River ice monitoring of the Danube and Tisza rivers using Sentinel-1 radar data

  • Boudewijn van Leeuwen University of Szeged
  • György Sipos Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, 6722 Szeged, Egyetem str. 2-6
  • Jenő Lábdy General Directorate of Water Management, 1012 Budapest, Márvány utca 1/d.
  • Márta Baksa General Directorate of Water Management, 1012 Budapest, Márvány utca 1/d.
  • Zalán Tobak Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, 6722 Szeged, Egyetem str. 2-6
Keywords: river ice, classification, sentinel-1, flood, radar, Danube, Tisza

Abstract


Due to extreme weather, occasionally Hungary’s main rivers and lakes grow an ice cover causing severe damage to infrastructure and increased flood hazard. During cold periods in 2017 and 2022, a dangerous layer of ice developed on the main rivers in the country. Since river ice is rare in this region, no permanent ice monitoring system is in operation. Due to their all weather capabilities, active remote sensing instruments provide a good opportunity to monitor ice coverage. ESA’s Sentinel-1 radar satellites acquire data with a relatively high spatial and temporal resolution. A method was developed to provide ice coverage information at a regular interval; depending on the satellite revisit, at least once every 5 days, but often also on a daily basis. In 2017, maps were created for sections along the Danube and in 2022 for another section of the Tisza river. The ice coverage was calculated with a spatial resolution of 10 metre and visualised with a spatial density of 100 metre along the rivers. The mapping procedure provides visual information to give a fast overview of the spatial extent of ice coverage and quantitative, tabular information for operational activities to mitigate the damage due to ice packs and ice jams.

References

Agafonova, S., Frolova, N., Krylenko, I., Sazonov, A., & Golovlyov, P. (2017). Dangerous ice phenomena on the lowland rivers of European Russia. Natural Hazards, 88. http://dx.doi.org/10.1007/s11069-016-2580-x"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;">.

https://www.sciencedirect.com/science/article/pii/S0303243421000222?via%3Dihub#!"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;">Altena, B., & Kääb, A. (2021). Quantifying river ice movement through a combination of European satellite monitoring services. https://www.sciencedirect.com/journal/international-journal-of-applied-earth-observation-and-geoinformation"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;">International Journal of Applied Earth Observation and Geoinformation, https://www.sciencedirect.com/journal/international-journal-of-applied-earth-observation-and-geoinformation/vol/98/suppl/C"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;">98, 102315, http://dx.doi.org/10.1016/j.jag.2021.102315"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Babić Mladenović, M., Gombás, K., Liška, I., & Balatonyi L. (2017). Report on the ice event 2017 in the Danube River Basin. ICPDR-IKSD. available at: https://www.icpdr.org/main/sites/default/files/nodes/documents/report_ice_event_2017_0.pdf>

Chu, T., Das, A., & Lindenschmidt K-E. (2015). Monitoring the variation in Ice-Cover Characteristics of the Slave River, Canada using Radarsat-2 data – A case study. Remote Sensing, 7, 13664-13691. https://doi.org/10.3390/rs71013664"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Gombás K., & Balatonyi L. (2017). Extremities in winter season - outlook for mitigation measures. Hidrológiai Közlöny, 97(3), 81-85. available at: https://adt.arcanum.com/hu/view/HidrologiaiKozlony_2017/?pg=0&layout=s>

Goldberg, M.D., Li, S., Lindsey, D.T., Sjoberg, W., Zhou, L., & Sun, D. (2020) Mapping, Monitoring, and Prediction of Floods Due to Ice Jam and Snowmelt with Operational Weather Satellites. Remote Sensing, 12(11), 1865. https://doi.org/10.3390/rs12111865"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Hicks, F. (2009). An overview of river ice problems: CRIPE07 guest editorial. Cold Regions Science and Technology, 55, 175-185. http://dx.doi.org/10.1016%2Fj.coldregions.2008.09.006"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Horváth, Á. (2017), 2017 jeges januárja [2017 ici january]. OMSZ Tanulmányokhttp://www.met.hu/ismeret-tar/erdekessegek_tanulmanyok/index.php?id=1805&hir=2017_jeges_januarja"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;">>

Howell, S.E.L., Brady, M., & Komarov, A.S. (2021). Large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission. The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-223"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;"> (Preprint)

Ionita, M., Badaluta, C.A., Scholz, P., & Chelcea S. (2018). Vanishing river ice cover in the lower part of the Danube basin – signs of a changing climate. Scientific Reports, 8, 7948. https://doi.org/10.1038/s41598-018-26357-w"> style="font-size: 12pt; font-family: 'Times New Roman', serif; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;"> style="font-size: 12pt; font-family: 'Times New Roman', serif; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">10.1038/s41598-018-26357-w

Keve, G. (2014). Jégészlelés a Duna magyarországi alsó szakaszán [Ice detection on the lower section of the Danube in Hungary]. Magyar Hidrológiai Társaság XXXII. Országos Vándorgyűlés. Szeged, Hungary, July 2-4,2014. Budapest: Magyar Hidrológiai Társaság (MHT), pp. 19

Keve, G. (2017a). Utilization of gained experiences based on ice observation by webcameras. XXVII Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management, Bulgaria. 68-78.

Keve, G. (2017b). Space-time ice monitoring of the Hungarian Lower-Danube. Periodica Polytechnica-Civil Engineering, 61(1). 27-38. https://doi.org/10.3311/PPci.9116"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">>

Keve, G. (2020). Determining accurate ice coverage on Danube by webcameras. In: Proceedings of XXVII Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management, https://doi.org/10.15407/uhmi.conference.01.03"> style="font-size: 12pt; font-family: 'Times New Roman', serif; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">0.15407/uhmi.conference.01.03.

Kiss, T., Fiala, K., Sipos, Gy., & Szatmári, G. (2019). Long-term hydrological changes after various river regulation measures: are we responsible for flow extremes? Hydrology Research, 50(2), 417–430. https://doi.org/10.2166/nh.2019.095"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Lal, A. W., & Shen, H. T. (1993). A mathematical model for river ice processes. Journal of Hydraulic Engineering, 117(7). http://dx.doi.org/10.1061/(ASCE)0733-9429(1991)117:7(851)" target="_blank" rel="noopener">http://dx.doi.org/10.1061/(ASCE)0733-9429(1991)117:7(851)>

Li, X. -M., Sun, Y., & Zhang, Q. (2021) Extraction of Sea Ice Cover by Sentinel-1 SAR Based on Support Vector Machine With Unsupervised Generation of Training Data. IEEE Transactions on Geoscience and Remote Sensing, 59(4), 3040-3053, https://doi.org/10.1109/TGRS.2020.3007789"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;"> style="color: blue;" href="https://doi.org/10.1109/TGRS.2020.3007789"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">10.1109/TGRS.2020.3007789

Liptay, Z., Czigány, Sz., & Pirkhoffer, E. (2021). River ice and water temperature prediction on the Danube. Hungarian Geographical Bulletin, 70, 201-214. https://doi.org/10.15201/hungeobull.70.3.1"> style="font-size: 12pt; font-family: 'Times New Roman', serif; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">10.15201/hungeobull.70.3.1.

Lohse, J., Doulgeris, A., & Dierking, W. (2020). Mapping sea-ice types from Sentinel-1 considering the surface-type dependent effect of incidence angle. Annals of Glaciology, 61(83), 260-270. https://doi.org/10.1017/aog.2020.45"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;"> style="color: blue;" href="https://doi.org/10.1017/aog.2020.45"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">10.1017/aog.2020.45

Malenovský, Z.   Rott, H.   Cihlar, J.   Schaepman, M.E.   García-Santos, G.   Fernandes, R.,   & Berger, M. (2012). Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land, Remote Sensing of Environment, 120, 91–101, https://doi.org/10.1016/j.rse.2011.09.026"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Mezősi, G. (2016). The physical geography of Hungary. Springer International Publishing.

Mezősi, G. Blanka, V. Bata, T. Ladányi, Zs. Kemény, K., & Meyer, B.C. (2016). Assessment of future scenarios for wind erosion sensitivity changes based on ALADIN and REMO regional climate model simulation data. Open Geosciences, 8(1), 465-477. https://doi.org/10.1515/geo-2016-0033"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;">>

OMSZ, Elmúlt évek időjárása (Weather in past years ), 2017. https://www.met.hu/eghajlat/magyarorszag_eghajlata/eghajlati_visszatekinto/elmult_evek_idojarasa/"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Somogyi, S. (2001). Természeti és társadalmi hatások a Duna mai vízrendszerében (Natural and social impacts in catchment of Danube). Hungarian Geographical Bulletin/Földrajzi Értesítő, 50(1-4), 299-310.

https://doi.pangaea.de/10.1594/PANGAEA.881056"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;">Takács, K., & https://doi.pangaea.de/10.1594/PANGAEA.881056"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: windowtext; text-decoration-line: none;">Kern, Z. (2017): Long-term ice phenology records of Lake Balaton and the Danube River (East Central Europe). PANGAEA, https://doi.org/10.1594/PANGAEA.881056"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Takács, K., Kern, Z. & Pásztor, L. (2018). Long-term ice phenology records from eastern–central Europe, Earth System Science Data, 10, 391–404, https://doi.org/10.5194/essd-10-391-2018"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Tom, M., Aguilar,R., Imhof, P., Leinss, S., Baltsavias, E., & Schindler, K. (2020) Lake ice detection from Sentinel-1 SAR with deep learning, https://arxiv.org/abs/2002.07040v2"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">arXiv:2002.07040v2 [eess.IV]

Unterschultz, K.D., van der Sanden, J., & Hicks, F.E., (2009). Potential of RADARSAT-1 for the monitoring of river ice: Results of a case study on the Athabasca River at Fort McMurray, Canada, Cold Regions Science and Technology, 55(2), 238-248, https://doi.org/10.1016/j.coldregions.2008.02.003"> style="font-size: 12pt; font-family: 'Times New Roman', serif;">>

Van Leeuwen, B., & Tobak, Z. (2018). Satellite data based river ice monitoring, In: Molnár, V. (Ed.), Az elmélet és a gyakorlat találkozása a térinformatikában IX.: Theory meets practice in GIS Conference, Debrecen, Hungary, Debreceni Egyetemi Kiadó. pp. 371-376. ISBN 978-963-318-723-4

Weber, F., Nixon, D., & Hurley, J. (2003). Semi-automated classification of river ice types on the Peace River using RADARSAT-1 synthetic aperture radar (SAR) imagery. Canadian Journal of Civil Engineering, 30, 11–27, https://doi.org/10.1139/l02-073"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Zakharova, E., Agafonova, S., Duguay, C., Frolova, N., & Kouraev, A. (2021). River ice phenology and thickness from satellite altimetry: potential for ice bridge road operation and climate studies. The Cryosphere, 15, 5387-5407. https://doi.org/10.5194/tc-15-5387-2021"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;">>

Zhang, Y., Zhu, T., Spreen, G., Melsheimer, C., Huntemann, M., Hughes, N., Zhang, S., & Li, F. (2021). Sea ice and water classification on dual-polarized Sentinel-1 imagery during melting season. The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-85"> style="font-size: 12pt; font-family: 'Times New Roman', serif; color: #1155cc;"> lang="EN-GB" style="font-size: 12pt; font-family: 'Times New Roman', serif;"> (Preprint)

Published
2022/10/14
Section
Original Research