Generation of a flood susceptibility map of evenly weighted conditioning factors for Hungary

  • Noémi Sarkadi University of Pécs
  • Ervin Pirkhoffer University of Pécs
  • Dénes Lóczy University of Pécs
  • László Balatonyi General Directorate of Water Management
  • István Geresdi University of Pécs
  • Szabolcs Ákos Fábián University of Pécs
  • Gábor Varga University of Pécs
  • Richárd Balogh University of Pécs
  • Alexandra Gradwohl-Valkay University of Pécs
  • Ákos Halmai University of Pécs
  • Szabolcs Czigány University of Pécs
Keywords: flood potential, flash flood, susceptibility, ArcGIS, FFSI, conditional factors

Abstract


Over the past decades, in the mountainous, hilly and/or urban areas of Hungary several high-intensity storms were followed by severe flash flooding and other hydrologic consequences. The overall aim of this paper was to upgrade the national flash flood susceptibility map of Hungary first published by Czigány et al. (2011). One elementary watershed level (FFSIws) and three settlement level flash flood susceptibility maps (FFSIs) were constructed using 13 environmental factors that influence flash flood generation. FFSI maps were verified by 2,677 documented flash flood events. In total, 5,458 watersheds were delineated. Almost exactly 10% of all delineated watersheds were included into the category of extreme susceptibility. While the number of the mean-based FFSIs demonstrated a normal quasi-Gaussian distribution with very low percentages in the quintile of low and extreme categories, the maximum-based FFSIs overemphasized the proportion of settlements of high and extreme susceptibility. These two categories combined accounted for more than 50% of all settlements. The highest accuracy at 59.02% for class 5 (highest susceptibility) was found for the majority based FFSIs. The current map has been improved compared to the former one in terms of (i) a higher number of conditional factors considered, (ii) higher resolution, (iii) being settlement-based and (iv) a higher number of events used for verification.

References

Abedi, R., Costache, R., Shafizadeh-Moghadam, H. & Pham, Q.B. (2021). Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto International, 36. https://doi.org/10.1080/10106049.2021.1920636https://doi.org/10.1080/10106049.2021.1920636">https://doi.org/10.1080/10106049.2021.1920636>

Aleotti, P. & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 21–44. https://doi.org/10.1007/s100640050066"> lang="EN-US">>

Al-Juaidi, A. E. M., Nassar, A. M. & Al-Juaidi, O. E. M. (2018). Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arabian Journal of Geosciences, 11, 1-10. https://doi.org/10.1007/s12517-018-4095-0"> lang="EN-US">>

Apaydin, H., Ozturk, F., Merdun, H. & Aziz, N. M. (2006). Determination of the drainage basin characteristics using vector GIS. Hydrology Research, 37(2),129–142. https://doi.org/10.2166/nh.2006.0011"> lang="EN-US">>

Aronica, G. T., Brigandí, G., & Morey, N. (2012). Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in October 2009: the case of the Giampilieri catchment. Natural Hazards and Earth System Sciences, 12(5), 1295–1309. https://doi.org/10.5194/nhess-12-1295-2012https://doi.org/10.5194/nhess-12-1295-2012">https://doi.org/10.5194/nhess-12-1295-2012>

Arrighi, C., Mazzanti, B., Pistone, F. & Catelli, F. (2020). Empirical flash flood vulnerability functions for residential buildings. SN Applied Sciences, 2(5), 904. https://doi.org/10.1007/s42452-020-2696-1"> style="background: #fcfcfc;">>

Biswas, S. S. (2016). Analysis of GIS based morphometric parameters and hydrological changes in Parbati River basin, Himachal Pradesh, India. Journal of Geography & Natural Disasters, 6(2), 175. https://doi.org/10.4172/2167-0587.1000175"> lang="EN-US">>

Borga, M., Stoffel, M., Marchi, L., Marra, F. & Jakob, M. (2014). Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. Journal of Hydrology, 518,194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022"> lang="EN-US">>

Bui, D. T., Tsangaratos, P., Ngo, P. T., Pham, T. D. & Pham B. T. (2019). Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 668, 1038–54. https://doi.org/10.1016/j.scitotenv.2019.02.422"> lang="EN-US">>

Ceru, J. (2012). Flash Flood Potential Index (FFPI) for Pennsylvania. Proceedings, 2012 ESRI Federal GIS Conference. Available at: http://proceedings.esri.com/library/userconf/feduc12/papers/user/JoeCeru.pdf"> lang="EN-US"> lang="EN-US"> (29.06.2022)

Collier, C. (2007). Flash flood forecasting: what are the limits of predictability? Quarterly Journal of the Royal Meteorological Society, 133, 622A, 3–23. https://doi.org/10.1002/qj.29"> lang="EN-US">>

Compton, K. L., Ermolieva, T., Linnerooth-Bayer, J., Amendola, A., Faber, R. & Nachtnebel, H.-P. (2013). Modeling Risk and Uncertainty: Managing Flash Flood Risk in Vienna. In, Amendola, A., Ermolieva, T., Linnerooth-Bayer, J. & Mechler, R. (Eds.) Integrated Catastrophe Risk Modeling: Supporting Policy Processes. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2226-2_2"> lang="EN-US">>

Czigány, S., Pirkhoffer, E. & Geresdi I. (2009). Environmental impacts of flash floods in Hungary. In: Samuels, P., Huntington, S., Allsop, W. & Harrop, J. (Eds.) Flood Risk Management: Research and Practice, London: Taylor and Francis Group. pp. 1439-1447

Czigány, S., Pirkhoffer, E. Fábián, S. Á. & Ilisics, N. (2010). Flash floods as natural hazards in Hungary, with special focus on SW Hungary. Riscuri si Catastrofe, 8, 131-152.

Czigány, S., Pirkhoffer, E., Nagyváradi, L., Hegedűs, P. & Geresdi, I. (2011). Rapid screening of flash flood-affected watersheds in Hungary. Zeitschrift für Geomorphologie, 55, 1-13. https://doi.org/10.1127/0372-8854/2011/0055S1-0033https://doi.org/10.1127/0372-8854/2011/0055S1-0033">https://doi.org/10.1127/0372-8854/2011/0055S1-0033>

De Marchi, B. & Scolobig, A. (2012). The views of experts and residents on social vulnerability to flash floods in an Alpine region of Italy. Disasters, 36, 316–337. https://doi.org/10.1111/j.1467-7717.2011.01252.xhttps://doi.org/10.1111/j.1467-7717.2011.01252.x">https://doi.org/10.1111/j.1467-7717.2011.01252.x>

Elkhrachy, I. (2015). Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A Case Study of Najran City, Kingdom of Saudi Arabia (KSA). The Egyptian Journal of Remote Sensing and Space Science, 18, 261-278. https://doi.org/10.1016/j.ejrs.2015.06.007"> lang="EN-US">>

Fábián, S. Á., Görcs, N. L., Kovács, I. P., Radvánszky B. & Varga, G. (2009). Reconstruction of flash flood event in a small catchment: Nagykónyi, Hungary. Zeitschrift für Geomorphologie, 53, 123-138. https://doi.org/10.1127/0372-8854/2009/0053S3-0123"> lang="EN-US">>

Fábián, S. Á., Kalmár, P., Józsa, E., & Sobucki, M. (2016). Hydrogeomorphic exploration of a local headwater stream in low mountainous environment following detailed field survey protocol (Mecsek Mountains, Hungary). Revista de Geomorfologie, 18, 77-90. https://doi.org/10.21094/rg.2016.134"> style="color: #4472c4;">>

Forte, F., Pennetta, L. & Strobl, R.O. (2005). Historic records and GIS applications for flood risk analysis in the Salento peninsula (southern Italy). Natural Hazards and Earth System Sciences, 5, 833–844. https://doi.org/10.5194/nhess-5-833-20057https://doi.org/10.5194/nhess-5-833-20057">https://doi.org/10.5194/nhess-5-833-20057>

Fuchs, S., Heiss, K. & Hübl, J. (2007). Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazards and Earth System Sciences, 7, 495-506. https://doi.org/10.5194/nhess-7-495-2007"> lang="EN-US">>

Fuchs, S., Kuhlicke, C. & Meyer, V. (2011). Editorial for the special issue: vulnerability to natural hazards - the challenge of integration. Natural Hazards, 58, 609-619. https://doi.org/10.1007/s11069-011-9825-5"> lang="EN-US">>

Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičova, L.; Bloschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velascom, D. & Viglione, A. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367(1), 70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028"> lang="EN-US"> lang="EN-US">.

Georgakakos K.P. (1986): On the design of national, real-time warning systems with capability for site specific flash flood forecasts. BAMS, 67, 1233-1239. https://doi.org/10.1175/1520-0477(1986)067%3C1233:OTDONR%3E2.0.CO;2" target="_blank" rel="noopener">https://doi.org/10.1175/1520-0477(1986)067<1233:OTDONR>2.0.CO;2>

Georgakakos, K. P. (1987). Real-time flash flood prediction. Journal of Geophysical Research, 92, 9615–9629. ISSN 0148-0227

Georgakakos, K. P. (2006). Analytical results for operational flash flood guidance. Journal of Hydrology, 317, 81–103. https://doi.org/10.1016/j.jhydrol.2005.05.009"> lang="EN-US">>

Gioti, E., Riga, C., Kalogeropoulos, K. & Chalkias, C. (2013). A GISbased flash flood runoff model using high resolution DEM and meteorological data. EARSeL eProceedings, 12(1), 33–43.

Gyenizse P. & Vass P. (1998) A természeti környezet szerepe a Nyugat-Mecsek településeinek kialakulásában és fejlődésében [The role of physical environment on the urban evolution of the settlements of the Western Mecsek Hills]. Földrajzi Értesítő 47, 131-148. (in Hungarian)

Heredia-Calderon, E. & Siccardi, F. (1999). Regional analysis of short duration precipitation annual maxima in Liguria (Italy). IAHS Publ., 254, 71–78.

Horváth, Á. (2005). A 2005. április 18-i mátrakeresztesi árvíz meteorológiai háttere. [Meterological background of the Mátrakeresztes flash flood on April 18, 2005]. Légkör, 50, 6-10. (In Hungarian)

Horváth, Á. (2007). A légköri konvekció és a budapesti vihar. [Atmospheric convection and the Budapest Storm]. Természettudományi Közlöny, 138(5), 206-209. (in Hungarian)

Horváth, Á., Geresdi, I., Németh, P. & Dombai, F. (2007). The Constitution Day storm in Budapest: case study of the August 20, 2006 severe storm. Időjárás / Quarterly Journal of the Hungarian Meteorological Service, 111(1), 41-63.

Karagiorgos, K., Thaler, T., Maris, F. & Fuchs, S. (2016). Assessing flash flood vulnerability using a multi-vulnerability approach. FLOODrisk 2016 - 3 rd European Conference on Flood Risk Management. E3S Web of Conferences 7, 08004. https://doi.org/10.1051/e3sconf/20160708004"> lang="EN-US">>

Khajehei, S., Ahmadalipour, A., Shao, W. & Moradkhani, H. (2020). A Place-based Assessment of Flash Flood Hazard and Vulnerability in the Contiguous United States. Scientific Reports, 10, 448. https://doi.org/10.1038/s41598-019-57349-z"> style="background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">>

Khosravi, K., Pham, B. T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I., Tien Bui, D., Shahabi, H., Chapi, K., Shirzadi, A., Pham, B. T., Khosravi, K. & Revhaug, I. (2018). A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of Total Environment, 627, 744–755. https://doi.org/10.1016/j.scitotenv.2018.01.266"> lang="EN-US">>

Koris, K., Balatonyi, L., Bálint M., Filutás I., Horváth G., Kerék G., Koris K., Kovács P., Simonics L., Somogyi P., Takács Z., & Varga Gy. (2021). Magyarország kisvízfolyásainak árvizei, Budapest, Magyarország: Országos Vízügyi Főigazgatóság (OVF), 345 pp. ISBN: 9786155825026, Available online: https://vpf.vizugy.hu/reg/ovf/doc/koris_balatonyi.pdfhttps://vpf.vizugy.hu/reg/ovf/doc/koris_balatonyi.pdf">https://vpf.vizugy.hu/reg/ovf/doc/koris_balatonyi.pdf>

Kovács, I. P., Czigány, S., Józsa, E. Varga, T., Varga, G., Pirkhoffer, E. & Fábián, S. Á. (2015). Geohazards of the natural protected areas in Southern Transdanubia (Hungary). Dynamiques Environmentales, 35, 97-110. https://doi.org/10.4000/dynenviron.1182"> lang="EN-US">>

Lóczy, D. (2010). Flood hazard in Hungary: a re-assessment. Central European Journal of Geosciences, 2, 537-547. https://doi.org/10.2478/v10085-010-0029-0"> lang="EN-US">>

https://m2.mtmt.hu/gui2/?type=authors&mode=browse&sel=10007937" target="_blank" rel="noopener">Lóczy, D., https://m2.mtmt.hu/gui2/?type=authors&mode=browse&sel=10003188" target="_blank" rel="noopener">Czigány, Sz. & Pirkhoffer, E. (2012). https://m2.mtmt.hu/gui2/?mode=browse&params=publication;1818574" target="_blank" rel="noopener">Flash Flood Hazard. In: Muthukrishnavellaisamy, K. (Ed.): https://m2.mtmt.hu/gui2/?mode=browse&params=publication;1818573" target="_blank" rel="noopener">Studies on water management issues. Rijeka, Croatia: InTech. pp. 27-52.

Miglietta, M.M. & Regano, A. (2008). An observational and numerical study of a flash-flood event over south-eastern Italy. Natural Hazards and Earth System Sciences, 8, 1417–1430. https://doi.org/10.5194/nhess-8-1417-2008https://doi.org/10.5194/nhess-8-1417-2008">https://doi.org/10.5194/nhess-8-1417-2008>

Nagy, G., Lóczy, D., Czigány, S., Hrvatin, M., & Ciglič, R. (2021). Comparison of soil moisture indices and field measurements in hilly agricultural lands of SW Hungary. Acta Geographica Debrecina Landscape and Environment, 15, 50-57. https://doi.org/10.21120/LE/15/1/7"> lang="EN-US">>

Ngo, P. T., Hoang, N. and Pradhan, B, Nguyen, Q. K., Tran, X. T., Nguyen, Q. M., Samui, P. & Bui, D. T. (2018). A Novel Hybrid Swarm Optimized Multilayer Neural Tropical Areas Using Sentinel-1 SAR Imagery and Geospatial Data. Sensors, 18, 3704. https://doi.org/10.3390/s18113704https://doi.org/10.3390/s18113704">https://doi.org/10.3390/s18113704>

Norbiato, D., Borga, M., & Dinale, R. (2009). Flash flood warning in ungauged basins by use of the flash flood guidance and model-based runoff thresholds. Meteorological Applications, 16, 65–75. https://doi.org/10.1002/met.126"> lang="EN-US">>

Pirkhoffer, E., Czigány, S., Geresdi, I. & Nagyváradi, L. (2009). Impact of rainfall pattern on the occurrence of flash floods in Hungary. Zeischrift für Geomorphologie, 53, 139-157. https://doi.org/10.1127/0372-8854/2009/0053S3-0139"> lang="EN-US">>

Saleh, A., Yuzir, A. & Abustan, I. (2020). Flash Flood Susceptibility Modelling: A Review. IOP Conference Series: Materials Science and Engineering, 712, 1–6. https://doi.org/10.1088/1757-899X/712/1/012005"> lang="EN-US">>

Santangelo, N., Santo, A., Di Crescenzo, G., Foscari, G., Liuzza, V., Sciarrotta, S. & Scorpio, V. (2011). Flood susceptibility assessment in a highly urbanized alluvial fan: The case study of Sala Consilina (southern Italy). Natural Hazards and Earth System Science, 11, 2765–2780. https://doi.org/10.5194/nhess-11-2765-2011"> lang="EN-US">>

Schwartz, G. & Dingle, D. R. (1980). The not quite flash flood—the hybrid. Preprints of Second Conference on Flash Floods, American Meteorological Society, Boston, MA. 254-258.

Stathopoulos, N., Kalogeropoulos, K., Polykretis, C., Skrimizeas, P., Louka, P., Karymbalis, E, & Chalkias, C. (2017). Introducing Flood Susceptibility Index Using Remote-Sensing Data and Geographic Information Systems, in: Petropoulos, G.P., & Islam, T. (Eds.): Remote Sensing of Hydrometeorological Hazards (1st ed.). CRC Press. https://doi.org/10.1201/9781315154947"> lang="EN-US">>

Tehrany, M. S., Pradhan, B. & Jebur, M.N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79. https://doi.org/10.1016/j.jhydrol.2013.09.034"> lang="EN-US">>

Tehrany, M.S, Lee, M.J., Pradhan, B., Jebur, M.N. & Lee, S. (2014). Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences, 72, 4001–4015. https://doi.org/10.1007/s12665-014-3289-3"> lang="EN-US">>

Tehrany, M. S., Kumar, L., Neamah Jebur, M. & Shabani, F. (2019). Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomatics, Natural Hazards Risk, 10(1), 79–101. https://doi.org/10.1080/19475705.2018.1506509"> lang="EN-US">>

Tincu, R., Lazar, G. & Lazar, I. (2018). Modified Flash Flood Potential Index in order to estimate areas with predisposition to water accumulation. Open Geoscience, 10, 593–606. https://doi.org/10.1515/geo-2018-0047"> lang="EN-US">>

Totschnig, R., Sedlacek, W. & Fuchs, S. (2011). A quantitative vulnerability function for fluvial sediment transport. Natural Hazards, 258, 681-703. https://doi.org/10.1007/s11069-010-9623-5"> lang="EN-US">>

Vass, P. (1997). Árvizek a Bükkösdi-patak felső szakaszán. [Floods in the headwaters of the Bükkösd Stream]. In Tésits R. &Tóth J. (Eds.): Földrajzi tanulmányok a pécsi doktoriskolából. [Geographical studies from the Earth Sciences Graduate School of University of Pécs]. I. Bornus Nyomda, Pécs, 261-285. (in Hungarian)

Yang, Z., Yuan, X., Liu, C., Nie, R., Liu, T., Dai, X., Ma, L., Tang, M., Xu, Y. & Lu, H. (2022). Meta-Analysis and Visualization of the Literature on Early Identification of Flash Floods. Remote Sensing, 14, 3313. https://doi.org/10.3390/rs14143313"> lang="EN-US">>

Youssef, A. M., Pradhan, B. & Sefry, S. A. (2016). Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environmental Earth Sciences, 75, 1–16. https://doi.org/10.1007/s12665-015-4830-8"> lang="EN-US">>

Youssef, A. M. & Hegab, M. A. (2019). 10-Flood-Hazard Assessment Modeling Using Multicriteria Analysis and GIS: A Case Study—Ras Gharib Area, Egypt. Spatial Modeling in GIS and R for Earth and Environmental Sciences, 229–257. https://doi.org/10.1016/B978-0-12-815226-3.00010-7"> lang="EN-US">>

Published
2022/10/14
Section
Original Research