A Parametric Approach for Evaluating Solar Panel Insolation in Urban Areas: Courtyard Design Case Study

  • Ivana Bajsanski Department of Architecture and Urban Planning, Faculty of Technical Sciences, University of Novi Sad
  • Vesna Stojaković Department of Architecture, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6 https://orcid.org/0000-0002-5714-3868
  • Bojan Tepavčević Department of Architecture, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6 https://orcid.org/0000-0002-9226-1659
  • Marko Jovanović Department of Architecture, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6 https://orcid.org/0000-0003-4002-4317
Keywords: Stand-alone solar panel, Insolation, Ladybug, Parametric approach, Building shade

Abstract


Stand-alone solar panel orientation (tilt and azimuth angles) for potential locations in built- up urban areas, significantly influences the level of insolation received by the panel. One way to maximize energy production involves finding the optimal orientation for each lo- cation to ensure the highest insolation for a certain number of solar panels in urban areas. The general rule used in practice is to orient the panels towards the south and calculate the horizontal tilt angle based on the latitude. However, in built-up urban areas, a more com- prehensive analysis of other factors is needed, such as solar radiation levels, weather data, and shading cast by nearby buildings. In this research, a parametric approach aimed at de- termining the optimal orientation of stand-alone solar panels for a predefined set of poten- tial locations is designed. Input parameters are the geometry of nearby buildings, solar pan- el shape, and weather data for the urban location. The approach’s adaptability to different geographic locations and urban environments is achieved by adjusting input data. Compar- ative analysis between insolation values with the optimal orientation of solar panels and those commonly employed in practice is used for evaluation. The proposed approach is ap- plied to determine the tilt and azimuth angles of fixed stand-alone solar panels in urban courtyards in order to improve decisions regarding the distribution of solar panels in urban planning practice. This study examines solar panel insolation in simplified geometrical rep- resentations of some urban areas with courtyards.

References

Almadhhachi, M., Seres, I., & Farkas, I. (2024). Sunflower solar tree vs. flat PV module: A comprehensive analysis of performance, efficiency, and land savings in urban solar integration. Results in Engineering, 21, 101742.
Amado, M., & Poggi, F. (2014). Solar urban planning: a parametric approach. Energy Procedia, 48, 1539-1548. https://doi.org/10.1016/j.egypro.2014.02.174.
Ashetehe, A. A., Gessesse, B. B., & Shewarega, F. (2022). A generalized approach for the determination of optimum tilt angle for solar photovoltaic modules with selected locations in Ethiopia as illustration examples. Scientific African, 18, e01433.https://doi.org/10.1016/j.sciaf.2022.e01433.
Aslani, M., & Seipel, S. (2023). Rooftop segmentation and optimization of photovoltaic panel layouts in digital surface models. Computers, Environment and Urban Systems, 105, 102026. https://doi.org/10.1016/j.compenvurbsys.2023.102026.
Bahrami, A., Okoye, C. O., Pourasl, H. H., & Khojastehnezhad, V. M. (2022). Techno-economic comparison of fixed and tracking flat plate solar collectors in the northern hemisphere. Journal of Cleaner Production, 378, 134523. https://doi.org/10.1016/j.jclepro.2022.134523.
Bajsanski, I., Stojaković, V., & Milošević, D. (2019). Optimizing trees distances in urban streets for insolation mitigation. Geographica Pannonica, 23(4), 329-336.
Das, N., Pal, N., & Pradip, S. K. (2015). Economic cost analysis of LED over HPS flood lights for an efficient exterior lighting design using solar PV. Building and Environment, 89, 380-392. https://doi.org/10.1016/j.buildenv.2015.03.005.
Díaz-Dorado, E., Suárez-García, A., Carrillo, C. J., & Cidrás, J. (2011). Optimal distribution for photovoltaic solar trackers to minimize power losses caused by shadows. Renewable Energy, 36(6), 1826-1835. https://doi.org/10.1016/j.renene.2010.12.002.
Elminir, H. K., Ghitas, A. E., El-Hussainy, F., Hamid, R., Beheary, M. M., & Abdel-Moneim, K. M. (2006). Optimum solar flat-plate collector slope: Case study for Helwan, Egypt. Energy Conversion and Management, 47(5), 624-637. https://doi.org/10.1016/j.enconman.2005.05.015.
Fricke, C., Pongrácz, R., & Unger, J. (2022). Comparison of daily and monthly intra-urban thermal reactions based on LCZ classification using surface and air temperature data. Geographica Pannonica, 26(1).
Gunerhan, H., & Hepbasli, A. (2007). Determination of the optimum tilt angle of solar collectors for building applications. Building and Environment, 42(2), 779-783. https://doi.org/10.1016/j.buildenv.2005.09.012.
Ibrahim, A. (2011). Effect of shadow and dust on the performance of silicon solar cell. Journal of Basic and Applied Scientific Research, 1(3), 222-230.
Jafarkazemi, F., & Saadabadi, S. A. (2013). Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE. Renewable Energy, 56, 44-49. https://doi.org/10.1016/j.renene.2012.10.036.
Jing, J., Zhou, Y., Wang, L., Liu, Y., & Wang, D. (2023). The spatial distribution of China's solar energy resources and the optimum tilt angle and power generation potential of PV systems. Energy Conversion and Management, 283, 116912. https://doi.org/10.1016/j.enconman.2023.116912.
Kacira, M., Simsek, M., Babur, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renewable Energy, 29(8), 1265-1275. https://doi.org/10.1016/j.renene.2003.12.014.
Kanyarusoke, K. E., Gryzagoridis, J., & Oliver, G. (2015). Are solar tracking technologies feasible for domestic applications in rural tropical Africa? Journal of Energy in Southern Africa, 26(1), 86-95.
Karatepe, E., Hiyama, T., Boztepe, M., & Çolak, M. (2008). Voltage based power compensation system for photovoltaic generation system under partially shaded insolation conditions. Energy Conversion and Management, 49(8), 2307-2316. https://doi.org/10.1016/j.enconman.2008.01.012.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated.
Li, D., Liu, G., & Liao, S. (2015). Solar potential in urban residential buildings. Solar Energy, 111, 225-235. https://doi.org/10.1016/j.solener.2014.10.045.
Liu, G. (2014). Sustainable feasibility of solar photovoltaic powered street lighting systems. International Journal of Electrical Power & Energy Systems, 56, 168-174. https://doi.org/10.1016/j.ijepes.2013.11.004.
Markam, K., Sudhakar, K., & Bhopal, M. (2016). Estimation of optimal tilt angle for solar photovoltaic installations in India. International Research Journal of Engineering and Technology, 3(5), 2735-2741.
Michaelides, I. M., Kalogirou, S. A., Chrysis, I., Roditis, G., Hadjiyianni, A., Kambezidis, H. D., ... & Adamopoulos, A. D. (1999). Comparison of performance and cost effectiveness of solar water heaters at different collector tracking modes in Cyprus and Greece. Energy Conversion and Management, 40(12), 1287-1303. https://doi.org/10.1016/S0196-8904(99)00020-5.
Milošević, D. D., Bajšanski, I. V., & Savić, S. M. (2017). Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban Forestry & Urban Greening, 23, 113-124.
Moghadam, H., & Deymeh, S. M. (2015). Determination of optimum location and tilt angle of solar collector on the roof of buildings with regard to shadow of adjacent neighbors. Sustainable Cities and Society, 14, 215-222. https://doi.org/10.1016/j.scs.2014.09.009.
Moghadam, H., Tabrizi, F. F., & Sharak, A. Z. (2011). Optimization of solar flat collector inclination. Desalination, 265(1-3), 107-111. https://doi.org/10.1016/j.desal.2010.07.039.
Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., & Sharifi, A. (2009). A review of principle and sun-tracking methods for maximizing solar systems output. Renewable and Sustainable Energy Reviews, 13(8), 1800-1818. https://doi.org/10.1016/j.rser.2009.01.022.
N’Tsoukpoe, K. E. (2022). Effect of orientation and tilt angles of solar collectors on their performance: Analysis of the relevance of general recommendations in the West and Central African context. Scientific African, 15, e01069. https://doi.org/10.1016/j.sciaf.2021.e01069.
Nfaoui, M., & El-Hami, K. (2018). Extracting the maximum energy from solar panels. Energy Reports, 4, 536-545. https://doi.org/10.1016/j.egyr.2018.05.002.
Ratti, C., Baker, N., & Steemers, K. (2005). Energy consumption and urban texture. Energy and Buildings, 37(7), 762-776. https://doi.org/10.1016/j.enbuild.2004.10.010.
Siraki, A. G., & Pillay, P. (2012). Study of optimum tilt angles for solar panels in different latitudes for urban applications. Solar Energy, 86(6), 1920-1928. https://doi.org/10.1016/j.solener.2012.02.030.
Skeiker, K. (2009). Optimum tilt angle and orientation for solar collectors in Syria. Energy Conversion and Management, 50(9), 2439-2448. https://doi.org/10.1016/j.enconman.2009.05.031.
Solar Panel Size. https://www.dimensions.com/element/solar-panel-polycrystalline (20.04.2023)
Stojakovic, V., Bajsanski, I., Savic, S., Milosevic, D., & Tepavcevic, B. (2020). The influence of changing location of trees in urban green spaces on insolation mitigation. Urban Forestry & Urban Greening, 53, 126721.
T. Berrill, A. Blair. 2007. Solar Water Heater Training course, Installer and User Manual, Australian Business Council for Sustainable Energy. http://waterheatertimer.org/pdf/Solar-water-heater-Installation-manual.pdf. (25.05.2023).
Tang, R., & Wu, T. (2004). Optimal tilt-angles for solar collectors used in China. Applied Energy, 79(3), 239-248. https://doi.org/10.1016/j.apenergy.2004.01.003.
Vulkan, A., Kloog, I., Dorman, M., & Erell, E. (2018). Modeling the potential for PV installation in residential buildings in dense urban areas. Energy and Buildings, 169, 97-109. https://doi.org/10.1016/j.enbuild.2018.03.052.
World data info. Detailed climate data for Serbia. https://www.worlddata.info/europe/serbia/timezones.php. (20.04.2023).
Wu, M. S., Huang, H. H., Huang, B. J., Tang, C. W., & Cheng, C. W. (2009). Economic feasibility of solar-powered led roadway lighting. Renewable Energy, 34(8), 1934-1938. https://doi.org/10.1016/j.renene.2008.12.026.
Xie, M., Wang, M., Zhong, H., Li, X., Li, B., Mendis, T., & Xu, S. (2023). The impact of urban morphology on the building energy consumption and solar energy generation potential of university dormitory blocks. Sustainable Cities and Society, 96, 104644. https://doi.org/10.1016/j.scs.2023.104644.
Yadav, A. K., & Chandel, S. S. (2013). Tilt angle optimization to maximize incident solar radiation: A review. Renewable and Sustainable Energy Reviews, 23, 503-513. https://doi.org/10.1016/j.rser.2013.02.027.
Zhang, J., Xu, L., Shabunko, V., Tay, S. E. R., Sun, H., Lau, S. S. Y., & Reindl, T. (2019). Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city. Applied Energy, 240, 513-533. https://doi.org/10.1016/j.apenergy.2019.02.033.
Published
2024/07/03
Section
Original Research