Bozsik, É. & Nagy, A. (2018). Water retention possibilities in soils – Hungarian part of Tisza-river basin. Natural Resources and Sustainable Development, 8(1), 35-40

Garamhegyi, T., Kovács, J., Pongrácz, R., Tanos, P. & Hatvani, I. G. (2018). Investigation of the climate-driven periodicity of shallow groudwater level fluctuations in a Cental-Eastern European agricultural region. Hydrogeology Journal, 26(3), 677–688

Geiger, J.  & Mucsi, L. (2005): A szekvenciális sztochasztikus szimuláció előnyei a talajvízszint kisléptékű heterogenitásának térképezésében. [Advantages of the sequential stochastic simulation in mapping small-scale heterogeneity of the shallow groundwater level] Hidrológiai Közlöny, 85(2), 37-47. (in Hungarian)

Graham, D.N. & Butts, M. (2005). Flexible, integrated watershed modelling with MIKE SHE. In Singh, V.P. & Frevert D.K. (Eds.) Watershed Models. CRC Press. 245-272. ISBN: 0849336090

IPCC. (1990, 1995, 2001, 2007, 2014, 2022). Synthesis Reports. https://archive.ipcc.ch/publications_and_data/publications_and_data_reports.shtml"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">, https://www.ipcc.ch/ar6-syr/"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

IPCC. (2018). Global Warming of 1.5˚C. Thematic Reports. https://www.ipcc.ch/sr15/"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

IPCC: Climate Change. (2021). The Physical Science Basis. Technical summary. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Janik, G., Hirka, A., Koltay, A., Juhász, J. & Csóka, Gy. (2016). 50 év biotikus kárai a magyar bükkösökben [50 years biotic damages in the Hungarian beech forests]. Erdészeti Tudományos Közlemények [Forestry Scientific Publications], 6(1). 45–60. https://www.researchgate.net/publication/310334682_50_ev_biotikus_karai_a_magyar_bukkosokben"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Kozák, P. (2020). Felszíni lefolyások változása a Duna-Tisza közi Homokhátság dél-keleti lejtőjén a klímaváltozás tükrében [Changes in surface runoff on the south-eastern slope of the Danube-Tisza Interfluve Sand Ridge in the context of climate change]. In Farsang, A., Ladányi, Zs. & Mucsi, L. (Eds.) Klímaváltozás okozta kihívások – Globálistól a lokálisig [Climate change challenges – From global to local]. GeoLitera, 109-115. (in Hungarian)

Laborczi, A., Bozán, Cs., Körösparti, J., Szatmári, G., Kajári, B., Túri, N., Kerezsi, Gy. & Pásztor, L. (2020). Application of Hybrid Prediction Methods in Spatial Assessment of Inland Excess Water Hazard. ISPRS International Journal of Geo-Information, 9, 268. DOI:10.3390/ijgi9040268

Ladányi, Zs., Blanka, V., Deák, Á. J., Rakonczai, J. & Mezősi, Gábor. (2016). Assessment of soil and vegetation changes due to hydrologically driven desalinization process in an alkaline wetland, Hungary. Ecological Complexity, 25, 1–10. https://doi.org/10.1016/j.ecocom.2015.11.002" target="_blank" rel="noopener">https://doi.org/10.1016/j.ecocom.2015.11.002>

Maticic, B. & Steinman, F. (2007). Assessment of land drainage in Slovenia. Irrigation and Drainage, 56, 127-139. DOI: 10.1002/ird.338

Nagy, Zs., Pálfi, G., Priváczkiné Hajdu, Zs. & Benyhe, B. (2019). Operation of canal systems and multi-purpose water management – Dong-ér catchment. In Ladányi, Zs. & Blanka, V. (Eds.) Monitoring, risks and management of drought and inland excess water in South Hungary and Vojvodina. University of Szeged. 262-275. (In Hungarian, in Serbian and in English) http://www.geo.u-szeged.hu/wateratrisk/sites/www.geo.u-szeged.hu.wateratrisk/files/pdf/kotet.pdf"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;"> 

OMSZ (Hungarian Meteorogical Service). (2021). Magyarország éghajlata – éghajlati visszatekintő. [Climate of Hungary – climate retrospective].   https://www.met.hu/eghajlat/magyarorszag_eghajlata/eghajlati_visszatekinto/elmult_evek_idojarasa/"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Országos Vízügyi Főigazgatóság – OVF [General Directorate of Water Management] (2021). Magyarország vízgyűjtő-gazdálkodási tervének második felülvizsgálata VGT3. [Second revision of the river basin management plan of Hungary] Vitaanyag és Aszálykockázat. (in Hungarian). https://vizeink.hu/wp-content/uploads/2021/05/VGT3_II_Vitaanyag.pdf"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">, https://vizeink.hu/wp-content/uploads/2021/04/Aszaly_VGT3_2021.pdf"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Pálfai, I. (1994). A Duna–Tisza közi hátság vízgazdálkodási problémái [Water management problems of Danube-Tisza interfluve]. A Nagyalföld Alapítvány Kötetei 3, 111-126. (in Hungarian)

Pálfai, I. (2004). Belvizek és aszályok Magyarországon [Inland excess waters and droughts in Hungary]. 492 pp

Pieczka, I., Bartholy, J., Pongrácz, R. & Szabóné, A. K. (2019). Validation of RegCM regional and HadGEM global climate model using mean and extreme climatic variables. Időjárás/Quarterly Journal of the Hungarian Meteorogical Service. 123(4), 409–433. https://www.met.hu/downloads.php?fn=/metadmin/newspaper/2019/12/e72da6e6a030f99e1e33e56d8345a629-123-4-1-pieczka.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Rakonczai, J. (2011). Effects and consequences of global climate change in the Carpathian Basin. In: Blanco, J. & Kheradmand, H. (eds.): Climate Change – Geophysical Foundations and Ecological Effects. 297-322. https://www.intechopen.com/books/climate-change-geophysical-foundations-and-ecological-effects/effects-and-consequences-of-global-climate-change-in-the-carpathian-basin"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Rakonczai, J. & Ladányi, Zs. (eds.) (2012). Review of climate change research program at the University of Szeged (2010–2012). Szeged. 128 pp. http://www.geo.u-szeged.hu/images/kutatas/kiadvanyok_tartalom/Review_of_climate_change/klimavaltozas_konyv.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Rakonczai, J. & Fehér, Zs. (2015): A klímaváltozás szerepe az Alföld talajvízkészleteinek időbeli változásaiban. [The role of climate change is the Great Hungarian Plain changes in groundwater resources over time]. Hidrológiai Közlöny. 95(1), 1–15. (in Hungarian)

Sábitz, J., Pongrácz, R. & Bartholy, J. (2014). Estimated changes of drought tendency in the Carpathian Basin. Hungarian Geographical Bulletin, 63(4), 365–378. https://doi.org/10.15201/hungeobull.63.4.1"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">  

Szalai, S. (2011). Magyarország hidroklimatológiai jellemzése. [Hydroclimatological characterization of Hungary]. „Klíma-21” füzetek. 65, 17–28.

Szatmári, J. & van Leeuwen, B. (eds.). (2013). Inland excess water – Belvíz – Suvišne unutrašnje vode. Szeged – Novi Sad. 154 pp. http://www.geo.u-szeged.hu/~joe/pub/Meriexwa/Konyv/Inland_Excess_Water_book_pdfx.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Szép, T. (2010). A klímaváltozás erdészeti ökonómiai vonatkozásai. [Economic aspects of forestry in climate change]. PhD doctoral dissertation. http://ilex.efe.hu/PhD/emk/szeptibor/disszertacio.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Szilágyi, J. & Vorosmarty, Ch. (1993). A Duna-Tisza közi talajvízszint-süllyedések okainak vizsgálata. [Investigation of the causes of ground water subsidence in the area between rivers Danube and Tisza]. Vízügyi Közlemények, 75(3), 280-294. (in Hungarian)

Tlapáková, L. (2017). Agricultural drainage systems in the Czech landscape – identification and functionality assessment by means of remote sensing. European Countryside, 1, 77-98. DOI: 10.1515/euco-2017-0005

Tölgyesi, Cs., Török, P., Hábenczyus, A. A., Bátori, Z., Valkó, O., Deák, B., Tóthmérész, B., Erdős, L. & Kelemen, A. (2020). Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography. 43(6), 848–859. https://onlinelibrary.wiley.com/doi/10.1111/ecog.04906"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Tran, Q. H. (2021): Sensitivity Analysis for Effect of Changes in Input Data on Hydrological Parameters and Water Balance Components in the Catchment Area of Hungarian Lowland. Journal of Environmental Geography, 14(3-4), 1-13. DOI:10.2478/jengeo-2021-0007

 Túri, N. (2021). Egy tiszántúli talajcsövezett mintaterület állapotfelmérési lehetőségeinek, valamint működési hatékonyságának vizsgálata [Investigation of the status assessment possibilities and operational efficiency of a Trans-Tisza tile-drained sample area]. Hidrológiai Közlöny, 101(2), 62-71. (in Hungarian)

Túri, N., Rakonczai, J. & Bozán, Cs. (2021). Condition Assessment of Subsurface Drained Areas and Investigation of their Operational Efficiency by Field Inspection and Remote Sensing Methods. Journal of Environmental Geography, 14(3-4), 14-25. DOI:10.2478/jengeo-2021-0008

Unger, J., Gál, T., Rakonczai., Mucsi., Szatmári, J., Tobak, Z., van Leeuwen, B. & Fiala, K. (2010). Modeling of the urban heat island pattern based on the relationship between surface and air temperatures. Időjárás/Quarterly Journal of the Hungarian Meteorogical Service, 114(4), 287–302. https://www.met.hu/downloads.php?fn=/metadmin/newspaper/2013/07/1388f16c6299008233bfae636208b56d-114-4-5-unger.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

van Leeuwen, B., Barta, K., Ladányi, Zs., Blanka, V., & Sipos, Gy. (2019). Talajnedvességen alapuló aszálymonitoring távérzékelés és terepi adatok alapján [Soil moisture based drought monitoring by remote sensing and field measurements]. In: Aszály és belvíz monitoring és menedzsment, valamint a kapcsolódó kockázatok a Dél-Alföldön és a Vajdaságban [Monitoring, risk and management of drought and inland excess water in south Hungary and Vojvodina]. University of Szeged. 23-33. http://publicatio.bibl.u-szeged.hu/17883/>

Várallyay, Gy. (2007). A talaj, mint legnagyobb potenciális víztározó. [Soil as the largest potential reservoir] Hidrológiai Közlöny, 87(5), 33–36. (in Hungarian).

World Economic Forum, (2020, 2021). The Global Risks Report 2020, 2021. 102.p.,96 p.

https://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;"> class="MsoHyperlink" style="color: blue; text-decoration-line: underline;">, https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2021.pdf"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Published
2022/10/14
Section
Original Research