Towards an understanding of the geographical background of plants invasion as a natural hazard: a case study in Hungary

  • Péter Dr. Szilassi Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem utca 2, H-6722 Szeged, Hungary
  • Georgina Veronika Visztra
  • Anna Soóky
  • Zoltán Bátori
  • Alida Anna Hábenczyus
  • Kata Frei
  • Csaba Tölgyesi
  • Márton Bence Balogh
Keywords: land use change, biological invasion, natural risk, vegetation naturalness, anthropogenic processes

Abstract


Biological invasion is a worldwide phenomenon that can be considered a natural hazard. Protection against invasive plant species can only be successful if we know the anthropogenic factors that influence their occurrence, such as changes in land cover. In our study, we investigated the LUCAS based spatial distribution of five common invasive plant species (2015) and its connections with the recent (2012-2018) land CORINE based cover changes. The LUCAS points infected with this species are much closer to the CORINE land cover change polygons than the non-infected points. Our results suggest that the occurrence of Asclepias syriaca, Solidago spp, Ailanthus altissima and Robinia pseudoacacia is significantly dependent on whether land use has changed in the vicinity of LUCAS points infected with these species. Only the occurrence of Elaeagnus angustifolia does not show any correlation with changes in land cover.

References

Bakacsy, L., & Bagi, I. (2020). Survival and regeneration ability of clonal common milkweed (Asclepias syriaca L.) after a single herbicide treatment in natural open sand grasslands. Scientific Reports, 10., doi:10.1038/s41598-020-71202-8


Biró, M., Czúcz, B., Horváth, F., Révész, A., Csatári, B., Molnár, Z. (2013/a). Drivers of grassland loss in Hungary during the post-socialist transformation (1987–1999). Landscape Ecology, 28, 789-803. doi:10.1007/s10980-012-9818-0.


Biró, M., Szitár, K., Horváth, F., Bagi, I., Molnár, Z. (2013/b). Detection of long-term landscape changes and trajectories in a Pannonian sand region: comparing land-cover and habitat-based approaches at two spatial scales. Community Ecology, 14, 219-230. doi:10.1556/comec.14.2013.2.12.


Büttner, Gy., & Koszta B. (2011). Manual of CORINE Land Cover changes EEA subvention 2011, Final Draft available online: https://land.copernicus.eu/user-corner/technical library/manual_of_changes_final_draft.pdf (accessed on May 13, 2022).


Call, R. J., & Nilsen, E. T. (2003). Analysis of Spatial Patterns and Spatial Association between the Invasive Tree-of-Heaven (Ailanthus altissima) and the Native Black Locust (Robinia pseudoacacia). The American Midland Naturalist, 150(1), 1-14.


Csiszár, Á., Kézdy, P., Korda, M., Bartha, D. (2020). Occurrence and management of invasive alien species in Hungarian protected areas compared to Europe. Folia Oecologica, 47(2), 178. doi:10.2478/foecol-2020-0021


Csontos, P., Bózsing, E., Cseresnyés, I., Penksza, K. (2009). Reproductive potential of the alien species Asclepias syriaca (Asclepiadaceae) in the rural landscape. Polish Journal of Ecology 57, 383-388.


DAISIE, (2009). Handbook of Alien Species in Europe, Springer Netherlands: Dordrecht, ISBN 978-1-4020-8279-5.


Dövényi, Z., Ambrózy, P., Juhász, Á., Marosi, S., Mezosi, G., Michalkó, G., Somogyi, S., Szalai, Z., Tiner, T. (2008). Magyarország kistájainak katasztere (Inventory of Microregions in Hungary). 876 p.


Gallego, F.J., Palmieri, A., Ramos, H. (2015). Sampling system for LUCAS, 2015, JRC Technicalreports:https://ec.europa.eu/eurostat/documents/205002/6786255/LUCAS+2015+sampling_20160922.pdf (accessed online:  05.13.2022).


Genovesi, P., & Monaco, A. (2014). European guidelines on protected areas and invasive alien species | IUCN Available online: https://www.iucn.org/content/european-guidelines-protected-areas-and-invasive-alien-species (accessed on May 13, 2022).


Genovesi, P., Scalera, R., Brunel, S., Roy, D., Solarz, W. (2010) Towards an Early Warning and Information System for Invasive Alien Species (IAS) Threatening Biodiversity in Europe. Copenhagen, 52, ISSN 1725-2237


Huebner, C., D. (2010). Spread of an invasive grass in closed-canopy deciduous forests across local and regional environmental gradients. Biological Invasions, 12(7), 2081-2089. doi:10.1007/s10530-009-9610-5


Hulme, P. E. (2021). Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth, 4(5), 666-679. doi:10.1016/j.oneear.2021.04.015.


Kelemen, A., Valkó, O., Kröel‐Dulay, G., Deák, B., Török, P., Tóth, K., Miglécz, T., Tóthmérész, B. (2016). The invasion of common milkweed (Asclepias syriaca) in sandy old‐fields–is it a threat to the native flora? Applied Vegetation Science, 19, 218-224. doi:10.1111/avsc.12225.


Kézdy, P., Csiszár, Á., Korda, M., Bartha, D. (2018). Occurrence and management of invasive alien species in Hungarian protected areas compared to Europe Természetvédelmi Közlemények, 24, 85–103. doi:10.20332/tvk-jnatconserv.2018.24.85


Kitka, D., & Szilassi, P. (2016). Geographic Factors Influencing the Spreading of Invasive Species  A GIS-based Case Study in the Southern Great Plain of Hungary. Tájökológiai Lapok, 14, 168.


Kleinbauer, I., Dullinger, S., Peterseil, J., Essl, F. (2010). Climate change might drive the invasive tree Robinia pseudoacacia into nature reserves and endangered habitats. Biological Conservation, 143, 382–390. doi: 10.1016/j.biocon.2009.10.024


Knapp, L. B., & Canham, C., D. (2000). Invasion of an Old-Growth Forest in New York by Ailanthus altissima: Sapling Growth and Recruitment in Canopy Gaps The Journal of the Torrey Botanical Society, 127, (4), 307-315, doi:10.2307/3088649


Kowarik, I. (2011). Novel urban ecosystems, biodiversity, and conservation. Environmental Pollution, 159(8–9), 1974-1983. doi:10.1016/j.envpol.2011.02.022


Kowarik, I., & Säumel, I. (2007). Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspectives in Plant Ecology, Evolution and Systematics, 8, 207–237. doi:10.1016/j.ppees.2007.03.002


Manzoor, S., A., Griffiths, G.,  Lukac, M., (2021). Land use and climate change interaction triggers contrasting trajectories of biological invasion. Ecological Indicators, 120, doi:10.1016/j.ecolind.2020.106936.


Mezősi, G., Bata T, Meyer, B., Blanka, V., Ladányi, Zs. (2014). Climate Change Impacts on Environmental Hazards on Carpahtian Basin. International Journal of Disaster Risk Sciences, 5(2), 136-146. doi:10.1007/s13753-014-0016-3


Mezősi, G. (2022). Natural Hazards and the Mitigation of their Impact. Springer International Publishing AG, 260.p. ISBN/Ean3031072251/9783031072253


Mihály, B., & Botta-Dukát, Z. (2004). Biológiai inváziók Magyarországon. Özönnövények, (Biological invasion in Hungary. Invasive plants) Természetbúvár Alapítvány, 366. p.


Pyšek, P., Lambdon, P.W., Arianoutsou, M., Kühn, I., Pino, J., Winter, M. (2009). Alien Vascular Plants of Europe. In: Handbook of Alien Species in Europe. Invading Nature - Springer Series in Invasion Ecology, 3, :10.1007/978-1-4020-8280-1_4


Szilassi, P., Soóky, A., Bátori, Z., Hábenczyus, A. A., Frei, K., Tölgyesi, C., van Leeuwen, B., Tobak, Z., Csikós, N., (2021). Natura 2000 Areas, Road, Railway, Water, and Ecological Networks May Provide Pathways for Biological Invasion: A Country Scale Analysis. Plants., 10(12), 2670. doi:10.3390/plants10122670


Szilassi, P., Szatmári, G., Pásztor, L., Árvai, M., Szatmári, J., Szitár, K., Papp, L. (2019). Understanding the Environmental Background of an Invasive Plant Species (Asclepias syriaca) for the Future: An Application of LUCAS Field Photographs and Machine Learning Algorithm Methods. Plants, 8(12), 593. doi:10.3390/plants8120593


Török, K., Botta-Dukát, Z., Dancza, I., Németh, I., Kiss, J., Mihály, B., Magyar, D. (2003). Invasion Gateways and Corridors in the Carpathian Basin: Biological Invasions in Hungary. . Biological Invasions, 54(5), 349–356. doi:10.1023/B:BINV.0000005570.19429.73


Warren, R. J., Bahn, V., Kramer, T. D., Tang, Y., Bradford, M. A. (2011). Performance and reproduction of an exotic invader across temperate forest gradients. Ecosphere, 2(2), 1-19. doi:10.1890/ES10-00181.1


Webb, S.L, Pendergast, P. H., Dwyer, M. E., (2001). Response of Native and Exotic Maple Seedling Banks to Removal of the Exotic, Invasive Norway Maple (Acer platanoides), The Journal of the Torrey Botanical Society, 128(2), 141-149. doi:10.2307/3088736

Published
2022/10/14
Section
Original Research