Analysis of urban development on land cover changes of three cities of Gujarat state, India

  • Alpesh Patel VGEC GTU
  • Anil Suthar New L. J. Institute of Engineering and Technology, Ahmedabad, Gujarat, India
Keywords: urbanization, change detection, object based classification, multispectral image

Abstract


Urbanization generally serves as a key navigator of the economic growth and development of the country.  There is a need for fast and accurate urban planning to accommodate more and more people in the city area. Remote sensing technology has been used for planning the expansion and design of city areas. A novel machine learning (ML) classifier formed by combining AdaBoost and extra trees algorithm have been investigated for change detection in the urban area of three cities in the Gujarat region of India. Using Indian Remote Sensing (IRS) Resourcesat-2 LISS IV satellite images, the performance of the object-based AdaBoosted extra trees classifier (ABETC) in terms of overall accuracy (OA) and kappa coefficient (KC) for urban area change detection was compared to benchmarked object-based algorithms. As the first step in object-based classification (OBC), the Shepherd segmentation algorithm was used to segment satellite images. For all three cities, the object-based ABETC demonstrated the highest efficiency when compared to conventional classifiers. The rise in the built-up area of Ahmedabad city has been noted by 87.39 sq km from the year 2011 to 2020 showing the urban development of the city. This increase in the built-up area of Ahmedabad was compensated by the depletion of 30.26 sq. km.  vegetation area, and 57.13 sq. km. of open land class. The built-up area of Vadodara and Rajkot city has been enlarged by 17.24 sq km and 6.79 sq km respectively. The highest OA of 96.04% and KC of 0.94 has been noted for a satellite image of Vadodara city with a novel object based ABETC algorithm.

References

Aguilar, M. A., Saldaña, M. M., & Aguilar, F. J. (2013). GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. International Journal of Remote Sensing 34(7), 2583-2606. https://doi.org/10.1080/01431161.2012.747018

Avashia, V., Parihar, S., & Garg, A. (2020). Evaluation of classification techniques for land use change mapping of Indian cities. Journal of the Indian Society of Remote Sensing48(6), 877-908.

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011" target="_blank" rel="noopener">https://doi.org/10.1016/j.isprsjprs.2016.01.011>

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004>

Blaschke, T., & J. Strobl, J. (2001). Whats wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS 6(1), 12–17.

Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., Van der Meer, F., Van der Werff, H., Van Coillie, F., & Tiede, D. (2014). Geographic object-based image analysis–towards a new paradigm. ISPRS journal of photogrammetry and remote sensing 87, 180-191. https://doi.org/10.1016/j.isprsjprs.2013.09.014" target="_blank" rel="noopener">https://doi.org/10.1016/j.isprsjprs.2013.09.014>

Breiman, L. (2001). Random forests. Machine learning 45(1), 5-32.

Bruzzone, L., & Prieto, D. F. (2000). Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote sensing 38(3), 1171-1182. DOI: 10.1109/36.843009

Bruzzone, L., & Prieto, D. F. (2000). Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote sensing 38(3), 1171-1182. DOI: 10.1109/36.843009

Carleer, A. P., Debeir, O., & Wolff, E. (2005). Assessment of very high spatial resolution satellite image segmentations. Photogrammetric Engineering & Remote Sensing 71(11), 1285-1294. https://doi.org/10.14358/PERS.71.11.1285

Chen, G., Hay, G. J., Carvalho, L. M., & Wulder, M. A. (2012). Object-based change detection. International Journal of Remote Sensing 33(14), 4434-4457. https://doi.org/10.1080/01431161.2011.648285

Chen, Y., Dou, P., & Yang, X. (2017). Improving land use/cover classification with a multiple classifier system using AdaBoost integration technique. Remote Sensing 9(10), 1055.

Clewley, D., Bunting, P., Shepherd, J., Gillingham, S., Flood, N., Dymond, J., Lucas, R., Armston, J., & Moghaddam, M. (2014). A python-based open source system for geographic object-based image analysis (GEOBIA) utilizing raster attribute tables. Remote Sensing 6(7), 6111-6135. DOI:10.3390/rs6076111

Colkesen, I., & Kavzoglu, T. (2017). Ensemble-based canonical correlation forest (CCF) for land use and land cover classification using sentinel-2 and Landsat OLI imagery. Remote Sensing Letters 8(11), 1082–1091. https://doi.org/10.1080/2150704X.2017.1354262>

Coppin, P., Lambin, E., Jonckheere, I., & Muys, B. (2002). Digital change detection methods in natural ecosystem monitoring: A review. Analysis of multi-temporal remote sensing images, 3-36. https://doi.org/10.1142/9789812777249_0001

Deng, J. S., Wang, K., Deng, Y. H., & Qi, G. J. (2008). PCA based land use change detection and analysis using multitemporal and multisensor satellite data. International Journal of Remote Sensing 29(16), 4823-4838. https://doi.org/10.1080/01431160801950162

Desclée, B., Bogaert, P., & Defourny, P. (2006). Forest change detection by statistical object-based method. Remote sensing of environment 102(1-2), 1-11. DOI:10.1016/j.rse.2006.01.013

Du, P., Samat, A., Waske, B., Liu, S., & Li, Z. (2015). Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing 105, 38–53. https://doi.org/10.1016/j.isprsjprs.2015.03.002>

Duro, D. C., Franklin, S. E., & Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment 118, 259–272. https://doi.org/10.1016/j.rse.2011.11.020>

Feng, W., Sui, H., Tu, J., Huang, W., Xu, C., & Sun, K. (2018). A novel change detection approach for multi-temporal high-resolution remote sensing images based on rotation forest and coarse-to-fine uncertainty analyses. Remote Sensing 10(7). https://doi.org/10.3390/rs10071015>

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504" target="_blank" rel="noopener">https://doi.org/10.1006/jcss.1997.1504>

Gamba, P. (2012). Human settlements: A global challenge for EO data processing and interpretation. Proceedings of the IEEE 101(3), 570-581. DOI:10.1109/JPROC.2012.2189089

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1>

Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and its Interface 2(3), 349-360. DOI: https://dx.doi.org/10.4310/SII.2009.v2.n3.a8>

Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment 4(1), 117–124. https://doi.org/10.1016/j.ijsbe.2015.02.005>

Idowu, T. E., Waswa, R. M., Lasisi, K., Nyadawa, M., & Okumu, V. (2020). Object-based multi-temporal land use land cover change detection of the coastal city of Lagos, Nigeria using post-classification comparison technique. South African Journal of Geomatics 9(2), 136–148. DOI:10.4314/sajg.v9i2.11

Jia, S., Zhang, X., & Li, Q. (2015). Spectral–Spatial Hyperspectral Image Classification Using  l1/2 Regularized Low-Rank Representation and Sparse Representation-Based Graph Cuts. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(6), 2473-2484. DOI: 10.1109/JSTARS.2015.2423278

Khurana, M., & Saxena, V. (2020). A Unified Approach to Change Detection Using an Adaptive Ensemble of Extreme Learning Machines. IEEE Geoscience and Remote Sensing Letters 17(5), 794–798. https://doi.org/10.1109/LGRS.2019.2933906>

Laso, F. J., Benítez, F. L., Rivas-Torres, G., Sampedro, C., & Arce-Nazario, J. (2020). Land cover classification of complex agroecosystems in the non-protected highlands of the Galapagos Islands. Remote sensing 12(1), 65. https://doi.org/10.3390/rs12010065

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International journal of remote sensing 25(12), 2365-2401. https://doi.org/10.1080/0143116031000139863

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International journal of remote sensing 25(12), 2365-2401. https://doi.org/10.1080/0143116031000139863

Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing 130, 277–293. https://doi.org/10.1016/j.isprsjprs.2017.06.001>

Mathieu, R., Aryal, J., & Chong, A. K. (2007). Object-based classification of Ikonos imagery for mapping large-scale vegetation communities in urban areas. Sensors 7(11), 2860-2880.  https://doi.org/10.3390/s7112860

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 66(3), 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001>

Pacifici, F., Chini, M., & Emery, W. J. (2009). A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sensing of Environment 113(6), 1276-1292. DOI:10.1016/J.RSE.2009.02.014

Pacifici, F., Del Frate, F., Solimini, C., & Emery, W. J. (2007). An innovative neural-net method to detect temporal changes in high-resolution optical satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 45(9), 2940-2952. DOI:10.1109/TGRS.2007.902824

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of machine Learning research 12, 2825-2830.

Pham, V. M., Van Nghiem, S., Bui, Q. T., Pham, T. M., & Van Pham, C. (2019). Quantitative assessment of urbanization and impacts in the complex of Huế Monuments, Vietnam. Applied Geography 112, 102096. https://doi.org/10.1016/j.apgeog.2019.102096>

QGIS Development Team. (2019). QGIS (Version 2.18). Open Source Geospatial Foundation Project. https://qgis.org/en/site/.>

Reba, M., & Seto, K. C. (2020). A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sensing of Environment 242, 111739. https://doi.org/10.1016/j.rse.2020.111739>

Rizvi, I. A., & Mohan, B. K. (2011). Object-based image analysis of high-resolution satellite images using modified cloud basis function neural network and probabilistic relaxation labeling process. IEEE Transactions on Geoscience and Remote Sensing 49(12), 4815-4820. DOI: 10.1109/TGRS.2011.2171695

Samat, A., Persello, C., Liu, S., Li, E., Miao, Z., & Abuduwaili, J. (2018). Classification of VHR Multispectral Images Using ExtraTrees and Maximally Stable Extremal Region-Guided Morphological Profile. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(9), 3179–3195. https://doi.org/10.1109/JSTARS.2018.2824354>

Schiewe, J. (2002). Segmentation of high-resolution remotely sensed data-concepts, applications and problems. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34(4), 380-385.

Shepherd, J. D., Bunting, P., & Dymond, J. R. (2019). Operational large-scale segmentation of imagery based on iterative elimination. Remote Sensing 11(6), 658. https://doi.org/10.3390/rs11060658>

Singh, A. (1989). Review article digital change detection techniques using remotely sensed data. International Journal of Remote Sensing 10(6), 989–1003. https://doi.org/10.1080/01431168908903939

Singh, P. P., & Garg, R. D. (2011). Land use and land cover classification using satellite imagery: a hybrid classifier and neural network approach. International Conference on Advances in Modeling, Optimization and Computing (AMOC), 753-762.

Singh, P. P. & Garg, R. D. (2014). Classification of high resolution satellite image using spatial constraints based fuzzy clustering. Journal of Applied Remote Sensing 8(1), 083526(1-16). https://doi.org/10.1117/1.JRS.8.083526

Stefanski, J., MacK, B., & Waske, O. (2013). Optimization of object-based image analysis with random forests for land cover mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6(6), 2492–2504. https://doi.org/10.1109/JSTARS.2013.2253089>

Thanh Noi, P., & Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18(1), 18.  https://doi.org/10.3390/s18010018

Walter, V. (2004). Object-based classification of remote sensing data for change detection. ISPRS Journal of photogrammetry and remote sensing 58(3-4), 225-238. https://doi.org/10.1016/j.isprsjprs.2003.09.007" target="_blank" rel="noopener">https://doi.org/10.1016/j.isprsjprs.2003.09.007>

Wang, C., & Lu, L. (2019). Object-based random forest classification for detecting plastic-mulched landcover from Gaofen-2 and Landsat-8 OLI fused data. 8th International Conference on Agro-Geoinformatics, Agro-Geoinformatics  1–5. https://doi.org/10.1109/Agro-Geoinformatics.2019.8820632>

Wang, S. W., Gebru, B. M., Lamchin, M., Kayastha, R. B., & Lee, W. K. (2020). Land use and land cover change detection and prediction in the kathmandu district of nepal using remote sensing and GIS. Sustainability (Switzerland) 12(9). https://doi.org/10.3390/su12093925>

Wang, X., Liu, S., Du, P., Liang, H., Xia, J., & Li, Y. (2018). Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning. Remote Sensing 10(2). https://doi.org/10.3390/rs10020276>

Weih, R. C., & Riggan, N. D. (2010). Object-based classification vs. pixel-based classification: Comparative importance of multi-resolution imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38(4), C7. DOI:10.4236/ars.2016.54022

Wu, J., Li, B., Ni, W., Yan, W., & Zhang, H. (2020). Optimal Segmentation Scale Selection for Object-Based Change Detection in Remote Sensing Images Using Kullback-Leibler Divergence. IEEE Geoscience and Remote Sensing Letters 17(7), 1124–1128. https://doi.org/10.1109/LGRS.2019.2943406>

Zhang, Y., Peng, D., & Huang, X. (2018). Object-based change detection for VHR images based on multiscale uncertainty analysis. IEEE Geoscience and Remote Sensing Letters 15(1), 13–17. https://doi.org/10.1109/LGRS.2017.2763182>

Published
2022/12/24
Section
Original Research