Alluvial ridge development and structure: Case study on the Upper Tisza, Hungary

  • Timea Kiss UNI Szeged, Hungary
  • György Sipos
  • Róbert Vass
Keywords: natural levee, alluvial ridge, overbank sedimentation, crevasse channel, pollen analysis, OSL dating

Abstract


The juxtaposition of natural levees results in alluvial ridges with a unique fluvial record. Our aims were to (1) identify the alluvial ridges of the Upper Tisza (Hungary); (2) determine their morphological characteristics; and (3) reconstruct the Late Quaternary fluvial history of the region. The oldest paleo-meander was abandoned ca. 29 ka ago; referring to early avulsion of the Tisza. Five alluvial ridges were identified with intensive fluvial activity at ca. 12-13 ka, 7.7-8.6 ka, 6.1-6.6 ka, 4.8 and 2.9 ka ago. Moderate fluvial activity was indicated by early Atlantic and Subboreal paleosols. The sedimentation rate in the paleo-channels (0.3-0.5 mm/y) and on the alluvial ridges (0.3-0.5 mm/y) was slow, influenced by the reactivation of a paleo-channel.

References

Adams, P.N., Slingerland, R.L., & Smith, N.D. (2004). Variations in natural levee morphology in anastomosed channel flood plain complexes. Geomorphology, 61, 127-142. 10.1016/j.geomorph.2003.10.005

Allen, J.R. (1965). A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5, 89-191. 10.1111/j.1365-3091.1965.tb01561.x

Balogh, M., Kiss, T., Fiala, K., & Fehérváry, I. (2020). Floodplain forms along the Lowland Maros River, Hungary. Geographia Polonica, 93, 51-68. 10.7163/GPol.0162

Bartyik, T., Sipos, Gy., Filyó, D., Kiss, T., Urdea, P., & Timofte. F. (2021). Temporal relationship of increased palaeo-discharges and Late Glacial deglaciation phases on the catchment of River Maros/Mureş, Central Europe. Journal of Environmental Geography, 14, 39-46. 10.2478/jengeo-2021-0010

Borsy, Z. (1995). Evolution of the NE part of the Great Hungarian Plain in the past 50,000 years. Questiones Geographicae, 4, 65-71.

Borsy, Z. (1969). A Felső-Tiszavidék [The Upper Tisza Region]. In: Pécsi, M. (ed): A Tiszai Alföld. Akadémiai Kiadó, Budapest, 27-66.

Borsy, Z. (1989). Az Alföld hordalékkúpjainak negyedidőszaki fejlődéstörténete. [Quaternary evolution of the alluvial fans of the Alföld]. Földrajzi Értesítő, 38, 211-224.

Borsy, Z., Félegyházi, E., & Csongor, É. (1989). A Bodrogköz kialakulása és vízhálózatának változásai. [Fluvial evolution of the Bodrogköz]. Alföldi Tanulmányok, 13, 65-81.

Brierley, G.J., Ferguson, R.J., & Woolfe, K.J. (1997). What is a fluvial levee? Sedimentary Geology, 114, 1-9. 10.1016/S0037-0738(97)00114-0

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337-360. 10.1017/S0033822200033865

Brown, A.G. (1983). An analysis of overbank deposits of a flood at Blandford-Forum, Dorset, England. Revue. Geomorphologie Dynamique, 32, 95-99.

Cazanacli, D., Smith, N.D. (1998). A study of morphology and texture of natural levees, Cumberland Marshes, Saskatchewan, Canada. Geomorphology, 25, 43-55. 10.1016/S0169-555X(98)00032-4

Félegyházi, E., Szabó, J., Szántó, Zs., & Tóth, Cs. (2004). Adalékok az északkelet-Alföld pleisztocén végi, holocén felszínfejlődéséhez újabb vizsgálatok alapján. [Late Pleistocene and Holocene evolution of NE Great Plain] II. Magyar Földrajzi Konferencia, Szeged, 1-10.

Florsheim, J.L., & Mount J.F. (2002). Restoration of floodplain topography by sand-splay complex formation in response to intentional levee breaches, Lower Cosumnes River, California. Geomorphology, 44, 67-94. 10.1016/S0169-555X(01)00146-5

Fryirs, K.A., & Brierley, G.J. (2012). Geomorphic analysis of river systems: An approach to reading the landscape. Chichester: Wiley-Blackwell, 360. 10.1002/9781118305454

Gábris, Gy. (2016). A Körös-medence folyóvízi formavilága. [Geomorphology of the Körös Basin] Acta climatologica, 50/B, 47-53. http://acta.bibl.u-szeged.hu/44009/>

Gábris, Gy. (2020). A folyóvíz felszínformáló tevékenysége Magyarországon. [Fluvial activity in Hungary] ELTE, Budapest, p. 181. ISBN-10:‎ 6202486759

Gábris, Gy. (1995). A folyóvízi felszínalakítás módosulásai a hazai későglaciális-holocén őskörnyezet változásainak tükrében. [Late Glacial-Holocene fluvial activity in Hungary] Földrajzi Közlemények, 119, 3-10.

Gábris, Gy. (2003). A földtörténet utolsó 30 ezer évének szakaszai és a futóhomok mozgásának főbb periódusai Magyarországon. [Aeolian activity of the last 30 ka in Hungary] Földrajzi Közlemények, 127, 1-14.

Gábris, Gy., & Nádor, A. (2007). Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary. Quaternary Science Reviews, 26, 2758-2782. 10.1016/j.quascirev.2007.06.030

Hajek, E.A., & Wolinsky, M.A. (2012). Simplified process modeling of river avulsion and alluvial architecture: Connecting models and field data. Sedimentary Geology, 257-260, 1-30. 10.1016/j.sedgeo.2011.09.005

Hudson, P.F., & Heitmuller, F.T. (2003). Local and watershed-scale controls on the spatial variability of natural levee deposits in a large fine-grained floodplain: lower Pánuco Basin, Mexico. Geomorphology, 56, 255-269. 10.1016/S0169-555X(03)00155-7

Ishii, Y., Tamura, T., & Ben, B. (2021). Holocene sedimentary evolution of the Mekong River floodplain, Cambodia. Quaternary Science Reviews, 253, 106767. 10.1016/j.quascirev.2020.106767

Járainé-Komlódi, M. (1969). Adatok az Alföld negyedkori klíma-és vegetációtörténetéhez II. [Quaternary climate and vegetation history of the Great Hungarian Plain]. Botanikai Közlemények, 56, 43-55.

Járainé-Komlódi, M. (2000). A Kárpát-medence növényzetének kialakulása. [Vegetation history of the Carpathian Basin] Tilia, 9, 5-59.

Kiss, T., Hernesz, P., Sümeghy, B., Györgyövics, K., & Sipos, Gy. (2014a). The evolution of the Great Hungarian Plain fluvial system – fluvial processes in a subsiding area from the beginning of the Weichselian. Quaternary International, 388, 142-155. 10.1016/j.quaint.2014.05.050

Kiss, T., Sümeghy, B., & Sipos, Gy. (2014b). Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. Geomorphology, 209, 49-60. 10.1016/j.geomorph.2013.07.028

Kiss, T., Balogh, M., Fiala, K., & Sipos, Gy. (2018). Morphology of fluvial levee series along a river under human influence, Maros River, Hungary. Geomorphology, 303, 309-321. 10.1016/j.geomorph.2017.12.014

Liritzis, I., Stamoulis, K., Papachristodoulou, C., & Ioannides, K. (2013). A re-evaluation of radiation dose-rate conversion factors. Mediterranean Archaeology and Archaeometry, 13, 1-15.

Magyari, E. (2002). Climatic versus human modification of the Late Quaternary vegetation in Eastern Hungary. PhD dissertation, University of Debrecen, Debrecen.

Makaske, B., Smith, D.G., Berendsen, H.J., de Boer, A.G., van Nielen-Kiezebrink, M.F., & Locking, T. (2009). Hydraulic and sedimentary processes causing anastomosing morphology of the upper Columbia River, British Columbia, Canada. Geomorphology, 111, 194-205. 10.1016/j.geomorph.2009.04.019

Marković, S.B., Bokhorst, M.P., Vandenberghe, J., McCoy, W.D., Oches, E.A., Hambach, U., Gaudenyi, T., Jovanović, M., Zöller, L., Stevens, T., & Machalett, B. (2007). Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science, 23, 73-84. 10.1002/jqs.1124

Mauz, B., Bode, T., Mainz, E., Blanchard, H., Hilger, W., Dikau, R., & Zöller, L. (2002). The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Ancient TL, 20, 53-61.

Murray, A.S., & Wintle, A.G. (2003). The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements, 37, 377-381. 10.1016/S1350-4487(03)00053-2

Nádor, A., Thamó-Bozsó, E., Magyari, Á., & Babinszki, E. (2007). Fluvial responses to tectonics and climate change during the Late Weichselian in the eastern part of the Pannonian Basin (Hungary). Sedimentary Geology, 202, 174-192. 10.1016/j.sedgeo.2007.03.001

Nicholas, A.P., Aalto, R.E., Sambrook Smith, G.H., & Schwendel, A.C. (2018). Hydrodynamic controls on alluvial ridge construction and avulsion likelihood in meandering river floodplains. Geology, 46, 639-642. 10.1130/G40104.1

Oroszi, V., Sándor, A., & Kiss, T. (2006). A 2005. tavaszi árvíz által okozott ártérfeltöltődés a Maros és a Közép-Tisza egy rövid szakasza mentén. [Floodplain aggradation of the Maros and Tisza after the 2005 flood]. In Kiss, A, Mezősi, G., Sümegi, Z. (edts): Táj, környezet és társadalom. SZTE, Szeged, 551-561.

Ostrowski, P., Falkowski, T., & Utratna-Zukowska, M. (2021). The effect of geological channel structures on floodplain morphodynamics of lowland rivers: A case study from the Bug River, Poland. Catena, 202, 105209. 10.1016/j.catena.2021.105209

Piégay, H., Arnaud, D., & Souchon, Y. (2003). Effects of riparian vegetation on river channel geometry: case studies from the Massif Central (France). Géomorphologie, 9, 111-128.

Pierik, H.J., Stouthamer, E., & Cohen, K.M. (2017). Natural levee evolution in the Rhine-Meuse delta, the Netherlands, during the first millennium CE. Geomorphology, 295, 215-234. 10.1016/j.geomorph.2017.07.003

Reimer, P., Austin, W., Bard, E., Bayliss, A., & Bronk Ramsey, C. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62, 725-757. 10.1017/RDC.2020.41

Skripkin, V.V., & Buzynnyi, M.G. (2017). Teflon vials for precise C-14 in benzene measurements by LSC technique. Biological and Chemical Research, 4, 229-233.

Skripkin, V.V., & Kovaliukh, N.N. (1998). Recent developments in the procedures used at the SSCER Laboratory for the routine preparation of lithium carbide. Radiocarbon, 40, 211-214. 0.1017/S0033822200018063

Smith, N.D., Cross, T.A., Dufficy, J.P., & Clough, S.R. (1989). Anatomy of an avulsion. Sedimentology, 36, 1-23. 10.1111/j.1365-3091.1989.tb00817.x

Somogyi, S. (1967). Ősföldrajzi és morfológiai kérdések az Alföldről. [Paleo-hydrography of the Great Plain] Földrajzi Értesítő, 16, 319-337.

Steiger, J., Tabacchi, E., Dufour, S., Corenblit, D., & Peiry, J.L. (2005). Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Research and Applications, 21, 719-737. 10.1002/rra.879

Stevaux, J.C., & Souza, I.A. (2004). Floodplain construction in an anastomosed river. Quaternary International, 114, 55-65. 10.1016/S1040-6182(03)00042-9

Sümegi, P. (1999). Reconstruction of flora, soil and landscape evolution, and human impact on the Bereg Plain from Late Glacial up to the present, based on paleoecological analysis. In: Hamar, J., & Sárkány-Kiss, A. (edts): The Upper Tisza valley. Szeged, 173-204.

Sümegi, P., Juhász, I., Magyari, E., Jakab, G., Rudner, E., Szántó, Zs., & Molnár, M. (2008). A keleméri Mohos-tavak fejlődéstörténetének rekonstrukciója paleobotanikai vizsgálatok alapján. [Development of the Mohos Lakes at Kelemér based on paleobotanical methods] In: Boldogh, S., & Farkas T. (eds). A keleméri Mohos-tavak. ANP, Jósvafő, p. 334

Tans, P.P., & Mook, W.G. (1980). Past atmospheric CO2 levels and 13C/12C ratios in tree rings. Tellus, 32, 268-283.

Timár, G., Sümegi, P., & Horváth, F. (2005). Late Quaternary dynamics of the Tisza River: evidence of climatic and tectonic controls. Tectonophysics, 410, 97-110. 10.1016/j.tecto.2005.06.010

Vass, R. (2014). Ártérfejlődési vizsgálatok felső-tiszai mintaterületeken [Floodplain development of the Upper Tisza]. PhD Dissertation, Debrecen University, Debrecen, p. 184.

Wolfert, H.P., Hommel, P.W.F., Prins, A.H., & Stam, M.H. (2002). The formation of natural levees as a disturbance process significant to the conservation of riverine pastures. Landscape Ecology, 17, 47-57. 10.1023/A:1015229710294

Zólyomi, B., 1952. Histoire de 1'évolution du tapis végétal de la Hongrie depuis la derniére époque glaciaire. MTA Biol. Oszt. Közl. 1, 491-530.

Published
2022/10/14
Section
Original Research