Active geomorphic hazards in the Sâmbăta Valley, Făgăraș Mountains (Romania): a tree-ring based approach
Abstract
The present study addresses, for the first time, the problem of spatio-temporal reconstruction of geomorphic processes using tree-rings in the Sâmbăta Valley (Romanian Carpathians). The dendrogeomorphic analysis was conducted in two different sites, one affected by snow avalanches and the other by rockfall. A total number of 130 Picea Abies were sampled in the two sites. The results yield 13 major snow avalanches between 1950 and 2020 and a return period of 3.3 years. The winters with the highest activity index were 1988, 1997 and 2012. The rockfall reconstruction highlights several years of intense activity: 1952, 1955, 2003 and 2012. Thus, the results of the present study provide evidence of active geomorphic processes in the studied area, indicating that tourists are highly exposed to geomorphic hazards, as both sites interfere with popular hiking trails. (Because Sâmbăta Valley is one of the most intensely frequented by tourists in the Făgăraș Mountains, it is a need for warning signs to be installed on the exposed trails.
References
Bălteanu, D. (1997). Geomorphological hazards of Romania. In: Geomorphological hazards of Europe, Embleton, C., Embleton-Hamann, C. (eds.). Amsterdam: Elsevier, 409-427.
Bollati, I., Crosa Lenz, B., Golzio, A., & Masseroli, A. (2018). Tree rings as ecological indicator of geomorphic activity in geoheritage studies. Ecological indicators, 93, 899-916. 10.1016/j.ecolind.2018.05.053
Bollschweiler, M., Stoffel, M., Ehmisch, M., & Monbaron, M. (2007). Reconstructing spatio-temporal patterns of debris-flow activity using dendrogeomorphological methods. Geomorphology, 87, 337–351, 10.1016/j.geomorph.2006.10.002.
Bräker, O.U. (2002). Measuring and data processing in tree-ring research - a methodological introduction. Dendrochronologia, 20, 203–216, 10.1078/1125-7865-00017.
Casteller, A., Villalba, R., Araneo, D., & Stöckli, V. (2011). Reconstructing temporal patterns of snow avalanches at Lago del Desierto, southern Patagonian Andes. Cold Regions Science and Technology, 67, 68-78. 10.1016/j.coldregions.2011.02.001.
Casteller, A., Stoffel, M., Crespo, S., Villalba, R., Corona, C., & Bianchi, E. (2015). Dendrogeomorphic reconstruction of flash-floods in the Patagonian Andes. Geomorphology, 228, 116-123, 10.1016/j.geomorph.2014.08.022.
Chiroiu, P., Stoffel, M., Onaca, A., & Urdea, P. (2015). Testing dendrogeomorphic approaches and thresholds to reconstruct snow avalanche activity in the Făgăraș Mountains (Romanian Carpathians). Quaternary Geochronology, 27, 1–10, 10.1016/j.quageo.2014.11.001.
Chiroiu, P., Ardelean, A.C., Onaca, A., Voiculescu, M., & Ardelean, F. (2016). Assessing the anthropogenic impact on geomorphic processes using tree-rings: a case study in the Făgăraș Mountains (Southern Carpathians), Carpathian Journal of Earth and Environmental Sciences, 11(1), 27-36.
Cioacă, A. (1970). Un torent de grohotișuri în Munții Făgăraș [A torrent of talus in the Făgăraș Mountains]. Terra, 5, 39-43.
Copien, C., Frank, C., & Becht, M. (2008). Natural hazards in the Bavarian Alps: a historical approach to risk assessment. Natural Hazards, 45, 173-181. 10.1007/s11069-007-9166-6.
Corona, C., Rovera, G., Lopez Saez, J., Stoffel, M., & Perfettini, P. (2010). Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l'Oisans, France. Catena, 83, 107-118. 10.1016/j.catena.2010.08.004.
Favillier, A., Guillet, S., Morel, P., Corona, C., Lopez Saez, J., Eckert, N., Ballesteros Cánovas, J.A., Peiry, J-L., & Stoffel, M. (2017). Disentangling the impacts of exogenous disturbances on forest stands to assess multi-centennial tree-ring reconstructions of avalanche activity in the upper Goms Valley (Canton de Valais, Switzerland). Quaternary Geochronology, 42, 89-104. 10.1016/j.quageo.2017.09.001.
Kogelnig-Mayer, B., Stoffel, M., Schneuwly-Bollschweiler, M., Hübl, J., & Rudolf-Miklau, F. (2011). Possibilities and limitations of dendrogeomorphic time-series reconstructions on sites influenced by debris flows and frequent snow avalanche activity. Arctic, Antarctic, and Alpine Research, 43, 649–658. 10.1657/1938-4246-43.4.649.
Mainieri, R., Lopez Saez, J., Corona, C., Stoffel, M., Bourrier, F., & Eckert, N. (2019). Assessment of the recurrence intervals of rockfall through dendrogeomorphology and counting scar approach: A comparative study in a mixed forest stand from the Vercors massif (French Alps). Geomorphology, 340. 10.1016/j.geomorph.2019.05.005.
Meseșan, F., Pop, O.T., & Gavrilă, I. (2014). Snow avalanche activity in Parâng Ski Area revealed by tree rings. Studia UBB Geographia LIX 2, 47-56.
Meseșan, F., Pop, O.T., & Gavrilă, I. (2017). Calculating snow-avalanche return period from tree-ring data. Natural Hazards. 10.1007/s11069-018-3457
Meseșan, F., Man, T.C., Pop, O.T., & Gavrilă, I.G. (2018). Reconstructing snow-avalanche extent using remote sensing and dendrogeomorphology in Parâng Mountains. Cold Regions Science and Technology, 157, 97-109. 10.1016/j.coldregions.2018.10.002
Micu, M., Jurchescu, M., Șandric, I., Mărgărint, M.C., Chițu, Z., Micu, D., Ciurean, R., Ilinca, V., & Vasile, M. (2017). Mass movements. In: Landform Dynamics and Evolution in Romania, Rădoane, M., Vespremeanu-Stroe, A. (eds.). Switzerland: Springer, 765-821.
Perret, S., Dolf, F., & Kienholz, H. (2004). Rockfall into forests: analysis and simulation of rockfall trajectories – considerations with respect to mountainous forests in Switzerland. Landslides, 1, 123–130. 10.1007/s10346-004-0014-4.
Petre, A.C., Nedelea, A., Comănescu, L., & Munteanu, A. (2012). Terrain susceptibility to geomorphological processes and their impact on tourism infrastructure in the Sâmbăta valley (Făgăraș Mountains). Procedia Environmental Sciences, 14, 257-266. 10.1016/j.proenv.2012.03.025.
Pop, O.T., Gavrilă, I.G., Roșian, G., Meseșan, F., Decaulne, A., Holobâcă, I.H., & Anghel, T. (2015). A century-long snow avalanche chronology reconstructed from tree-rings in Parâng Mountains (Southern Carpathians, Romania). Quaternary International, 415, 230–240. 10.1016/j.quaint.2015.11.058
Pop, O.T., Meseşan F., Gavrilă I.G., & Timofte C. (2017a). Tree-ring-based reconstruction of snow avalanche frequency in Şureanu Mountains (Southern Carpathians, Romania). Proceedings of the Romanian Geomorphology Symposium, 33rd edition, Iaşi, Mihai Niculiță, Mihai Ciprian Mărgărint (eds.), Editura Universității Al. I. Cuza, Iaşi, 89-91.
Pop O.T., Munteanu A., Meseşan F., Gavrilă I.G., Timofte C., & Holobâcă, I.H. (2017b). Tree–ring–based reconstruction of high–magnitude snow avalanches in Piatra Craiului Mountains (Southern Carpathians, Romania). Geografiska Annaler Series A – Physical Geography, 100 (2), 99–115. 10.1080/04353676.2017.1405715
Pop, O.T., Munteanu, A., Meseșan, F., Gavrilă, I.G., Timofte, C., & Holobâcă, I.H. (2018). Tree-ring-based reconstruction of high-magnitude snow avalanches in Piatra Craiului Mountains (Southern Carpathians, Romania). Geografiska Annaler, 100(2), 99–115.
Rinn, F. (2013). TSAP-Win Time Series Analysis and Presentation for Dendrochronology and Related Applications - User Reference. Heidelberg: Rinntech, pp. 91.
Ruszkiczay-Rüdiger, Z., Kern, Z., Urdea, P., Braucher, R., Madarász, B., & Schimmelpfennig, I. (2016). Revised deglaciation history of the Pietrele–Stânişoara glacial complex, Retezat Mts, Southern Carpathians, Romania. Quaternary International, 415, 216–229. 10.1016/j.quaint.2015.10.085.
Schneuwly, D.M., Stoffel, M., & Bollschweiler, M. (2008). Formation and spread of callus tissue and tangential rows of resin ducts in Larix decidua and Picea abies following rockfall impacts. Tree Physiology, 29, 281–289, 10.1093/treephys/tpn026.
Schneuwly-Bollschweiler, M., & Schneuwly, D.M. (2012). How fast do European conifers overgrow wounds inflicted by rockfall?. Tree Physiology, 32, 968-975. 10.1093/treephys/tps059.
Shroder, JR. J.F. (1980). Dendrogeomorphology: review and new techniques of tree-ring dating. Progress in Physical Geography, 4(1), 161-188. 10.1177/030913338000400202.
Stoffel, M., Lievre, I., Monbaron, M., & Perret, S. (2005). Seasonal timing of rockfall activity on a forested slope at Täschgufer (Valais, Swiss Alps) – a dendrochronological approach. Zeitschrift für Geomorphologie, 49, 89–106.
Stoffel, M., & Perret, S. (2006a). Reconstructing past rockfall activity with tree rings: some methodological considerations. Dendrochronologia, 24, 1–15. 10.1016/j.dendro.2006.04.001.
Stoffel, M., Bollschweiler, M., & Hassler, G.R. (2006b). Diferentiating events on a cone influenced by debris-flows and snow avalanche activity – a dendrogeomorphological approach. Earth Surface Processes and Landforms, 31(11), 1424-1437, 10.1002/esp.1363.
Stoffel, M. (2008). Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia, 26(1), 53-60, 10.1016/j.dendro.2007.06.002.
Stoffel, M., & Bollschweiler, M. (2009). What tree rings can tell about earth-surface processes. Teaching the principles of dendrogeomorphology. Geography Compass, 3, 1013-1037, 10.1111/j.1749-8198.2009.00223.x.
Stoffel, M., Butler, D.R., & Corona, C. (2013). Mass-movements and tree-rings: A guide to dendrogeomorphic field sampling and dating. Geomorphology, 200, 106-120, 10.1016/j.geomorph.2012.12.017.
Stoffel, M., & Corona, C. (2014). Dendroecological dating of (hydro-)geomorphic disturbances in trees. Tree-Ring Research, 70, 3–20, 10.3959/1536-1098-70.1.3.
Tichavsky, R., Šilhán, K., & Tolasz, R. (2017). Tree ring-based chronology of hydro-geomorphic processes as a fundament for identification of hydro-meteorological triggers in the Hrubý Jeseník Mountains (Central Europe). Science of the Total Environment, 579, http://dx.doi.org/10.1016/j.scitotenv.2016.12.073" target="_blank" rel="noopener">10.1016/j.scitotenv.2016.12.073
Todea, C., Pop, O., & Germain, D. (2020). Snow–avalanche history reconstructed with tree rings in Parâng Mountains (Southern Carpathians, Romania). Revista de Geomorfologie, 22, 73-85, 0.21094/rg.2020.099
Trappmann, D., & Stoffel, M. (2013). Counting scars on tree stems to assess rockfall hazards: A low effort approach, but how reliable?. Geomorphology, 180–181, 180–186, 10.1016/j.geomorph.2012.10.009.
Voiculescu, M., & Ardelean, F. (2012). Snow avalanche disturbance of high mountain environment. Case study – the Doamnei glacial valley, the Făgăraș Massif – Southern Carpathians. Romanian Carpathians, 7, 95-108.
Voiculescu, M., & Onaca, A. (2012). Snow avalanche assessment in the Sinaia ski area (Bucegi Mountains, Southern Carpathians) using the dendrogeomorphology method, Area, 45(1), 109–122.
Voiculescu, M., & Onaca, A. (2014). Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians, Cold Regions Science and Technology, 104–105, 63–75.
Voiculescu, M., Onaca, A., & Chiroiu, P. (2016). Dendrogeomorphic reconstruction of past snow avalanche events in Bâlea glacial valley-Făgăraș massif (Southern Carpathians), Romanian Carpathians. Quaternary International, 415, 286-302, 10.1016/j.quaint.2015.11.115.
Internet 1: Monitorul
https://www.monitorfg.ro/2021/03/23/cabana-valea-sambetei-acoperita-de-zapada/"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext;"> lang="RO" style="font-size: 12pt; font-family: 'Times New Roman', serif;"> (05.04.2022).