Plot-level field monitoring with Sentinel-2 and PlanetScope data for examination of sewage sludge disposal impact

  • Ferenc Kovács, Dr. University of Szeged
  • Zsuzsanna Ladányi, Dr. University of Szeged
Keywords: sewage sludge, agricultural monitoring, Sentinel-2, PlanetScope, spectral index

Abstract


Agricultural use of sewage sludge is one of the means of sustainable environmental management. In order to monitor the short-term effects of sludge disposal a multi-year, high-resolution data collection was planned on arable land in south-eastern Hungary. Data acquisition was applied at the highest temporal and spatial resolution using Sentinel-2 and PlanetScope satellite imagery observing the vegetation period based on vegetation indices (EVI, NDVI) from 2016 to 2021. There were statistical differences in the case of sunflower and maize biomass productions but the spatial and statistical deviations between the affected and non-affected areas of sludge disposal were generally not significant. The sensitivity of EVI in the dense vegetation period and its applicability might be emphasized in a comparative analysis.

References

Álvarez, M.M.S., Brown, L.N., Lim, J.B., Ersahin, K., Borstad, G.A., Dickson, J. & Martell, P. (2014). Assessment of vegetation change after biosolids treatment: use of remotely sensed vegetation time series. British Columbia Mine Reclamation Symposium, 1–11.  https://doi.org/10.14288/1.0042661https://doi.org/10.14288/1.0042661">https://doi.org/10.14288/1.0042661>

Banerjee, M.R., Burton, D.L. & Depoe, S. (1997). Impact of sewage sludge application on soil biological characteristics. Agriculture Ecosystems and Environment, 66(3), 241–249.  https://doi.org/10.1016/S0167-8809(97)00129-1https://doi.org/10.1016/S0167-8809(97)00129-1">https://doi.org/10.1016/S0167-8809(97)00129-1>

Bannari, A., Morin, D., Bonn, F. & Huete, A.R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13, 95–120. https://doi.org/10.1080/02757259509532298https://doi.org/10.1080/02757259509532298">https://doi.org/10.1080/02757259509532298>

Buzási, A., Pálvölgyi, T. & Esses, D. (2021). Drought-related vulnerability and its policy implications in Hungary. Mitigation and Adaptation Strategies for Global Change, 26(11), https://doi.org/10.1007/s11027-021-09943-8https://doi.org/10.1007/s11027-021-09943-8">https://doi.org/10.1007/s11027-021-09943-8>

Clevers, J.P.G.W &  Gitelson, A.A. (2013). Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. International Journal of Applied Earth Observation and Geoinformatics, 23, 344-351. https://doi.org/10.1016/j.jag.2012.10.008" target="_blank" rel="noopener">https://doi.org/10.1016/j.jag.2012.10.008>

Copernicus Open Access Hub, https://scihub.copernicus.eu/dhus/https://scihub.copernicus.eu/dhus/">https://scihub.copernicus.eu/dhus/>

DOSoReMI, Hungarian Digital Soil Map Database: https://dosoremi.hu/maps/genetikus-tipus/https://dosoremi.hu/maps/genetikus-tipus/">https://dosoremi.hu/maps/genetikus-tipus/>

Farsang, A., Babcsányi, I., Ladányi, Zs., Perei, K., Bodor, A., Csányi, K. & Barta, K. (2020). Evaluating the effects of sewage sludge compost applications on the microbial activity, the nutrient and heavy metal content of a Chernozem soil in a field survey. Arabian Journal of Geosciences, 13, 982. https://doi.org/10.1007/s12517-020-06005-2"> lang="HU">>

Fiala, K., Barta, K., Benyhe, B., Fehérváry, I., Lábdy, J., Sipos, Gy. & Győrffy, L. (2018). Operatív  aszály- és vízhiánykezelő monitoring rendszer [Operational drought and water scarcity monitoring system]. Hidrológiai közlöny, 98(3), 14–24.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreria, L.G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2" target="_blank" rel="noopener">https://doi.org/10.1016/S0034-4257(02)00096-2>

Kovács, F. & Gulácsi, A. (2019). Spectral index-based monitoring (2000–2017) in lowland forests to evaluate the effects of climate change. Geosciences, 9(10), 411. https://doi.org/10.3390/geosciences9100411https://doi.org/10.3390/geosciences9100411">https://doi.org/10.3390/geosciences9100411>

Kovács, F. & Ladányi, Zs. (2021). Szennyvíziszap kihelyezés rövidtávú következményeinek értékelési lehetősége Sentinel-2 alapú szántóföldi vegetációmonitoring alapján [Evaluate the short-term effects of sewage sludge disposal based on Sentinel-2 vegetation monitoring]. Agrokémia és Talajtan, 70(1), 25–43. https://doi.org/10.1556/0088.2021.00073" target="_blank" rel="noopener">https://doi.org/10.1556/0088.2021.00073>

Kovács, F., Ladányi, Zs., Blanka, V., Szilassi, P., van Leeuwen, B., Tobak, Z., Gulácsi, A., Szalma, E. & Cseuz, L. (2019). Remote sensing data collection and analysis for vegetation monitoring since 2000 at various scales in Southeast Hungary and Vojvodina. In: Ladányi, Zs. & Blanka, V. (eds.) Monitoring, risks and management of drought and inland excess water in South Hungary and Vojvodina. Szeged: SZTE TFTG, pp. 212–226.

Kuenzer, C. & Ottinger, M.  (2015). Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks. International Journal of Remote Sensing, 35(18), 6599–6647. https://doi.org/10.1080/01431161.2014.964349https://doi.org/10.1080/01431161.2014.964349">https://doi.org/10.1080/01431161.2014.964349>

Ladányi, Zs., Csányi, K., Farsang, A., Perei, K., Bodor, A., Kézér, A., Barta, K. & Babcsányi, I. (2020). Impact of low-dose municipal sewage sludge compost treatments on the nutrient and the heavy metal contents in a chernozem topsoil near Újkígyós. Hungary: a 5-year comparison. Journal of Environmental Geography,13(1-2), 25–30. https://doi.org/10.2478/jengeo-2020-0003https://doi.org/10.2478/jengeo-2020-0003">https://doi.org/10.2478/jengeo-2020-0003>

Lakatos, M., Bihari, Z., Izsák, B., Marton, A. & Szentes O. (2021). Megfigyelt éghajlati változások Magyarországon [Observed climate change in Hungary] Légkör 66(3), 5–11.

Liu, W., Huang, J., Wei, C., Wang, X., Mansaray, L.R., Han, J., Zhang, D., Chen, Y. (2018). Mapping water-logging damage on winter wheat at parcel level using high spatial resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 243–256, https://doi.org/10.1016/j.isprsjprs.2018.05.024https://doi.org/10.1016/j.isprsjprs.2018.05.024">https://doi.org/10.1016/j.isprsjprs.2018.05.024 lang="HU">.

Markowicz, A., Bondarczuk, K., Cycoń, M. & Sułowicz, S. (2021). Land Application of Sewage Sludge: Response of Soil Microbial Communities and Potential Spread of Antibiotic Resistance. Environmental Pollution, 271, 116317. https://doi.org/10.1016/j.envpol.2020.116317https://doi.org/10.1016/j.envpol.2020.116317">https://doi.org/10.1016/j.envpol.2020.116317>

McCabe, M.F., Rodell, M., Alsdorf, D.E., Miralles, D.G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N.E.C., Franz, T.E., Shi, J., Gao, H. & Wood, E. F. (2017). The future of Earth observation in hydrology. Hydrology and Earth System Sciences, 21, 3879–3914. https://doi.org/10.5194/hess-21-3879-2017https://doi.org/10.5194/hess-21-3879-2017">https://doi.org/10.5194/hess-21-3879-2017>

Mezősi, G. (2017). Physical Geography of the Great Hungarian Plain. In: Mezősi, G. The Physical Geography of Hungary. Geography of the Physical Environment. Springer, Cham. 195–229. https://doi.org/10.1007/978-3-319-45183-1_7https://doi.org/10.1007/978-3-319-45183-1_7">https://doi.org/10.1007/978-3-319-45183-1_7>

Mezősi, G., Blanka, V., Ladányi, Zs., Bata, T., Urdea, P., Frank, A. & Meyer, B. (2016). Expected mid- and long-term changes in drought hazard for the South-Eastern Carpathian Basin. Carpathian Journal of Earth and Environmental Sciences, 11(2), 355–366.

OGIMET, Climate data: http://www.ogimet.com/gsynres.phtml.enhttp://www.ogimet.com/gsynres.phtml.en">http://www.ogimet.com/gsynres.phtml.en>

Operatív Vízhiány Értékelő és Előrejelző Rendszer [Operational drought and water scarcity monitoring system]: http://aszalymonitoring.vizugy.hu/http://aszalymonitoring.vizugy.hu/">http://aszalymonitoring.vizugy.hu/>

Plug, B. & Louis, J. (2020). Sentinel-2 L2A surface reflectance product compared with reference measurements on ground. Quarterly, 14(1), 11-14. https://doi.org/10.25923/enp8-6w06https://doi.org/10.25923/enp8-6w06">https://doi.org/10.25923/enp8-6w06>

Rakonczai, J. & Fehér, Zs. (2015). A klímaváltozás szerepe az Alföld talajvíz-készleteinek időbeli változásaiban [Function in change of climatic in the temporal change on the groundwater supply in the Hungarian Plain]. Hidrológiai Közlöny, 95(1), 1–15.

Roy, D.P., Huang, H., Houborg, R. & Martins, V.S. (2021). A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery. Remote Sensing of Environment, 264, 112586. https://doi.org/10.1016/j.rse.2021.112586https://doi.org/10.1016/j.rse.2021.112586">https://doi.org/10.1016/j.rse.2021.112586>

Sagasta, J.M., Sally, L.R. & Thebo, A. (2015). Global wastewater and sludge production, treatment and use. In: Drechsel, P., Quadir, M. & Wichelns, D. (eds.) Wastewater, Economic Asset in an Urbanizing World. Springer Science+Business Media. pp. 15–38. https://doi.org/10.1007/978-94-017-9545-6_2https://doi.org/10.1007/978-94-017-9545-6_2">https://doi.org/10.1007/978-94-017-9545-6_2>

Segarra, J., Buchaillot, M.L., Araus, J.L. & Kefauver, S.C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641. https://doi.org/10.3390/agronomy10050641https://doi.org/10.3390/agronomy10050641">https://doi.org/10.3390/agronomy10050641>

Simon, L. & Szente, K. (2000). Szennyvíziszap komposzt hatása a kukorica nitrogéntartalmára, néhány élettani jellemzőjére és hozamára [Effect of sewage sludge compost on nitrogen content, some physiological characteristics and yield of maize]. Agrokémia és Talajtan, 49, 231–246.

Szabó, Sz., László, E., Kovács, Z., Püspöki, Z., Kertész, Á., Singh, S. K. & Balázs, B. (2019). NDVI dynamics as reflected in climatic variables: spatial and temporal trends – a case study of Hungary. GIScience and Remote Sensing, 56(4), 624–644. https://doi.org/10.1080/15481603.2018.1560686https://doi.org/10.1080/15481603.2018.1560686">https://doi.org/10.1080/15481603.2018.1560686>

Szennyvíziszap kezelési és hasznosítási stratégia 2014–2023 [Sewage Sludge Treatment and Utilization Strategy 2014–2023], Országos Vízügyi Főigazgatóság.

Tomócsik, A., Makádi, M., Orosz, V. & Füleki, Gy. (2016). Effect of sewage sludge compost treatment on crop yield. Agrofor International, 1(2), 5–12. https://doi.org/10.7251/AGRENG1602005Thttps://doi.org/10.7251/AGRENG1602005T">https://doi.org/10.7251/AGRENG1602005T>

Tran, H. T., Campbell, J.B., Tran, T.D. & Tran, H.T. (2017). Monitoring Drought Vulnerability Using Multispectral Indices Observed from Sequential Remote Sensing (Case Study: Tuy Phong, Binh Thuan, Vietnam). GIScience & Remote Sensing, 54(2), 167–184.https://doi.org/10.1080/15481603.2017.1287838https://doi.org/10.1080/15481603.2017.1287838">https://doi.org/10.1080/15481603.2017.1287838>

Wang, J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., Dong, W., & Zhang, B. (2021). Changing lengths of the four seasons by global warming. Gephysical Research Letters, 48(6), e2020GL091753. https://doi.org/10.1029/2020GL091753https://doi.org/10.1029/2020GL091753">https://doi.org/10.1029/2020GL091753>

Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote Sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402https://doi.org/10.1016/j.rse.2019.111402">https://doi.org/10.1016/j.rse.2019.111402>

36/2006. (V. 18.) FVM rendelet a termésnövelő anyagok engedélyezéséről, tárolásáról, forgalmazásáról és felhasználásáról [Decree of the Ministry of Agriculture and Rural Development on the Authorization, Storage, Marketing and Use of Propagating Material and Plants in Hungary].

 

91/271/EEC, Council Directive concerning urban waste-water treatment.

Published
2022/10/14
Section
Original Research