Using Landsat satellite imagery for assessment and monitoring of long-term forest cover changes in Dak Nong province, Vietnam

  • Bui Bao Thien Southern Federal University
  • Vu Thi Phuong
Keywords: Forest cover;, Forest loss;, Landsat;, Vegetation Index;, Remote sensing;, Vietnam

Abstract


Forests are essential in regulating climate and protecting land resources from natural disasters. In Vietnam’s Dak Nong province, forest cover has changed significantly between 1989 and 2021. This study applies remote sensing and geographic information systems (GIS) approaches to detect negative changes in forest cover as well as other land cover types. The maximum likelihood classification tool was used to classify Landsat images for the years 1989, 2001, 2011, and 2021, with post-classification accuracy evaluated through kappa coefficient statistics. The potential to based classification on Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) to detect changes in forest cover compared with supervised classification was also evaluated. The land use and land cover change detection results show that the forest area decreased from 77.54% of the study area in 1989 to 33.97% in 2021, with a total forest loss of 2,953.48 km2 and only 117.12 km2 of newly planted forest during this period. Broadly, forest cover in the area has been severely reduced, often due to indiscriminate logging and expansion of agricultural land on the forest edge.

References

Afify, H. A. (2011). Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area. Alexandria Engineering Journal 50(2), 187-195. https://doi.org/10.1016/j.aej.2011.06.001

Agarwal, M., Fatima, T., & Freedman, H. I. (2010). Depletion of forestry resource biomass due to industrialization pressure: A ratio-dependent mathematical model. Journal of Biological Dynamics 4(4), 381-396. https://doi.org/10.1080/17513750903326639

Ahammad, R., Stacey, N., Eddy, I. M., Tomscha, S. A., & Sunderland, T. C. (2019). Recent trends of forest cover change and ecosystem services in eastern upland region of Bangladesh. Science of The Total Environment 647, 379-389. https://doi.org/10.1016/j.scitotenv.2018.07.406

Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Geological survey professional paper, U.S. government printing office. Washington DC 964, 1–28.

Atmiş, E., Özden, S., & Lise, W. (2007). Urbanization pressures on the natural forests in Turkey: An overview. Urban Forestry & Urban Greening 6(2), 83-92. https://doi.org/10.1016/j.ufug.2007.01.002

Azimi Sardari, M. R., Bazrafshan, O., Panagopoulos, T., & Sardooi, E. R. (2019). Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed. Sustainability 11(12), 3353. https://doi.org/10.3390/su11123353

Baloloy, A. B., Blanco, A. C., Ana, R. R. C. S., & Nadaoka, K. (2020). Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing 166, 95-117. https://doi.org/10.1016/j.isprsjprs.2020.06.001

Caballero Espejo, J., Messinger, M., Román-Dañobeytia, F., Ascorra, C., Fernandez, L. E., & Silman, M. (2018). Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sensing 10(12), 1903. https://doi.org/10.3390/rs10121903

Central Population and Housing Census Steering Committee. (2010). The 2009 Vietnam population and housing census: major findings. Hanoi: Central Population and Housing Census Steering Committee.

Chowdhury, M., Hasan, M. E., & Abdullah-Al-Mamun, M. M. (2020). Land use/land cover change assessment of Halda watershed using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science 23(1), 63-75. https://doi.org/10.1016/j.ejrs.2018.11.003

Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: principles and practices. CRC Press, 346 p. https://doi.org/10.1201/9780429052729

Dak Nong Statistics Office. (2020). Dak Nong Statistical Yearbook 2019. Statistical Publishing House–2020.

Dan, K. O., David, P. K., Pierre, N. L. J., & Chérif, A. Y. (2018). Analysis of the Causes of Deforestation and Degradation of the Forest of Katako Village. Elixir Environment and Forestry 123(2018), 51945-51948.

Duguma, L. A., Atela, J., Minang, P. A., Ayana, A. N., Gizachew, B., Nzyoka, J. M., & Bernard, F. (2019). Deforestation and forest degradation as an environmental behavior: unpacking realities shaping community actions. Land 8(2), 26. https://doi.org/10.3390/land8020026

Erb, K. H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., Pongratz, J., Thurner, M., & Luyssaert. S. (2018). Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553(7686), 73-76. https://doi.org/10.1038/nature25138

Fedler, T. (2018). The Value of Turneffe Atoll Mangrove Forests, Seagrass Beds and Coral Reefs in Protecting Belize City from Storms. Available online: https://www.turneffeatoll.org/app/webroot/userfiles/66/File/Turneffe%20Storm%20Mitigation%20Value%20Report%20FINAL.pdf  (accessed on 28 November 2021)

Gao, J., & Liu, Y. (2010). Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. International Journal of Applied Earth Observation and Geoinformation 12(1), 9-16. https://doi.org/10.1016/j.jag.2009.08.003

Han, H., Yang, C., & Song, J. (2015). Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability 7(4), 4260-4279. https://doi.org/10.3390/su7044260 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science 342(6160), 850-853. https://doi.org/10.1126/science.124469

Harris, P. M., & Ventura, S. J. (1995). The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogrammetric Engineering and Remote Sensing 61(8), 993-998.

Hasan, M. E., Nath, B., Sarker, A. R., Wang, Z., Zhang, L., Yang, X., Nobi, M. N., Røskaft, E., Chivers, D. J., & Suza, M. (2020). Applying multi-temporal Landsat satellite data and markov-cellular automata to predict forest cover change and forest degradation of Sundarban reserve forest, Bangladesh. Forest 11(9), 1016. https://doi.org/10.3390/f11091016

Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment 4(1), 117-124. https://doi.org/10.1016/j.ijsbe.2015.02.005

Hor, S., Saizen, I., Tsutsumida, N., Watanabe, T., & Kobayashi, S. (2014). The impact of agricultural expansion on forest cover in Ratanakiri Province, Cambodia. Journal of Agricultural Science 6(9), 46. http://dx.doi.org/10.5539/jas.v6n9p46

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

Huete, A. R. (2012). Vegetation indices, remote sensing and forest monitoring. Geography Compass 6(9), 513–532. https://doi.org/10.1111/j.1749-8198.2012.00507.x

Hyandye, C. B., Worqul, A., Martz, L. W., & Muzuka, A.N. (2018). The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies. Environmental Systems Research 7(1), 1-24. https://doi.org/10.1186/s40068-018-0110-4

Islam, M. R., Khan, M. N., Khan, M. Z., & Roy, B. (2021). A three decade assessment of forest cover changes in Nijhum dwip national park using remote sensing and GIS. Environmental Challenges 4, 100162. https://doi.org/10.1016/j.envc.2021.100162

Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective (No. Ed. 2). Prentice-Hall Inc.

Kumari, M., Das, A., Sharma, R., & Saikia, S. (2014). Change detection analysis using multi temporal satellite data of Poba reserve forest, Assam and Arunachal Pradesh. International Journal of Geomatics and Geosciences 4(3), 517.

Larasati, D. A., & Hariyanto, B. (2018). The impact of land use changes in the Banjarsari village, Cerme district of Gresik Regency, East Java Province. In Journal of Physics: Conference Series 953(1), 012178. https://doi.org/10.1088/1742-6596/953/1/012178

Lea, C., & Curtis, A.C. (2010). Thematic accuracy assessment procedures: National Park Service vegetation inventory, version 2.0. Natural resource report NPS/2010/NRR—2010/204. National Park Service, Fort Collins, Colorado.

Long, J., Napton, D., Giri, C., & Graesser, J. (2014). A mapping and monitoring assessment of the Philippines' mangrove forests from 1990 to 2010. Journal of Coastal Research 30(2), 260-271. https://doi.org/10.2112/JCOASTRES-D-13-00057.1

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing 25(12), 2365-2401. https://doi.org/10.1080/0143116031000139863

Manandhar, R., Odeh, I. O., & Ancev, T. (2009). Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing 1(3), 330-344. https://doi.org/10.3390/rs1030330

Manonmani, R., & Suganya, G. (2010). Remote sensing and GIS application in change detection study in urban zone using multi temporal satellite. International journal of Geomatics and Geosciences 1(1), 60-65.

Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7(11), 2636-2651. https://doi.org/10.3390/s7112636

Meshesha, T. W., Tripathi, S. K., & Khare, D. (2016). Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Modeling Earth Systems and Environment 2(4), 1-12. https://doi.org/10.1007/s40808-016-0233-4

Meyfroidt, P., & Lambin, E. F. (2008). The causes of the reforestation in Vietnam. Land Use Policy 25(2), 182-197. https://doi.org/10.1016/j.landusepol.2007.06.001

Ministry of Agriculture and Rural Development (MARD). (2019). Project on sustainable forest protection, restoration and development in the Central Highlands period of 2016-2030. MARD, Hanoi, Vietnam.

Nguyen, H. T. T., Chau, Q. T. N., Pham, A. T., Phan, H. T., Tran, P. T. X., Cao, H. T., Le, T. Q., & Nguyen, D. T. H. (2020b). Land Use/land Cover Changes Using Multi-Temporal Satellite. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 63, 83-90.

Nguyen, H. T. T., Doan, T. M., Tomppo, E., & McRoberts, R. E. (2020a). Land Use/land cover mapping using multitemporal Sentinel-2 imagery and four classification methods—A case study from Dak Nong, Vietnam. Remote Sensing 12(9), 1367. https://doi.org/10.3390/rs12091367

Olorunfemi, I. E., Fasinmirin, J. T., Olufayo, A. A., & Komolafe, A. A. (2020). GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environment, Development and Sustainability 22(2), 661-692. https://doi.org/10.1007/s10668-018-0214-z

Owojori, A., & Xie, H. (2005). Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In 5th International Symposium on Remote Sensing of Urban Areas, Tempe, AZ.

Pasternak, M., & Pawluszek-Filipiak, K. (2022). The evaluation of spectral vegetation indexes and redundancy reduction on the accuracy of crop type detection. Applied Sciences 12(10), 5067. https://doi.org/10.3390/app12105067

Pellikka, P. K. E., Heikinheimo, V., Hietanen, J., Schäfer, E., Siljander, M., & Heiskanen, J. (2018). Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Applied Geography 94, 178-189. https://doi.org/10.1016/j.apgeog.2018.03.017

Pesaresi, S., Mancini, A., Quattrini, G., & Casavecchia, S. (2020). Mapping mediterranean forest plant associations and habitats with functional principal component analysis using landsat 8 NDVI time series. Remote Sensing 12(7), 1132. https://doi.org/10.3390/rs12071132

Pielke Sr, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P., & de Noblet, N. (2011). Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change 2(6), 828-850. https://doi.org/10.1002/wcc.144

Rambo, A. T., Reed, R. R., Cuc, L. T., & DiGregorio, M. R. (1995). The challenges of highland development in Vietnam. East-West Center.

Ranjan, R. (2019). Assessing the impact of mining on deforestation in India. Resources Policy 60, 23-35. https://doi.org/10.1016/j.resourpol.2018.11.022

Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science 18(1), 77-84. https://doi.org/10.1016/j.ejrs.2015.02.002

Santos de Lima, L., Merry, F., Soares-Filho, B., Oliveira Rodrigues, H., dos Santos Damaceno, C., & Bauch, M. A. (2018). Illegal logging as a disincentive to the establishment of a sustainable forest sector in the Amazon. PloS One 13(12), e0207855. https://doi.org/10.1371/journal.pone.0207855

Shivakumar, B. R., & Rajashekararadhya, S. V. (2018). Investigation on land cover mapping capability of maximum likelihood classifier: a case study on North Canara, India. Procedia Computer Science 143, 579-586. https://doi.org/10.1016/j.procs.2018.10.434

Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing 10(6), 989-1003. https://doi.org/10.1080/01431168908903939

Spadoni, G. L., Cavalli, A., Congedo, L., & Munafò, M. (2020). Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sensing Applications: Society and Environment 20, 100419. https://doi.org/10.1016/j.rsase.2020.100419

Thakur, S., Maity, D., Mondal, I., Basumatary, G., Ghosh, P. B., Das, P., & De, T. K. (2021). Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environment, Development and Sustainability 23(2), 1917-1943. https://doi.org/10.1007/s10668-020-00656-7

Thien, B. B., Phuong, V. T., & Huong, D. T. (2022a). Detection and assessment of the spatio-temporal land use/cover change in the Thai Binh province of Vietnam’s Red River delta using remote sensing and GIS. Modeling Earth Systems and Environment, 1-12. https://doi.org/10.1007/s40808-022-01636-8

Thien, B. B., Sosamphanh, B., Yachongtou, B., & Phuong, V. T. (2022b). Land use/land cover changes in the period of 2015–2020 in AngYai Village, Sikhottabong District, Vientiane Capital, Lao PDR. Geology, Geophysics and Environment 48(3), 279-286. https://doi.org/10.7494/geol.2022.48.3.279

United Nations. (2019). World population prospects 2019. Department of Economic and Social Affairs 141.

Watson, J. E., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray, J. C., Murray, K., Salazar, A., McAlpine, C., Potapov, P., Walston, J., Robinson, J. G., Painter, M., Wilkie, D., Filardi, C., Laurance, W. F., Houghton, R. A., Maxwell, S., Grantham, H., Samper, C., Wang, S., Laestadius, L., Runting, R. K., Silva-Chávez, G. A., Ervin, J., & Lindenmayer, D. (2018). The exceptional value of intact forest ecosystems. Nature Ecology & Evolution 2(4), 599-610. https://doi.org/10.1038/s41559-018-0490-x

Yang, Q., Zhang, H., Peng, W., Lan, Y., Luo, S., Shao, J., Chen, D., & Wang, G. (2019). Assessing climate impact on forest cover in areas undergoing substantial land cover change using Landsat imagery. Science of The Total Environment 659, 732-745. https://doi.org/10.1016/j.scitotenv.2018.12.290

Zeng, Z., Estes, L., Ziegler, A. D., Chen, A., Searchinger, T., Hua, F., Guan, K., Jintrawet, A., & Wood, E.F. (2018). Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nature Geoscience 11(8), 556-562. https://doi.org/10.1038/s41561-018-0166-9

Published
2023/03/31
Section
Original Research