Excess mortality and COVID-19 deaths: preliminary data from Serbia and comparison with European experience

  • Daniela Arsenović доцент на Департману за географију, туризам и хотелијерство Природно-математичког факултета Универзитета у Новом Саду
Keywords: excess mortality rate, Covid-19, pandemic, Serbia

Abstract


Mortality statistics is underlay for public health measures and action and consequently it is one of the major indicator in measures of Covid-19 impact on population. This study aim to explore excess mortality during the Covid-19 pandemic in Serbia. Excess mortality compares expected and observed number of deaths during the given period. Analysis in this paper was based on excess deaths and excess mortality rate. Data was downloaded from the national COVID-19 database and obtained from a relevant source from the Statistical Office of the Republic of Serbia. In order to provide better understanding of excess death, the excess mortality rate was calculated for the period January 2015-June 2022. For the period January 2015-February 2020, 38 months were observed without excess deaths, while in months with excess deaths, almost in all months excess mortality rate was below 12%. Since March 2020, the excess mortality rate has increased significantly, with highest values in December 2020 (91.4%), October (84.3) and November (67.8) 2021.

References

Arsenović, D. (2020). COVID-19 in Serbia: demographic reflection and response. Demographic Aspects of COVID-19 Pandemic and its Consequences, 30 November - 1 December, Vienna, Austria. https://www.oeaw.ac.at/vid/events/calendar/conferences/demographic-aspects-of-the-covid-19-pandemic-and-its-consequences>

Arsenović, D. (2021). Demographic aspects of mortality during the Covid-19 pandemic in Serbia. The 5th Serbian congress of geographers: Innovative approach and perspectives of the applied geography, 9-11 September, Novi Sad, Serbia. ISBN 978-86-7031-588-4.

Arsenović, D. (2018). Seasonality in human mortality: results for the City of Novi Sad (Serbia). Stanovništvo 56(1), 27-42. doi.org/10.2298/STNV1801027A

Balbo, N., Kashnitsky, I., Melegaro, A., Meslé, F., Mills, M. C., de Valk, H., & Vono de Vilhena, D. (2020). Demography and the coronavirus pandemic. Population & policy compact: policy brief25.

Beaney, T., Clarke, J. M., Jain, V., Golestaneh, A. K., Lyons, G., Salman, D. & Majeed, A. (2020). Excess mortality: the gold standard in measuring the impact of COVID-19 worldwide? Journal of the Royal Society of Medicine 113(9), 329–334. doi.org/10.1177/0141076820956802

 

Blangiardo, M., Cameletti, M., Pirani, M., Corsetti, G., Battaglini, M., & Baio, G. (2020). Estimating weekly excess mortality at sub-national level in Italy during the COVID-19 pandemic. PloS one15(10), e0240286. doi:https://doi.org/10.1371/journal.pone.0240286

Boukhris, M., Hillani, A., Moroni, F., Annabi, M. S., Addad, F., Ribeiro, M. H., Mansour, S., Zhao, X., Ybarra, L.F., Abbate, A., Vilca, M.L., & Azzalini, L. (2020). Cardiovascular implications of the COVID-19 pandemic: a global perspective. Canadian Journal of Cardiology 36(7), 1068-1080. https://doi.org/10. 1016/j.cjca.2020.05.018 PMID: 32425328.

Bustos Sierra, N., Bossuyt, N., Braeye, T., Leroy, M., Moyersoen, I., Peeters, I., Scohy, A., Van der Heyden, J., Van Oyen, H., & Renard, F. (2020). All-cause mortality supports the COVID-19 mortality in Belgium and comparison with major fatal events of the last century. Archives of Public Health 78(117), 1-8. doi.org/10.1186/s13690-020-00496-x

Wang, H., Paulson, K. R., Pease, S. A., Watson, S., Comfort, H., Zheng, P., ... & Murray, C. J. (2022). Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. The Lancet 399(10334), 1513-1536. https://doi.org/10.1016/S0140-6736(21)02796-3>

Del Pinto, R., Ferri, C., Mammarella, L., Abballe, S., Dell'Anna, S., Cicogna, S., Grassi, D., Sacco, S., & Desideri, G. (2020). Increased cardiovascular death rates in a COVID‐19 low prevalence area. The Journal of Clinical Hypertension22(10), 1932-1935. https://doi.org/10. 1111/jch.14013 PMID: 32815667

Driggin, E., Madhavan, M. V., Bikdeli, B., Chuich, T., Laracy, J., Biondi-Zoccai, G., Brown, S.T., Der Nigoghossian C., Zidar, A.D., Haythe, J., Brodie, D., Beckman, A.S., Kirtane, A.J., Stone, W.G., Krumholz, M.H., & Parikh, S. A. (2020). Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of cardiology 75(18), 2352-2371. https://doi.org/10.1016/j.jacc.2020.03.031 PMID: 32201335

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases 20(5), 533-534. https://doi.org/10.1016/S1473-3099(20)30120-1

Dorrucci, M., Minelli, G., Boros, S., Manno, V., Prati, S., Battaglini, M., Corsetti, G., Andrianou, X., Riccardo, F., Fabiani, M., Vescio, F.M., Spuri, M., Mateo-Urdiales, A., Del Manso, M., Onder, G., Pezzotti, P., & Bella, A. (2021). Excess mortality in Italy during the COVID-19 pandemic: assessing the differences between the first and the second wave, year 2020. Frontiers in public health 927(9), 669209. doi: 10.3389/fpubh.2021.669209.

Dowd, J. B., Andriano, L., Brazel, D. M., Rotondi, V., Block, P., Ding, X., Liu, Y., & Mills, M. C. (2020). Demographic science aids in understanding the spread and fatality rates of COVID-19. Proceedings of the National Academy of Sciences117(18), 9696-9698, 202004911. doi: 10.1073/pnas.2004911117

Islam, N., Shkolnikov, VM., Acosta, RJ., Klimkin, I., Kawachi, I., Irizarry, RA., Alicandro, G., Khunti, K., Yates, T., Jdanov, DA., White, M., Lewington, S. & Lacey, B. (2021). Excess deaths associated with covid-19 pandemic in 2020: age and seks disaggregated time series analysis in 29 high income countries. British Medical Journal 373, n1137. doi: https://doi.org/10.136/bmj.n1137, class="apple-converted-space"> PMID: 34011491.

Josipovič, D. (2021). COVID-19 and excess mortality: Was it possible to lower number of deaths in Slovenia?. Stanovništvo 59(1), 17-30. doi.org/10.2298/STNV2101017J

Iuliano, A. D., Roguski, K. M., Chang, H. H., Muscatello, D. J., Palekar, R., Tempia, S., ... & Mustaquim, D. (2018). Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. The Lancet 391(10127), 1285-1300. doi: 10.1016/S0140-6736(17)33293-2.

León-Gómez, I.,  Mazagatos, C.,  Delgado-Sanz, C.,  Frías L.,  Vega-Piris, L.,  Rojas-Benedicto, A. & Larrauri, A. (2021). The Impact of COVID-19 on Mortality in Spain: Monitoring Excess Mortality (MoMo) and the Surveillance of Confirmed COVID-19 Deaths. Viruses 13(12), 2423. doi: 10.3390/v13122423.

Konstantinoudis, G., Cameletti, M., Gómez-Rubio, V., León Gómez, I., Pirani, M., Baio, G., Larrauri, A., Riou, J., Egger, M., Vineis, P. & Blangiardo, M. (2022). Regional excess mortality during the 2020 COVID-19 pandemic in five European countries. Nature Communications 13, 482. doi.org/10.1038/s41467-022-28157-3.

Kontis, V., Bennett, J. E., Rashid, T., Parks, R. M., Pearson-Stuttard, J., Guillot, M., Asaria, P., Zhou, B., Battaglini, M., Corsetti, G., McKee, M., Di Cesare, M., Mathers, D.C., & Ezzati, M. (2020). Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries. Nature medicine26(12), 1919-1928. doi.org/10.1038/s41591-020-1112-0

Kustudic, M., Niu, B., & Liu, Q. (2021). Agent-based analysis of contagion events according to sourcing locations. Scientific Reports 11(1), 16032. doi.org/10.1038/s41598-021-95336-5

Gill, J. R., & DeJoseph, M. E. (2020). The importance of proper death certification during the COVID-19 pandemic. Jama 324(1), 06032. https://doi.org/10.1001/jama.2020.9536 PMID: 32520302

Goldstein, J. R., & Lee, R. D. (2020). Demographic perspectives on the mortality of COVID-19 and other epidemics. Proceedings of the National Academy of Sciences 117(36), 22035-22041. https://doi.org/10.1073/pnas.2006392117

Healy, J.D. (2003). Excess winter mortality in Europe: a cross-country analysis identifying key risk factors. Journal of Epidemiology and Community Health 57(10), 784-789. doi.org/10.1136/jech.57.10.784

He, D., Zhao, S., Li, Y., Cao, P., Gao, D., Lou, Y. & Yang, L. (2020). Comparing Covid-19 and the influenza pandemics in the United Kingdom. International Journal of Infectious Diseases 98, 67-70. https://doi.org/10.1016/j.ijid.2020.06.075>

Hulikova Tesarkova, K. (2020). Demographic aspects of the Covid-19 pandemic in Italy, Spain, Germany and South Korea. Geografie 125(2), 139-170. doi.org/10.37040/geografie2020125020139

Marti-Soler, H., Gonseth, S., Gubelmann, C., Stringhini, S., Bovet, P., Chen, P.C., Wojtyniak, B., Paccaud, F., Tsai, D.H., Zdrojewski, T. & Marques-Vidal, P. (2014). Seasonal Variation of Overall and Cardiovascular Mortality: A Study in 19 Countries from Different Geographic Locations. PLOSone 9(11), doi:10.1371/ journal.pone.0113500

Marinković, I. & Galjak, M. (2021a). Prekomerna smrtnost u godini pandemije 2020. U Evropi i Srbiji. Stanovništvo 59(1), 61-73. doi.org/10.2298/STNV2101061M

Marinković, I. (2021b). Regionalna analiza smrtnosti od Covid-19 u Srbiji 2020. Demografija 18, 39-56. doi: 10.5937/demografija2118001M

Michalek, A. (2022). Spatially differentiated impacts of Covid-19 on selected indicators of mortality in Slovakia in 2020. Geographica Pannonica 26(2), 112-127. doi: 10.5937/gp26-37578

Michelozzi, P., De’Donato, F., Scortichini, M., Pezzotti, P., Stafoggia, M., De Sario, M., Costa, G., Noccioli, F., Riccardo, F., Bella, A., Demaria, M., Rossi, P., Brusaferro, S., Rezza, G. & Davoli, M. (2020). Temporal dynamics in total excess mortality and COVID-19 deaths in Italian cities. BMC Public Health, 20,1238. doi.org/10.1186/s12889-020-09335-8

Mogi, R., & Spijker, J. (2022). The influence of social and economic ties to the spread of COVID-19 in Europe. Journal of Population Research 39(4), 495-511. doi.org/10.1007/s12546-021-09257-1

Morwinsky, S., Nitsche, N. & Acosta E. (2021). COVID-19 fatality in Germany: Demographic determinants of variation in case-fatality rates across and within German federal states during the first and second waves. Demographic research 45, 1355-1372. doi: 10.4054/DemRes.2021.45.45

Nielsen, J., Krause ,T.G. & Molbak K. (2018). Influenza-associated mortality determined from all-cause mortality, Denmark, 2010/11-2016/17: The FluMOMO model. Influenza and other respirtory viruses 12(5), 591-604. https://doi.org/10.1111%2Firv.12564>

Portugal, L. (2021). Mortality and Excess Mortality: Improving FluMOMO. Journal of Environmental and Public Health 5582589, 1-8. doi.org/10.1155/2021/5582589

Rosano, A., Bella, A., Gesualdo, F., Acampora, A., Pezzotti, P., Marchetti, S., Ricciardi, W. & Rizzo C. (2019). Investigating the impact of influenza on excess mortality in all ages in Italy during recent seasons (2013/14-2016/17 seasons). International Journal of infectious Diseases 88, 127-134. doi.org/10.1016/j.ijid.2019.08.003

RZS (2022). Statistika stanovništva [Population Statistics Report]. No. 206. 25.07.2022. ISSN 0353-9555.

Stokes, C.A., Lundberg, J.D., Elo, T.I., Hempstead, K., Bor, J. & Preston, H.S. (2021). Covid-19 excess mortality in the United States: A country-level analysis. PLoS Medicine 18(5), e1003571. https://doi.org/10.1371/journal.pmed.1003571

Sher, L. (2020). The impact of the COVID-19 pandemic on suicide rates. QJM: An International Journal of Medicine, 113(10), 707-712. https://doi.org/10.1093/qjmed/hcaa202 PMID: 32539153

SORS (2015). Demographic Yearbook in the Republic of Serbia 2014. Belgrade: Serbia. ISSN 0084-4357.

Vandoros, S. (2020). Excess mortality during the Covid-19 pandemic: Early evidence from England and Wales. Social Science & Medicine 258, 113101. https://doi.org/10.1016/j.socscimed.2020.113101

Vieira, A., Ricoca Peixoto, V., Aguiar, P. & Abrantes, A. (2020). Rapid Estimation of Excess Mortality during the COVID-19 Pandemic in Portugal-Beyond Reported Deaths. Journal of Epidemiology and Global Health 10(3), 209-313. https://doi.org/10.2991/jegh.k.200628.001

Published
2023/03/31
Section
Original Research