Climate-Tourism Information Scheme (CTIS) for sport events from past: analysis of cases of 1980 Summer Olympics (Moscow) and 2018 FIFA World Cup
Abstract
This article provides a quantitative analysis of local climate-related factors that may influence the organization of large sport events in Moscow, Russia, and its graphic representation in form of CTIS (Climate-Tourism Information Scheme) with decade resolution for 1991-2021. The individual CTIS for two historical sport events with daily resolution were also done, and then compared to meteorological data recorded during two large sport events to assess the agreement between averaged and actual conditions, which was found to be good enough for CTIS to serve as basic evaluation method. The CTIS-difference with sport events in Moscow compared with cases of Doha and Tokyo seem to be more about identifying the time period with biggest thermal comfort frequencies, instead of looking for occurrences of heat stress conditions. According to 1980 Summer Olympics and 2018 FIFA World Cup events it can be noted that time period was planned satisfactorily.
References
Brotherhood, J. R. (2008). Heat stress and strain in exercise and sport. Journal of Science and Medicine in Sport, 11(1), 6-19. https://doi.org/10.1016/j.jsams.2007.08.017
de Freitas, C. R., & Grigorieva, E. A. (2017). A comparison and appraisal of a comprehensive range of human thermal climate indices. International journal of biometeorology, 61(3), 487-512. https://doi.org/10.1007/s00484-016-1228-6
Gamage, P. J., Fortington, L. V., & Finch, C. F. (2020). Epidemiology of exertional heat illnesses in organised sports: A systematic review. Journal of science and medicine in sport, 23(8), 701-709. https://doi.org/10.1016/j.jsams.2020.02.008
Gerrett, N., Kingma, B. R., Sluijter, R., & Daanen, H. A. (2019). Ambient conditions prior to Tokyo 2020 Olympic and Paralympic games: considerations for acclimation or acclimatization strategies. Frontiers in Physiology, 10, 414. https://doi.org/10.3389/fphys.2019.00414
Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2018). Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Science of the total environment, 624, 385-395.
Giannaros, T. M., Lagouvardos, K., Kotroni, V., & Matzarakis, A. (2018). Operational forecasting of human-biometeorological conditions. International journal of biometeorology, 62, 1339-1343.
Gómez-Martín, M. B. (2006). Climate potential and tourist demand in Catalonia (Spain) during the summer season. Climate Research, 32(1), 75-87.
Grundstein, A., Cooper, E., & Hosokawa, Y. (2023). Wet bulb globe temperature variability and its implications on heat stress monitoring. International Journal of Sports Science & Coaching, 17479541231186146. https://doi.org/10.1177/17479541231186146
Grundstein, A., Elguindi, N., Cooper, E., & Ferrara, M. S. (2013). Exceedance of wet bulb globe temperature safety thresholds in sports under a warming climate. Climate research, 58(2), 183-191. https://doi.org/10.3354/cr01199
Hanna, E. G., Kjellstrom, T., Bennett, C., & Dear, K. (2011). Climate change and rising heat: population health implications for working people in Australia. Asia Pacific Journal of Public Health, 23(2_suppl), 14S-26S. https://doi.org/10.1177/1010539510391457.
Honjo, T., Seo, Y., Yamasaki, Y., Tsunematsu, N., Yokoyama, H., Yamato, H., & Mikami, T. (2018). Thermal comfort along the marathon course of the 2020 Tokyo Olympics. International journal of biometeorology, 62, 1407-1419. https://doi.org/10.1007/s00484-018-1539-x
Höppe, P.R. (1993). Heat balance modelling. Experientia, 49, 741–746. https://doi.org/10.1007/BF01923542
Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43(2), 71-75. https://doi.org/10.1007/s004840050118
Kakamu, T., Wada, K., Smith, D. R., Endo, S., & Fukushima, T. (2017). Preventing heat illness in the anticipated hot climate of the Tokyo 2020 Summer Olympic Games. Environmental Health and Preventive Medicine, 22(1), 68. https://doi,org/10.1186/s12199-017-0675-y
Kislov, A. V., & Konstantinov, P. I. (2011). Detailed spatial modeling of temperature in Moscow. Russian Meteorology and Hydrology, 36(5), 300-306. https://doi.org/10.3103/S1068373911050037
Konstantinov P., Tattimbetova D., Varentsov M., & Shartova N. (2021). Summer Thermal Comfort in Russian Big Cities (1966–2015). Geographica Pannonica, 25(1), 35–41. https://doi.org/10.5937/gp25-29440
Kuznetsova, I. N., Brusova, N. E., & Nakhaev, M. I. (2017). Moscow urban heat island: detection, boundaries, and variability. Russian Meteorology and Hydrology, 42, 305-313.
Mallen, C., Dingle, G., & McRoberts, S. (2023). Climate impacts in sport: extreme heat as a climate hazard and adaptation options. Managing Sport and Leisure, 1-18. https://doi.org/10.1080/23750472.2023.2166574
Maloney, S. K., & Forbes, C. F. (2011). What effect will a few degrees of climate change have on human heat balance? Implications for human activity. International journal of biometeorology, 55(2), 147–160. https://doi.org/10.1007/s00484-010-0320-6
Matzarakis, A. (2007). Assessment method for climate and tourism based on daily data. In: A. Matzarakis, C. R. de Freitas, D. Scott (Eds.), Developments in Tourism Climatology, 52-58
Matzarakis, A. (2014). Transfer of climate data for tourism applications – The Climate Tourism/Transfer-Information-Scheme. Sustainable Environment Research, 24(4),273-280.
Matzarakis, A., & Fröhlich, D. (2015). Sport events and climate for visitors—The case of FIFA World Cup in Qatar 2022. International Journal of Biometeorology, 59, 481-486. https://doi.org/10.1007/s00484-014-0886-5
Matzarakis, A., Fröhlich, D., Bermon, S., & Adami, P. E. (2019). Visualization of climate factors for sports events and activities–the Tokyo 2020 Olympic games. Atmosphere, 10(10), 572. https://doi.org/10.3390/atmos10100572
Matzarakis, A., Fröhlich, D., Bermon, S., & Adami, P. E. (2018). Quantifying thermal stress for sport Events—The case of the Olympic Games 2020 in Tokyo. Atmosphere, 9(12), 479. https://doi.org/10.3390/atmos9120479
Matzarakis, A., & Graw, K. (2022). Human Bioclimate Analysis for the Paris Olympic Games. Atmosphere, 13(2), 269. https://doi.org/10.3390/atmos13020269
Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—application of the RayMan model. International journal of biometeorology, 51, 323-334. https://doi.org/10.1007/s00484-006-0061-8
Matzarakis, A., Rutz, F., & Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International journal of biometeorology, 54, 131-139.
Milošević, D., Dunjić, J., Stojsavljević, R., Žgela, M., Savić, S., & Arsenović, D. (2023). Analysis of long-and short-term biometeorological conditions in the Republic of Serbia. International Journal of Biometeorology, 1-19. https://doi.org/10.1007/s00484-023-02482-8
Neuvonen, M., Sievänen, T., Fronzek, S., Lahtinen, I., Veijalainen, N., & Carter, T. R. (2015). Vulnerability of cross-country skiing to climate change in Finland–An interactive mapping tool. Journal of Outdoor Recreation and Tourism, 11, 64-79. https://doi.org/10.1016/j.jort.2015.06.010
OECD. (2007). Climate Change in the European Alps. Adapting Winter Tourism and Natural Hazards Management. https://doi.org/10.1787/9789264031692-en
Olya, H. G. (2019). A call for weather condition revaluation in mega-events management. Current Issues in Tourism, 22(1), 16–20. https://doi.org/10.1080/13683500.2017.1377160
Orr, M., & Inoue, Y. (2019). Sport versus climate: Introducing the climate vulnerability of sport organizations framework. Sport Management Review, 22(4), 452–463. https://doi.org/10.1016/j.smr.2018.09.007
Orr M., Inoue Y., Seymour R., & Dingle G. (2021). Impacts of climate change on organized sport: A scoping review. Wiley interdisciplinary reviews: Climate Change, 13(3). https://doi.org/10.1002/wcc.760
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644.
Schneider, S., & Mücke, H. G. (2021). Sport and climate change—how will climate change affect sport?. German Journal of Exercise and Sport Research, 1-9. https://doi.org/10.1007/s12662-021-00786-8
Sofotasiou, P., Hughes, B. R., & Calautit, J. K. (2015). Qatar 2022: Facing the FIFA World Cup climatic and legacy challenges. Sustainable Cities and Society, 14, 16–30. https://doi.org/10.1016/j.scs.2014.07.007
Top, S., Milošević, D., Caluwaerts, S., Hamdi, R., & Savić, S. (2020). Intra-urban differences of outdoor thermal comfort in Ghent on seasonal level and during record-breaking 2019 heat wave. Building and Environment, 185, 107103. https://doi.org/10.1016/j.buildenv.2020.107103
Townsend, M., Mahoney, M., Jones, J. A., Ball, K., Salmon, J., & Finch, C. F. (2003). Too hot to trot? Exploring potential links between climate change, physical activity and health. Journal of Science and Medicine in Sport, 6(3), 260-265. https://doi.org/10.1016/s1440-2440(03)80019-1.
Vanos, J. K., Kosaka, E., Iida, A., Yokohari, M., Middel, A., Scott-Fleming, I., & Brown, R. D. (2019). Planning for spectator thermal comfort and health in the face of extreme heat: The Tokyo 2020 Olympic marathons. Science of the Total Environment, 657, 904–917.
Varentsov, M. I., Grishchenko, M. Y., & Wouters, H. (2019). Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling. Geography, Environment, Sustainability, 12(4), 74-95. https://doi.org/10.24057/2071-9388-2019-10
Vinogradova, V. (2021). Using the Universal Thermal Climate Index (UTCI) for the assessment of bioclimatic conditions in Russia. International journal of biometeorology, 65(9), 1473-1483. https://doi.org/10.1007/s00484-020-01901-4
Vyshkvarkova, E., & Sukhonos, O. (2023). Climate Change Impact on the Cultural Heritage Sites in the European Part of Russia over the past 60 Years. Climate, 11(3), 50. https://doi.org/10.3390/cli11030050