Flood Hazard Risk Assessment based on Multi-criteria Spatial Analysis GIS as Input for Spatial Planning Policies in Tegal Regency, Indonesia

  • Anang Wahyu Sejati Geomatics and Planning Lab, Department of Urban and Regional Planning, Universitas Diponegoro
  • Savira Nur Afifah Kusuma Putri Cluster of Smart City Research, Universitas Diponegoro
  • Sri Rahayu Geomatics and Planning Lab, Department of Urban and Regional Planning, Universitas Diponegoro
  • Imam Buchori Geomatics and Planning Lab, Department of Urban and Regional Planning, Universitas Diponegoro
  • Kristantri Rahayu Cluster of Geomatics Application Research for Sustainable Development (CEGAS), Universitas Diponegoro
  • I Gusti A.M. Andika Wiratmaja Cluster of Geomatics Application Research for Sustainable Development (CEGAS), Universitas Diponegoro
  • Ahmad Jihan Muzaki Cluster of Geomatics Application Research for Sustainable Development (CEGAS), Universitas Diponegoro
  • Yudi Basuki Geomatics and Planning Lab, Department of Urban and Regional Planning, Universitas Diponegoro
Keywords: GIS spatial analysis, Flood disaster, Capacity Index, Land Use change

Abstract


Recent discussions on flood disasters concern the risk factors and causes between nature and anthropogenic activities. This disaster requires serious handling, which needs to be analyzed, especially in areas affected by flooding in the Tegal Regency, Indonesia, as a case study. The weakness of the existing mitigation efforts is still needed to be comprehensive, requiring a multi-criteria assessment based on GIS spatial analysis. The method used is a raster calculator and weighted superimpose by setting several calculation variables from both physical and non-physical aspects to support the multi-criteria spatial analysis. The results show that spatially, more than 30% of areas with a high-risk index are located in the downstream or coastal regions of Tegal Regency. However, the index of capacity and resilience in several flood-affected sub-districts is at an index above 0.5, so they have good strength to disasters such as the four sub-districts of Adiwerna, Bumijawa, Bojong, and Kramat. From the analysis results, land use change is the biggest problem that affects the number of the flood event. With this condition, the appropriate mitigation effort for Tegal Regency is strengthening the spatial planning policy and increasing the capacity, especially in disaster governance in a high-risk area. Thus, the vulnerability and hazard factors will be anticipated with high community participation in strengthening the capacity index.

References

style='mso-bidi-font-weight:normal'>

"Times New Roman",serif'>

yes'>ADDIN Mendeley Bibliography CSL_BIBLIOGRAPHY

style='mso-element:field-separator'>Bae, S., & Chang, H. (2019). Urbanization and floods in the Seoul Metropolitan area of South Korea: What old maps tell us. International Journal of Disaster Risk Reduction, 37(November 2018). https://doi.org/10.1016/j.ijdrr.2019.101186>

Balogun, A., Quan, S., Pradhan, B., Dano, U., & Yekeen, S. (2020). An Improved Flood Susceptibility Model for Assessing the Correlation of Flood Hazard and Property Prices using Geospatial Technology and Fuzzy-ANP. Journal of Environmental Informatics. https://doi.org/10.3808/jei.202000442>

Bott, L. M., Pritchard, B., & Braun, B. (2020). Translocal social capital as a resource for community-based responses to coastal flooding – Evidence from urban and rural areas on Java, Indonesia. Geoforum, 117(August), 1–12. https://doi.org/10.1016/j.geoforum.2020.08.012>

Buchori, I., Pramitasari, A., Pangi, P., Sugiri, A., Maryono, M., Basuki, Y., & Sejati, A. W. (2020). Factors distinguishing the decision to migrate from the flooded and inundated community of Sayung, Demak: A suburban area of Semarang City, Indonesia. International Journal of Disaster Risk Reduction, 101946. https://doi.org/https://doi.org/10.1016/j.ijdrr.2020.101946>

Chen, L., Yan, Z., Li, Q., & Xu, Y. (2022). Flash Flood Risk Assessment and Driving Factors: A Case Study of the Yantanxi River Basin, Southeastern China. International Journal of Disaster Risk Science, 13(2), 291–304. https://doi.org/10.1007/s13753-022-00408-3>

Chirisa, I. (2021). Opportunities in master and local planning for resilient rural settlement in Zimbabwe. Journal of Rural Studies, 86(March), 97–105. https://doi.org/10.1016/j.jrurstud.2021.05.026>

de Vries, W. T. (2021). Trends in The Adoption of New Geospatial Technologies for Spatial Planning and Land Management in 2021. Geoplanning, 8(2), 85–98. https://ejournal.undip.ac.id/index.php/geoplanning/article/view/40534>

Dejen, A., & Soni, S. (2021). Flash flood risk assessment using geospatial technology in Shewa Robit town, Ethiopia. Modeling Earth Systems and Environment, 7(4), 2599–2617. https://doi.org/10.1007/s40808-020-01016-0>

El-Saoud, W. A., & Othman, A. (2022). An integrated hydrological and hydraulic modelling approach for flash flood hazard assessment in eastern Makkah city, Saudi Arabia. Journal of King Saud University - Science, 34(4), 102045. https://doi.org/10.1016/j.jksus.2022.102045>

Etkin, D. (2016). Disaster Theory: An Interdisciplinary Approach to Concepts and Causes. https://doi.org/10.1119/1.1341949>

Faccini, F., Luino, F., Paliaga, G., Sacchini, A., Turconi, L., & de Jong, C. (2018). Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Applied Geography, 98(April 2017), 224–241. https://doi.org/10.1016/j.apgeog.2018.07.022>

Fernández, D. S., & Lutz, M. A. (2010). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1–4), 90–98. https://doi.org/10.1016/j.enggeo.2009.12.006>

Figueiredo, R., Romão, X., & Paupério, E. (2020). Flood risk assessment of cultural heritage at large spatial scales: Framework and application to mainland Portugal. Journal of Cultural Heritage, 43, 163–174. https://doi.org/10.1016/j.culher.2019.11.007>

Han, N., Yu, M., & Jia, P. (2022). Multi-Scenario Landscape Ecological Risk Simulation for Sustainable Development Goals: A Case Study on the Central Mountainous Area of Hainan Island. International Journal of Environmental Research and Public Health, 19(7), 4030. https://doi.org/10.3390/ijerph19074030>

Handayani, W, Chigbu, U. E., Rudiarto, I., & Surya Putri, I. H. (2020). Urbanization and increasing flood risk in the Northern Coast of Central Java-Indonesia: An assessment towards better land use policy and flood management. Land, 9(10). https://doi.org/10.3390/LAND9100343>

Handayani, Wiwandari, Fisher, M. R., Rudiarto, I., Setyono, J. S., & Foley, D. (2019). Operationalizing resilience: A content analysis of flood disaster planning in two coastal cities in Central Java, Indonesia. International Journal of Disaster Risk Reduction, 101073. https://doi.org/10.1016/j.ijdrr.2019.101073>

Hartanto, I. S., & Rachmawati, R. (2017). Assessing the spatial-temporal land use change and encroachment activities due to flood hazard in north coast of central Java, Indonesia. Indonesian Journal of Geography, 49(2), 165–176. https://doi.org/10.22146/ijg.28402>

Hervás, J., & Bobrowsky, P. (2009). Mapping: inventories, susceptibility, hazard and risk. Landslides–Disaster Risk Reduction. https://doi.org/10.1007/978-3-540-69970-5_19>

Irawan, A. M., Marfai, M. A., Munawar, Nugraheni, I. R., Gustono, S. T., Rejeki, H. A., Widodo, A., Mahmudiah, R. R., & Faridatunnisa, M. (2021). Comparison between averaged and localised subsidence measurements for coastal floods projection in 2050 Semarang, Indonesia. Urban Climate, 35(December 2020), 100760. https://doi.org/10.1016/j.uclim.2020.100760>

Ishiwatari, M., & Sasaki, D. (2021). Investing in flood protection in Asia: An empirical study focusing on the relationship between investment and damage. Progress in Disaster Science, 12, 100197. https://doi.org/10.1016/j.pdisas.2021.100197>

Jodar-Abellan, A., Valdes-Abellan, J., Pla, C., & Gomariz-Castillo, F. (2019). Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). Science of the Total Environment, 657, 1578–1591. https://doi.org/10.1016/j.scitotenv.2018.12.034>

Kaiser, E., Godschalk, D., & Chapin, F. (1995). Urban Land Use Planning (4th ed.). University of Illinois Press.

Kaliraj, S., Chandrasekar, N., Ramachandran, K. K., Srinivas, Y., & Saravanan, S. (2017). Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. Egyptian Journal of Remote Sensing and Space Science, 20(2), 169–185. https://doi.org/10.1016/j.ejrs.2017.04.003>

Kieu, Q. L., & Tran, D. Van. (2021). Application of geospatial technologies in constructing a flash flood warning model in northern mountainous regions of Vietnam: a case study at TrinhTuong commune, Bat Xat district, LaoCai province. Bulletin of Geography. Physical Geography Series, 20(1), 31–43. https://doi.org/10.2478/bgeo-2021-0003>

Kocsis, I., Bilașco,  Ștefan, Irimuș, I.-A., Dohotar, V., Rusu, R., & Roșca, S. (2022). Flash Flood Vulnerability Mapping Based on FFPI Using GIS Spatial Analysis Case Study: Valea Rea Catchment Area, Romania. Sensors, 22(9), 3573. https://doi.org/10.3390/s22093573>

Kodag, S., Mani, S. K., Balamurugan, G., & Bera, S. (2022). Earthquake and flood resilience through spatial Planning in the complex urban system. Progress in Disaster Science, 14, 100219. https://doi.org/10.1016/j.pdisas.2022.100219>

LeGates, R. (2023). City and regional planning. In 21st Century Geography: A Reference Handbook. https://doi.org/10.4135/9781412995986.n29>

Liu, J., Wang, J., Xiong, J., Cheng, W., Sun, H., Yong, Z., & Wang, N. (2021). Hybrid models incorporating bivariate statistics and machine learning methods for flash flood susceptibility assessment based on remote sensing datasets. Remote Sensing, 13(23), 1–26. https://doi.org/10.3390/rs13234945>

Liu, L., & Ran, Q. (2021). Non-sequential response in Mountainous Area of Southwest China. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu21-5695>

Loveridge, R., Kidney, D., Srun, T. Y., Samnang, E., Eames, J. C., & Borchers, D. (2017). First systematic survey of green peafowl Pavo muticus in northeastern Cambodia reveals a population stronghold and preference for disappearing riverine habitat First systematic survey of green peafowl Pavo muticus in northeastern Cambodia reveals a popula. Cambodian Journal of Natural History, 2017(January 2018), 157–167.

Malczewski, J. (1999). GIS and multicriteria decision analysis. John Wiley & Sons.

Monteil, C., Foulquier, P., Defossez, S., Péroche, M., & Vinet, F. (2022). Rethinking the share of responsibilities in disaster preparedness to encourage individual preparedness for flash floods in urban areas. International Journal of Disaster Risk Reduction, 67(July 2021), 102663. https://doi.org/10.1016/j.ijdrr.2021.102663>

Ner, N. T., Okyere, S. A., Abunyewah, M., & Kita, M. (2022). Integrating Resilience Attributes into Local Disaster Management Plans in Metro Manila: Strengths, Weaknesses, and Gaps Nikko. Integrative Medicine Research. https://doi.org/10.1016/j.pdisas.2022.100249>

Nguyen, V. N., Yariyan, P., Amiri, M., Tran, A. D., Pham, T. D., Do, M. P., Ngo, P. T. T., Nhu, V. H., Long, N. Q., & Bui, D. T. (2020). A new modeling approach for spatial prediction of flash flood with biogeography optimized CHAID tree ensemble and remote sensing data. Remote Sensing, 12(9). https://doi.org/10.3390/RS12091373>

Nkeki, F. N., Bello, E. I., & Agbaje, I. G. (2022). Flood risk mapping and urban infrastructural susceptibility assessment using a GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria. International Journal of Disaster Risk Reduction, 77(June), 103097. https://doi.org/10.1016/j.ijdrr.2022.103097>

Palacio-Aponte, A. G., Ortíz-Rodríguez, A. J., & Sandoval-Solis, S. (2022). Methodological framework for territorial planning of urban areas: Analysis of socio-economic vulnerability and risk associated with flash flood hazards. Applied Geography, 149(June), 102809. https://doi.org/10.1016/j.apgeog.2022.102809>

Psomiadis, E., Charizopoulos, N., Soulis, K. X., & Efthimiou, N. (2020). Investigating the Correlation of Tectonic and Morphometric Characteristics with the Hydrological Response in a Greek River Catchment Using Earth Observation and Geospatial Analysis Techniques. Geosciences, 10(9), 377. https://doi.org/10.3390/geosciences10090377>

Rezaie-Balf, M., Ghaemi, A., Jun, C., S. Band, S., & Bateni, S. M. (2022). Towards an integrative, spatially-explicit modeling for flash floods susceptibility mapping based on remote sensing and flood inventory data in Southern Caspian Sea Littoral, Iran. Geocarto International, 1–31. https://doi.org/10.1080/10106049.2022.2071470>

Santos, P. P., Pereira, S., Zêzere, J. L., Tavares, A. O., Reis, E., Garcia, R. A. C., & Oliveira, S. C. (2020). A comprehensive approach to understanding flood risk drivers at the municipal level. Journal of Environmental Management, 260(June 2019). https://doi.org/10.1016/j.jenvman.2020.110127>

Saur, R., & Rathore, V. S. (2022). Modelling Flash Flood Vulnerability and Sensitivity Dynamics of Jiadhal River Basin of Eastern Himalayan Range Using Space Technology and AHP (pp. 225–235). https://doi.org/10.1007/978-981-16-8550-7_22>

Sejati, A. W., Buchori, I., & Rudiarto, I. (2018). The Impact of Urbanization to Forest Degradation in Metropolitan Semarang: A Preliminary Study. IOP Conference Series: Earth and Environmental Science, 123(1), 12011. http://stacks.iop.org/1755-1315/123/i=1/a=012011>

Sejati, A. W., Buchori, I., & Rudiarto, I. (2019). The Spatio-Temporal Trends of Urban Growth and Surface Urban Heat Islands over Two Decades in the Semarang Metropolitan Region. Sustainable Cities and Society, 101432. https://doi.org/10.1016/j.scs.2019.101432>

Shao, M., Zhao, G., Kao, S. C., Cuo, L., Rankin, C., & Gao, H. (2020). Quantifying the effects of urbanization on floods in a changing environment to promote water security — A case study of two adjacent basins in Texas. Journal of Hydrology, 589(June), 125154. https://doi.org/10.1016/j.jhydrol.2020.125154>

Singh, G., & Pandey, A. (2021). Flash flood vulnerability assessment and zonation through an integrated approach in the Upper Ganga Basin of the Northwest Himalayan region in Uttarakhand. International Journal of Disaster Risk Reduction, 66(November 2020), 102573. https://doi.org/10.1016/j.ijdrr.2021.102573>

Sipos, G., Blanka-Végi, V., Ardelean, F., Onaca, A., Ladányi, Z., Rácz, A., & Urdea, P. (2022). Human-nature relationship and public perception of environmental hazards along the Maros/Mures River (Hungary and Romania). Geographica Pannonica, 26(3).

Szilassi, P. D., Visztra, G. V., Soóky, A., Bátori, Z., Hábenczyus, A. A., Tölgyesi, C., & Balogh, M. B. (2022). Towards an understanding of the geographical background of plants invasion as a natural hazard: a case study in Hungary. Geographica Pannonica, 26(3).

The Disaster Mitigation Agency of Indonesia. (2012). Manual of Disaster Risk Reduction in Indonesia.

Thoyibah, R. N., & Pamungkas, A. (2021). Prinsip Penataan Bangunan Permukiman Kawasan Bencana Banjir Di Desa Centini Kecamatan Laren Kabupaten Lamongan. Jurnal Teknik ITS, 9(2). https://doi.org/10.12962/j23373539.v9i2.55775>

Vaggela, A., Sanapala, H., & Mokka, J. R. (2022). Monitoring Land Use and Land Cover Changes Prospects Using Remote Sensing and GIS for Mahanadi River Delta, Orissa, India. Geoplanning: Journal of Geomatics and Planning, 9(1), 47–60.

Venkatappa, M., Sasaki, N., Han, P., & Abe, I. (2021). Impacts of droughts and floods on croplands and crop production in Southeast Asia – An application of Google Earth Engine. Science of the Total Environment, 795, 148829. https://doi.org/10.1016/j.scitotenv.2021.148829>

Villarreal-rosas, J., Wells, J. A., Sonter, L. J., Possingham, H. P., & Rhodes, J. R. (2022). The impacts of land use change on flood protection services among multiple beneficiaries. Science of the Total Environment, 806, 150577. https://doi.org/10.1016/j.scitotenv.2021.150577>

WHO. (2014). Urban Population Growth.

Wiratmaja, I. G., & Sejati, A. W. (2021). Spatial Modeling of Environmental Quality Change Based on Geographic Information System. IOP Conference Series: Earth and Environmental Science, 887(1), 0–10. https://doi.org/10.1088/1755-1315/887/1/012016>

Wisha, U. J., Dhiauddin, R., Ondara, K., Gemilang, W. A., & Rahmawan, G. A. (2022). Assessing Urban Development Impacts in the Padang Coastline City, West Sumatra Indonesia; Coastline Changes and Coastal Vulnerability. Geoplanning: Journal of Geomatics and Planning, 9(2), 73–88.

Wisner, B., Blaikie, P., & Canon, T. (2005). At Risk, Natural Hazard, People’s Vulnerability, and Disaster. Routledge.

Yang, H., Kim, J. H., & Lee, E. J. (2021). Seasonal flooding regime effects on the survival, growth, and reproduction of Bolboschoenus planiculmis under East Asian monsoon. Flora: Morphology, Distribution, Functional Ecology of Plants, 285(October), 151960. https://doi.org/10.1016/j.flora.2021.151960>

style='font-size:12.0pt;line-height:107%;font-family:"Times New Roman",serif;

mso-fareast-font-family:Calibri;mso-fareast-theme-font:minor-latin;mso-ansi-language:

EN-ID;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'>

style='mso-element:field-end'>

Young, A. F., Marengo, J. A., Martins Coelho, J. O., Scofield, G. B., de Oliveira Silva, C. C., & Prieto, C. C. (2019). The role of nature-based solutions in disaster risk reduction: The decision maker’s perspectives on urban resilience in São Paulo state. International Journal of Disaster Risk Reduction, 39(April). https://doi.org/10.1016/j.ijdrr.2019.101219>

Published
2023/03/31
Section
Original Research