Assessing the structure and composition of artificial levees along the Lower Tisza River (Hungary)

  • Diaa Sheishah Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, 6722 Szeged
  • György Sipos Department of Geoinformatics, Physical and Environmental Geography, University of Szeged
  • Alexandru Hegyi Applied Geomorphology and Interdisciplinary Research Centre (CGACI), Department of Geography, West University of Timisoara
  • Péter Kozák Lower Tisza Water Directorate
  • Enas Abdelsamei Department of Geoinformatics, Physical and Environmental Geography, University of Szeged
  • Csaba Tóth Department of Highway and Railway Engineering, Budapest University of Technology and Economics
  • Alexandru Onaca Applied Geomorphology and Interdisciplinary Research Centre (CGACI), Department of Geography, West University of Timisoara
  • Dávid Gergely Páll Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, 6722 Szeged
Keywords: levee assessment, flood risk, Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR)

Abstract


Levees are earth structures constructed along alluvial rivers and are considered to be one of the essential components of flood risk and natural hazard reduction. The preservation of their condition would require orderly monitoring. In Hungary, an over 4200 km long levee system was constructed from the 19th century on. Since then, many natural and anthropogenic processes, such as compaction, erosion, subsidence etc., could contribute to the slow but steady deformation of these structures. In the meantime, due to the lack of documentation, their structure and internal composition are still unclear in many sections. The present study uses different geophysical techniques to validate their efficiency in detecting the structure, composition and potential defects along a 3.6 km levee section of the Lower Tisza River, affected significantly by seepage and piping phenomena during floods. Measurements were made using Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and drillings. Information obtained by the different techniques was cross-checked and combined. This way, the potential of the applied survey strategy could be demonstrated, and the selected levee section could be assessed in terms of its structure and composition. Consequently, the major reasons for frequently occurring adverse flood phenomena at the site could be revealed. The survey approach outlined in the present paper can be applied extensively along lowland levee systems in the region and elsewhere.

References

Abu-Hassanein Z. S., C. H. Benson, and L. R. Blotz, 1996. "Electrical resistivity of compacted clays," Journal of Geotechnical Engineering - ASCE, vol. 122, pp. 397-406.


Antoine, R., Fauchard, C., Fargier, Y., & Durand, E., 2015. Detection of leakage areas in an earth embankment from GPR measurements and permeability logging. International Journal of Geophysics, 2015.


Bittelli, M., Salvatorelli, F., Rossi Pisa, P., 2008. Correction of TDR-based soil water content measurements in conductive soils. Geoderma 143, 133–142.


Busato, L., Boaga, J., Peruzzo, L., Himi, M., Cola, S., Bersan, S., & Cassiani, G. (2016). Combined geophysical surveys for the characterisation of a reconstructed river embankment. Engineering Geology, 211, 74–84. https://doi.org/10.1016/j.enggeo.2016.06.023


Casagrande A. (1937). Seepage Through Dams. Journal of the New England Water Works Association, republished in Contributions to Soil Mechanics 1925-1940, Boston Society of Civil Engineers, Boston, MA, pp. 295-336.


Chlaib, H. K., Mahdi, H., Al-Shukri, H., Su, M. M., Catakli, A., & Abd, N., 2014. Using ground penetrating radar in levee assessment to detect small-scale animal burrows. Journal of Applied Geophysics, 103, 121–131.


Cleary, P.W., Prakash, M., Mead, S., Lemiale, V., Robinson, G.K., Ye, F., Ouyang, S., Tang, X., 2015. A scenario-based risk framework for determining consequences of different failure modes of earth dams. Nat. Hazards 75, 1489–1530. https://doi.org/10.1007/ s11069-014-1379-x.


Constable, S.C., Parker, R.L., Constable, C.G., 1987. Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52, 289–300.


Cosenza P., E. Marmet, F. Rejiba, Y. Jun Cui, A. Tabbagh, and Y. 2006. Charlery, "Correlations between geotechnical and electrical data: A case study at Garchy in France," Journal of Applied Geophysics, vol. 60, pp. 165-178.


De Groot-Hedlin, C., Constable, S., 1990. Occam's inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics 55, 1613–1624. https:// doi.org/10.1190/1.1442813.


Di Prinzio, M., Bittelli, M., Castellarin, A., & Pisa, P. R., 2010. Application of GPR to the monitoring of river embankments. Journal of Applied Geophysics, 71(2–3), 53–61.


Desai C.S. (1970). Seepage in Mississippi River Banks, Analysis of Transient Seepage Using a Viscous-Flow Model and Numerical Methods, Miscellanous Paper S-70-3, Report 1. USACE Waterways Experiment Station, Vicksburg, MS.


Dezert, T., Fargier, Y., Palma Lopes, S., & Côte, P., 2019. Geophysical and geotechnical methods for fluvial levee investigation: A review. Engineering Geology, 260(March 2018), 105206.


Fukue, M., Minatoa, T., Horibe, H. and Taya, N., 1999. The micro-structure of clay given by resistivity measurements. Eng. Geol. 54, 43-53.


Galli L., (1976) Az árvízvédelmi földművek állékonyságának vizsgálata. Budapest: Országos Vízügyi Hivatal, available at: https://library.hungaricana.hu/hu/view/VizugyiKonyvek_078/?pg=57&layout=s (in Hungarian)


Goyal, V.C., Gupta, P.K., Seth, P.K. and Singh, V.N., 1996. Estimation of temporal changes in soilmoisture using resistivity method. Hydro. Proces. 10, 1147-1154.
(14) (PDF) Electrical resistivity survey in soil science: A review. Available from: https://www.researchgate.net/publication/222649758_Electrical_resistivity_survey_in_soil_science_A_review [accessed Jul 18 2022].


GSSI, 2018 RADAN 7 software, accessible at: https://www.geophysical.com/software.


Gupta, S.C. and Hanks, R.J., 1972. Influence of wa ter content on electrical conductivity of the soil.Soil Sci. Soc. Am. Proc. 36, 855-857.


Himi, M., Casado, I., Sendros, A., Lovera, R., Rivero, L., & Casas, A. (2018).  Assessing preferential seepage and monitoring mortar injection through an earthen dam settled over a gypsiferous substrate using combined geophysical methods. Engineering Geology, 246(September), 212–221. https://doi.org/10.1016/j.enggeo.2018.10.002.


Huang, W.-C., Weng, M.-C., Chen, R.-K., 2014. Levee failure mechanisms during the ex- treme rainfall event: a case study in Southern Taiwan. Nat. Hazards 70, 1287–1307. https://doi.org/10.1007/s11069-013-0874-9.


Inim IJ, Tijani MN, Affiah UE (2018) Experimental assessment of electrical properties of lateritic soils as an alternative non-destructive method for compaction monitoring. International Journal of Geotechnical Engineering 12(3): 252-257, DOI: 10.1080/19386362. 2016.1270792.


Ishida, T., Makino, T., 1999. Effects of pH on dielectric relaxation of montmorillonite, allophane, and imogolite suspensions. J. Colloid Interface Sci. 212, 152161.


Jodry, C., Palma Lopes, S., Fargier, Y., Sanchez, M., & Côte, P., 2019. 2D-ERT monitoring of soil moisture seasonal behaviour in a river levee: A case study. Journal of Applied Geophysics, 167, 140–151.


Keller, G.V. and Frischknecht F.C., 1966. Electrical methods in geophysical prospecting. Pergamon Press Inc., Oxford: pp 517.


Kovács, D. (1979). Árvízvédelem, folyó-és tószabályozás, víziutak Magyarországon (Flood control, regulation of rivers and lakes and waterways in Hungary). National Water Management Authority (OVH), Budapest.


Lamotte, M., Bruand A., Dabas, M., Donfack, P., Ga balda, G., Hesse, A., Humbel, F-X. and RobainH., 1994. Distribution d'un horizon à forte cohésion au sein d'une couverture de sol aride duNord-Cameroun : apport d'une prospection électrique. Comptes rendus à l'academie dessciences. Earth Planet. Sci., 318: 961-968.
(14) (PDF) Electrical resistivity survey in soil science: A review. Available from: https://www.researchgate.net/publication/222649758_Electrical_resistivity_survey_in_soil_science_A_review [accessed Jul 18 2022].


Lee, B., Oh, S., & Yi, M. J. (2020). Mapping of leakage paths in damaged embankment using modified resistivity array method. Engineering Geology, 266(December 2019), 105469. https://doi.org/10.1016/j.enggeo.2019.105469


Li Y., Craven J., Schweig E.S., and Obermeir S.F. (1996). Sand Boils Induced by the 1993 Mississippi River Flood: Could They One Day be Misinterpreted as Earthquake Induced Liquefaction. Geology, 24 (2), pp. 171-174.


Loke, M. H., 2004. Tutorial: 2-D and 3-D Electrical Imaging Surveys, 2004 Revised Edition. Tutorial: 2-D and 3-D Electrical Imaging Surveys, (July), 136.


Loke, M.H., Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 44, 131–152.


McCarter, W.J., 1984. The electrical resistivity characteristics of compacted clays. Geotech. 34, 263-267.


Melo, L. B. B. de, Silva, B. M., Peixoto, D. S., Chiarini, T. P. A., de Oliveira, G. C., & Curi, N. (2021). Effect of compaction on the relationship between electrical resistivity and soil water content in Oxisol. Soil and Tillage Research, 208(November 2019). https://doi.org/10.1016/j.still.2020.104876


Mezősi G. 2022. Natural hazards and the mitigation of their impacts. Springer International Publishing AG, Switzerland, p. 260.


Michot, D., Dorigny, A. and Benderitter, Y., 2000. Mise en évidence par r ésistivité électrique desécoulements préférentiels et de l'assèchement par le maïs d'un calcisol de Beauce irrigué.C.R.Acad.Sci., 332, 29-36. (14) (PDF) Electrical resistivity survey in soil science: A review. Available from: https://www.researchgate.net/publication/222649758_Electrical_resistivity_survey_in_soil_science_A_review [accessed Jul 18 2022].


Nagy, L. (2000): Az árvízvédelmi gátak geotechnikai problémái = Geotechnical problems of levees. Vízügyi Közlemények, 82(1), 121–146. (in Hungarian)


Nagy L. (2010): Az árvízvédelmi gátak hossza. Nemzetközi összehasonlítás, Hidrológiai Közlöny, 90. évfolyam, 5. szám, pp. 65-67, (in Hungarian).


Ojha C.S.P, Singh V.P., and Adrian D.D. (2001). Influence of Porosity on Piping Models of Levee Failure. ASCE, Journal of Geotechnical and Geoenvironmental Engineering, 120 (12), pp. 1071-1074.


Oludayo, I. (2021). Effect of Grain Size Distribution on Field Resistivity Values of Unconsolidated Sediments. 7(1), 12–18.


OVF, 2014. Árvízi kockázati térképezés és stratégiai kockázatkezelési terv készítése ( Flood risk mapping and strategic risk management plan), project report of the National Water Directorate Hungary, accessible at: http://www.vizugy.hu/vizstrategia/documents/B91A47EC-E3B8-4D58-A15F-3E522958BEE8/Orszagos_elontes_1e_web.pdf


Perri, M. T., Boaga, J., Bersan, S., Cassiani, G., Cola, S., Deiana, R., Simonini, P., & Patti, S., 2014. River embankment characterisation: The joint use of geophysical and geotechnical techniques. Journal of Applied Geophysics, 110, 5–22.


Pozdnyakova A. and L. Pozdnyakova, 2002. Electrical fields and soil properties, Proceedings of 17th World Congress of Soil Science, Thailand, vol. 14-21, pp. 1558, August 2002.


Radzicki, K., Gołębiowski, T., Ćwiklik, M., & Stoliński, M. (2021). A new levee control system based on geotechnical and geophysical surveys including active thermal sensing: A case study from Poland. Engineering Geology, 293(July). https://doi.org/10.1016/j.enggeo.2021.106316


Rahimi, S., Wood, C. M., Coker, F., Moody, T., Bernhardt-Barry, M., & Mofarraj Kouchaki, B., 2018. The combined use of MASW and resistivity surveys for levee assessment: A case study of the Melvin Price Reach of the Wood River Levee. Engineering Geology, 241(October 2017), 11–24.


Saarenketo, T., 1998. Electrical properties of water in clay and silty soils. J. Appl. Geophys. 40, 73–88.


Samouelian, A. Cousin, I., Tabbagh, A. Bruand, A. and Richard, G. (2005). Electrical resistivity survey in soil science: a review. Soil and Tillage Research, vol. 83, pp. 173-193.


Sandmeier geophysical software, 2016. REFLEXW guide. Introduction to the processing of GPR-data within REFLEXW, 23p.


Sandmeier geophysical Software, 2016. Reflex 8.


Santamarina, J.C., Klein, K.A., Fam, M.A., 2001. Soils and Waves: Particulate Materials Behavior, Characterisation and Process Monitoring. John Wiley and Sons, New York.


Schweitzer, F. (2001). A magyarországi folyószabályozások geomorfológiai vonatkozásai = Geomorphological aspects of Hungarian river regulation works. Földrajzi értesitö, 50(1-4), 63-72. (in Hungarian)


Seladji, S., Cosenza, P., Tabbagh, A., Ranger, J., & Richard, G. (2010). The effect of compaction on soil electrical resistivity: A laboratory investigation. European Journal of Soil Science, 61(6), 1043–1055. https://doi.org/10.1111/j.1365-2389.2010.01309.x.


Sentenac, P., Benes, V., Budinsky, V., Keenan, H., & Baron, R., 2017. Post flooding damage assessment of earth dams and historical reservoirs using non-invasive geophysical techniques. Journal of Applied Geophysics, 146, 138–148.


Siddiqui, F.I and Osman, S.B.A.S (2012). Integrating Geo-Electrical and Geotechnical Data for Soil Characterization International Journal of Applied Physics and Mathematics. Vol. 2, pp. 104-106.


Sheishah, D., Kiss, T., Borza, T., Fiala, K., Kozák, P., Abdelsamei, E., Tóth, C., Grenerczy, G., Gergely Páll, D., Sipos, G. (2022). Mapping subsurface defects and surface deformation along the artificial levee of the Lower Tisza River, Hungary. Journal of Applied Geophysics (under review)


Sudha K., M. Israil, S. Mittal, and J. Rai, 2009."Soil characterisation using electrical resistivity tomography and geotechnical investigations," Journal of Applied Geophysics, vol. 67, pp. 74-79.


Szlávik L. (2003): Az elmúlt másfél évszázad jelentősebb Tisza-völgyi árvizei és az árvízvédelem szakaszos fejlesztése. = Significant floods of the Tisza in the last one and a half century and the gradual improvement of flood protection. Vízügyi Közlememények, Special Issue (4), 31-43. (in Hungarian)


Szűcs P; Nagy L; Ficsor J; Kovács S; Szlávik L; Tóth F; Keve G; Lovas A; Padányi J; Balatonyi L; Baross K; Sziebert J; Ficzere A; Göncz B; Dobó K (2019) Árvízvédelmi ismeretek = Flood Protection, available at: http://hdl.handle.net/20.500.12944/13490 (in Hungarian)


Tímár, A. (2020). Árvízvédelmi töltések potenciális veszélyforrásai a Körösök vidékén= Potential Sources of Danger of Flood Protection Dams in the Körös River Area. HADMÉRNÖK, 15(1), 107-119.


Tresoldi, G., Arosio, D., Hojat, A., Longoni, L., Papini, M., & Zanzi, L., 2019. Long-term hydrogeophysical monitoring of the internal conditions of river levees. Engineering Geology, 259 (August 2018), 105139.


USACE – U.S. Army Corps of Engineers (2000). EM 1110-2-1913, Engineering and Design - Design and Construction of Levees. Department of the Army, USACE, Washington, DC.


Utsi, E. C., 2017. Ground Penetrating Radar Theory and Practice. In-Ground Penetrating Radar Theory and Applications. Butterworth-Heinemann publication Elsevier, 209 p.


Yoon G. L. and Park J. B., 2001. "Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils," Journal of Hazardous Materials, vol. 84, pp. 147-161.


Zhu, J.J., Kang, H.Z., Gonda, Y., 2007. Application of Wenner configuration to estimate soil water content in pine plantations on sandy land. Pedosphere 17, 801–812. https://doi.org/10.1016/S1002-0160(07)60096-4.


Zorkóczy, Z., 1987. Árvízvédelem = Flood protection. Budapest: Országos Vízügyi Hivatal (in Hungarian).

Published
2022/10/14
Section
Original Research