Assessing Pedestrian Thermal Comfort to Improve Walkability in the Urban Tropical Environment of Nagpur City

  • Shivanjali Mohite Visvesvaraya National Institute of Technology, Nagpur
  • Meenal Surawar Department of Architecture and Planning, Visvesvaraya National Institute of Technology (VNIT) Nagpur, Maharashtra, India
Keywords: Walkability, Sustainable Transportation, Microclimate, Pedestrian Thermal Comfort

Abstract


Walking can be an efficient and sustainable mode of transportation for "last mile" connectivity. However, the willingness to walk largely depends on the availability of infrastructure, safety, and comfort. Improving thermal comfort on streets connected to transit stations is crucial for encouraging walking and public transit use. This study assesses seasonal and spatiotemporal variations in pedestrian thermal comfort (PTC) on an N-S-oriented street in Nagpur (India). Thermal walk surveys simultaneously monitored environmental conditions and human thermal perception (thermal sensation vote- TSV). The findings revealed that urban geometry significantly influences PTC and TSV, and the level of influence varied spatiotemporally in both seasons. This study shows the relationship between urban street geometry, microclimate, and PTC, emphasizing the necessity of a multidimensional assessment approach. 

References

Acero, J. A., Koh, E. J. Y., Li, X. X., Ruefenacht, L. A., Pignatta, G., & Norford, L. K. (2019). Thermal impact of the orientation and height of vertical greenery on pedestrians in a tropical area. Building Simulation, 12(6), 973–984. https://doi.org/10.1007/s12273-019-0537-1

Achour-Younsi, S., & Kharrat, F. (2016). Outdoor Thermal Comfort: Impact of the Geometry of an Urban Street Canyon in a Mediterranean Subtropical Climate – Case Study Tunis, Tunisia. Procedia - Social and Behavioral Sciences, 216, 689–700. https://doi.org/10.1016/j.sbspro.2015.12.062

Ahmadi Venhari, A., Tenpierik, M., & Taleghani, M. (2019). The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. Journal of Arid Environments, 166, 68–76. https://doi.org/10.1016/j.jaridenv.2019.04.009

Anupriya, R. S., & Rubeena, T. A. (2023). Spatio-temporal urban land surface temperature variations and heat stress vulnerability index in Thiruvananthapuram city of Kerala, India. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2023.2182088

Arif, V., & Yola, L. (2020). The Primacy of Microclimate and Thermal Comfort in a Walkability Study in the Tropics: A Review. Journal of Strategic and Global Studies, 3(1). https://doi.org/10.7454/jsgs.v3i1.1025

ASHRAE (2013). ANSI/ASHRAE Addendum h to ANSI/ASHRAE Standard 55-2012. 8400. www.ashrae.org

ASHRAE (2023). Standard 55. https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_55_2023

Azegami, Y., Imanishi, M., Fujiwara, K., & Kusaka, H. (2023). Effects of solar radiation in the streets on pedestrian route choice in a city during the summer season. Building and Environment, 235, 110250. https://doi.org/10.1016/j.buildenv.2023.110250

Baghaeipoor, G., & Nasrollahi, N. (2019). The effect of sky view factor on air temperature in high-rise urban residential environments. Journal of Daylighting, 6(2), 42–51. https://doi.org/10.15627/jd.2019.6

Banerjee, S., Ching N. Y, G., Yik, S. K., Dzyuban, Y., Crank, P. J., Pek Xin Yi, R., & Chow, W. T. L. (2022). Analysing impacts of urban morphological variables and density on outdoor microclimate for tropical cities: A review and a framework proposal for future research directions. Building and Environment, 225, 109646. https://doi.org/10.1016/j.buildenv.2022.109646

Banerjee, S., Middel, A., & Chattopadhyay, S. (2020). Outdoor thermal comfort in various microentrepreneurial settings in hot humid tropical Kolkata: Human biometeorological assessment of objective and subjective parameters. Science of the Total Environment, 721. https://doi.org/10.1016/j.scitotenv.2020.137741

Błazejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., & Kampmann, B. (2013). An introduction to the Universal thermal climate index (UTCI). Geographia Polonica, 86(1), 5–10. https://doi.org/10.7163/GPol.2013.1

Bourbia, F., & Awbi, H. B. (2004). Building cluster and shading in urban canyon for hot dry climate Part 1: Air and surface temperature measurements. Renewable Energy, 29(2), 249–262. https://doi.org/10.1016/S0960-1481(03)00170-8

Chen, L., & Ng, E. (2012). Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 29(2), 118–125. https://doi.org/10.1016/j.cities.2011.08.006

Chen, Y. C., Matzarakis, A., Chen, Y. C., & Matzarakis, A. (2018). Modified physiologically equivalent temperature—basics and applications for western European climate. ThApC, 132(3–4), 1275–1289. https://doi.org/10.1007/S00704-017-2158-X

Chen, Y. C., Chen, W. N., Chou, C. C. K., & Matzarakis, A. (2020). Concepts and new implements for modified physiologically equivalent temperature. Atmosphere, 11(7), 1–17. https://doi.org/10.3390/atmos11070694

Chidambara. (2019). Walking the first/last mile to/from transit: Placemaking a key determinant. Urban Planning, 4(2), 183–195. https://doi.org/10.17645/up.v4i2.2017

Chidambaranath, P., & Bitossi, T. (2018). Final Project Summary. Transsolar Academy 2017-2018

Clean air initiative for Asian cities center (2011). Walkability in Indian Cities. Philippines; Pasig city. http://cleanairasia.org/wp-content/uploads/portal/files/Walkability-India_SEP.pdf

Moughtin, C. (2007). Urban design: street and square. Routledge.

Dai, Q., & Schnabel, M. A. (2013). Pedestrian Thermal Comfort in Relation to Street Zones with Different Orientations - A Pilot-Study of Rotterdam (Version 1). Open Access Te Herenga Waka-Victoria University of Wellington. https://doi.org/10.25455/wgtn.16418127.v1

Deevi, B., & Chundeli, F. A. (2020). Quantitative outdoor thermal comfort assessment of street: A case in a warm and humid climate of India. Urban Climate, 34, 100718. https://doi.org/10.1016/j.uclim.2020.100718

ESAF (2017). Walkability and Pedestrian Facilities in Nagpur. https://healthbridge.ca/images/uploads/library/Walkability__Pedestrian_Facilities_in_Nagpur_ESAF_HealthBridge_2017.pdf

Jamei, E., & Rajagopalan, P. (2015). Jamei, E., & Rajagopalan, P. (2015). Urban growth and pedestrian thermal comfort. In The Proceedings of the 49th International Conference of the Architectural Science Association 2015 (pp. 907-918). http://anzasca.net/category/conference-papers/2015-conference-papers

Jamei, E., & Rajagopalan, P. (2019). Effect of street design on pedestrian thermal comfort. Architectural Science Review, 62(2), 92–111. https://doi.org/10.1080/00038628.2018.1537236

Katpatal, Y. B., Kute, A., & Satapathy, D. R. (2008). Katpatal, Y. B., Kute, A., & Satapathy, D. R. (2008). Surface-and air-temperature studies in relation to land use/land cover of Nagpur urban area using Landsat 5 TM data. Journal of urban planning and development, 134(3), 110-118. https://doi.org/10.1061/(ASCE)0733-9488(2008)134

Ketterer, C., & Matzarakis, A. (2014). Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landscape and Urban Planning, 122, 78–88. https://doi.org/10.1016/J.LANDURBPLAN.2013.11.003

Kim, Y., & Brown, R. (2022). Effect of meteorological conditions on leisure walking: a time series analysis and the application of outdoor thermal comfort indexes. International Journal of Biometeorology, 66(6), 1109–1123. https://doi.org/10.1007/s00484-022-02262-w

Kotharkar, R., Bagade, A., & Agrawal, A. (2019). Investigating local climate zones for outdoor thermal comfort assessment in an Indian city. Geographica Pannonica, 23(4), 318–328. https://doi.org/10.5937/GP23-24251

Kotharkar, R., Dongarsane, P., & Ghosh, A. (2024). Urban Climate Quantification of summertime thermal stress and PET range in a tropical Indian city. Urban Climate, 53, 101758. https://doi.org/10.1016/j.uclim.2023.101758

Kotharkar, R., Dongarsane, P., Ghosh, A., & Kotharkar, V. (2024). Numerical analysis of extreme heat in Nagpur city using heat stress indices, all-cause mortality and local climate zone classification. Sustainable Cities and Society, 101, 105099. https://doi.org/10.1016/j.scs.2023.105099

Kotharkar, R., Dongarsane, P., & Keskar, R. (2023). Determining influence of urban morphology on air temperature and heat index with hourly emphasis. Building and Environment, 233, 110044. https://doi.org/10.1016/j.buildenv.2023.110044

Kotharkar, R., Ramesh, A., & Bagade, A. (2018). Urban Heat Island studies in South Asia: A critical review. Urban Climate, 24, 1011–1026. https://doi.org/10.1016/J.UCLIM.2017.12.006

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, B. (2006). World Maps of Köppen-Geiger Climate Classification. Meteorologische Zeitschrift, 15(3),259-263. https://koeppen-geiger.vu-wien.ac.at/

Krüger, E. L., Minella, F. O., & Rasia, F. (2011). Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment, 46(3), 621-634. https://doi.org/10.1016/j.buildenv.2010.09.006

Kumar, P., Rai, A., Upadhyaya, A., & Chakraborty, A. (2022). Analysis of heat stress and heat wave in the four metropolitan cities of India in recent period. Science of the Total Environment, 818. https://doi.org/10.1016/j.scitotenv.2021.151788

Lam, C. K. C., & Hang, J. (2017). Solar Radiation Intensity and Outdoor Thermal Comfort in Royal Botanic Garden Melbourne during Heatwave Conditions. Procedia Engineering, 205, 3456–3462. https://doi.org/10.1016/j.proeng.2017.09.877

Laskar, S. I., Jaswal, K., Bhatnagar, M. K., & Rathore, L. S. (2016). India meteorological department. Proceedings of the Indian National Science Academy, 83(3), 1021-1037. https://doi.org/10.16943/ptinsa/2016/48501

Lau, K. K. L., Shi, Y., & Ng, E. Y. Y. (2019). Dynamic response of pedestrian thermal comfort under outdoor transient conditions. International Journal of Biometeorology, 979–989. https://doi.org/10.1007/s00484-019-01712-2

Mahmoud, H., Ghanem, H., & Sodoudi, S. (2021). Urban geometry as an adaptation strategy to improve the outdoor thermal performance in hot arid regions: Aswan University as a case study. Sustainable Cities and Society, 71, 102965. https://doi.org/10.1016/j.scs.2021.102965

Manavvi, S., & Rajasekar, E. (2020). Semantics of outdoor thermal comfort in religious squares of composite climate: New Delhi, India. International Journal of Biometeorology, 64(2), 253–264. https://doi.org/10.1007/s00484-019-01708-y

Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 38(1), 43–49. https://doi.org/10.1007/BF00866252

Ministry of Urban Development. (2008). Study on Traffic and Transport Policies and Strategies in Urban Areas in India. Final Report May. https://mohua.gov.in/upload/uploadfiles/files/final_Report.pdf

Nagpur Metro Rail Corporation. (2023). NMRCL - Project Profile. https://www.metrorailnagpur.com/projectprofile.aspx

Narimani, N., Karimi, A., & Brown, R. D. (2022). Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecological Informatics, 69, 101671. https://doi.org/10.1016/j.ecoinf.2022.101671

Nikolopoulou, M., Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: Understanding the Human parameter. Solar Energy, 70(3), 227–235. https://doi.org/10.1016/S0038-092X(00)00093-1

Nikolopoulou, M., & Lykoudis, S. (2006). Thermal comfort in outdoor urban spaces: Analysis across different European countries. Building and Environment, 41(11), 1455–1470. https://doi.org/10.1016/J.BUILDENV.2005.05.031

Oke, T. R. (1988). Street design and urban canopy layer climate. Energy and Buildings, 11(1–3), 103–113. https://doi.org/10.1016/0378-7788(88)90026-6

Pearlmutter, D., Berliner, P., & Shaviv, E. (2007). Integrated modeling of pedestrian energy exchange and thermal comfort in urban street canyons. Building and Environment, 42(6), 2396–2409. https://doi.org/10.1016/J.BUILDENV.2006.06.006

Pecelj, M., Matzarakis, A., Vujadinović, M., Radovanović, M., Vagić, N., Đurić, D., & Cvetkovic, M. (2021). Temporal analysis of urban-suburban pet, mpet and utci indices in belgrade (Serbia). Atmosphere, 12(7), 1–21. https://doi.org/10.3390/atmos12070916

Peng, Z., Bardhan, R., Ellard, C., & Steemers, K. (2022). Urban climate walk: A stop-and-go assessment of the dynamic thermal sensation and perception in two waterfront districts in Rome, Italy. Building and Environment, 221, 109267. https://doi.org/10.1016/j.buildenv.2022.109267

Salal Rajan, E. H., & Amirtham, L. R. (2021). Impact of building regulations on the perceived outdoor thermal comfort in the mixed-use neighbourhood of Chennai. Frontiers of Architectural Research, 10(1), 148–163. https://doi.org/10.1016/j.foar.2020.09.002

Sanusi, R., Johnstone, D., May, P., & Livesley, S. J. (2016). Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. Journal of Environmental Quality, 45(1), 167–174. https://doi.org/10.2134/JEQ2015.01.0039

Shamsuddin, S., Hassan, N. R. A., & Bilyamin, S. F. I. (2012). Walkable Environment in Increasing the Liveability of a City. Procedia - Social and Behavioral Sciences, 50, 167–178. https://doi.org/10.1016/j.sbspro.2012.08.025

India Smart City Mission (2015). The Smart City Mission: Mission Transform-Nation. https://smartcities.gov.in/

Surawar, M., & Kotharkar, R. (2017). Assessment of urban heat island through remote sensing in Nagpur urban area using landsat 7 ETM+ Satellite Images. International Journal of Urban and Civil Engineering, 11(7), 868-874. https://doi.org/10.5281/ZENODO.1131073

Svensson, M. K. (2004). Sky view factor analysis - Implications for urban air temperature differences. Meteorological Applications, 11(3), 201–211. https://doi.org/10.1017/S1350482704001288

Van Hoof, J. (2008). Forty years of Fanger’s model of thermal comfort: Comfort for all? Indoor Air, 18(3), 182–201. https://doi.org/10.1111/j.1600-0668.2007.00516.x

Vasilikou, C., & Nikolopoulou, M. (2013). Thermal walks: identifying pedestrian thermal comfort variations in the urban continuum of historic city centres. In Proceeding of PLEA2013-29th Conference, Sustainable architecture for a renewable future, Munich, Germany (pp. 10-12).

Vasilikou, C., & Nikolopoulou, M. (2020). Outdoor thermal comfort for pedestrians in movement: thermal walks in complex urban morphology. International Journal of Biometeorology, 64(2), 277–291. https://doi.org/10.1007/s00484-019-01782-2

Yahia, M. W., Johansson, E., Thorsson, S., Lindberg, F., & Rasmussen, M. I. (2018). Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania. International Journal of Biometeorology, 62(3), 373–385. https://doi.org/10.1007/s00484-017-1380-7

Yu, Y., de Dear, R., Chauhan, K., & Niu, J. (2021). Impact of wind turbulence on thermal perception in the urban microclimate. Journal of Wind Engineering and Industrial Aerodynamics, 216, 104714. https://doi.org/10.1016/J.JWEIA.2021.104714

Zhang, Y., Du, X., & Shi, Y. (2017). Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China. International Journal of Biometeorology, 61(8), 1421–1432. https://doi.org/10.1007/S00484-017-1320-6

Zhou, X., & Chen, H. (2018). Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Science of the Total Environment, 635, 1467–1476. https://doi.org/10.1016/j.scitotenv.2018.04.091

Published
2024/04/01
Section
Original Research