Mortality Risk during Heatwaves: an Evaluation of Effects by Heatwaves Characteristics in Serbia
Abstract
Extreme temperatures and heatwaves are recognized as one of the deadliest weather-related hazards. The first of its kind in the Balkans region, this study explores the effects of heatwave timing, duration, and intensity on mortality in Serbia. Using daily all-cause mortality data and mean temperature, a distributed lag non-linear model (DLNM) evaluates the heat-mortality response for each city during the warm season (May to September) for the period 2000-2015 for Belgrade, Novi Sad and Niš. Results indicate that longer heatwaves generally have a greater impact on mortality, regardless of when they occur in the warm season. When comparing warm and extremely warm days, relative risk (RR) increases with intensity, and RRs are higher for earlier season heatwaves Extremely warm, early season heatwaves show significantly high RR in all three cities, respectively, for Belgrade 1.37 (95% CI: 125, 1.5), for Novi Sad 1.27 (95% CI: 1.08, 1.5), and for Niš 1.47 (95% CI: 1.15, 1.87). The findings draw attention to how different heat events modify the health response in Serbia. Stakeholders who work to improve resilience to heat hazards may consider the development of an early warning heat system and a strengthening of local and regional outreach efforts designed to reduce adverse health outcomes.
References
Alari, A., Letellier, N., & Benmarhnia, T. (2023). Effect of different heat wave timing on cardiovascular and respiratory mortality in France. Science of The Total Environment, 892, 164543. https://doi.org/10.1016/j.scitotenv.2023.164543
Allen, M.J., & Sheridan, S.C. (2018). Mortality risks during extreme temperature events (ETEs) using a distributed lag non-linear model. International journal of biometeorology, 62, 57-67. https://doi.org/10.1007/s00484-015-1117-4
Allen, M. J., Vecellio, D. J., & Hoffman, J. S. (2024). Evaluating the relationship between heat-related illness and cooling center location in Virginia. Natural Hazards, 1-16. https://doi.org/10.1007/s11069-024-06946-x
Anderson, G.B., & Bell, M.L. (2011). Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environmental health perspectives, 119(2), 210-218. https://doi.org/10.1289/ehp.1002313
Antonescu, B., Ene, D., Boldeanu, M., Andrei, S., Mărmureanu, L., Marin, C., & Pîrloagă, R. (2023). Future changes in heatwaves characteristics in Romania. Theoretical and Applied Climatology, 153(1), 525-538. https://doi.org/10.1007/s00704-023-04412-5
Arbuthnott, K.G., & Hajat, S. (2017). The health effects of hotter summers and heat waves in the population of the United Kingdom: a review of the evidence. Environmental health, 16, 1-13. https://doi.org/10.1186/s12940-017-0322-5
Arsenović D., Lehnert M., Fiedor D., Šimaček P., Stredova H., Streda T., & Savić S. (2019). Heat-waves and Mortality in Czech Cities: A Case Study for the Summers of 2015 and 2016. Geographica Pannonica, 23(3), 162-172. https://doi.org/10.5937/gp23-22853
Arsenović, D., Savić, S., Lužanin, Z., Radić, I., Milošević, D., & Arsić, M. (2019). Heat-related mortality as an indicator of population vulnerability in a mid-sized Central European city (Novi Sad, Serbia, summer 2015). Geographica Pannonica, 23(4), 204-215. https://doi.org/10.5937/gp23-22680
Arsenović, D., Lužanin, Z., Milošević, D., Dunjić, J., Nikitović, V., & Savić, S. (2023). The effects of summer ambient temperature on total mortality in Serbia. International Journal of Biometeorology, 67(10), 1581-1589. https://doi.org/10.1007/s00484-023-02520-5
Ascione, F., De Masi, R.F., Mastellone, M., Santamouris, M., Tariello, F., & Vanoli, G.P. (2022). The Trend of Heat-Related Mortality in European Cities. In Urban Overheating: Heat Mitigation and the Impact on Health (pp. 293-320). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4707-0_15
Awasthi, A., Vishwakarma, K., & Pattnayak, K. C. (2022). Retrospection of heatwave and heat index. Theoretical and Applied Climatology, 147(1), 589-604. https://doi.org/10.1007/s00704-021-03854-z
Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R.F., Pegenaute, F., Herrmann, F.R., Robine, J.M., Basagana X., Tonne C., Anto M.J., & Achebak, H. (2023). Heat-related mortality in Europe during the summer of 2022. Nature medicine, 29(7), 1857-1866. https://doi.org/10.1038/s41591-023-02419-z
Bijelović, S., Jevtić, M., Dragić, N., & Živadinović, E. (2017). Challenges for healthcare systems due to heat waves (Case study Novi Sad, Serbia) Marija Jevtic. The European Journal of Public Health, 27(suppl_3), ckx186-002. https://doi.org/10.1093/eurpub/ckx186.002
Błażejczyk, K., Twardosz, R., Wałach, P., Czarnecka, K., & Błażejczyk, A. (2022). Heat strain and mortality effects of prolonged central European heat wave—an example of June 2019 in Poland. International Journal of Biometeorology, 66, 149-161. https:// doi. org/ 10. 1007/s00484- 021- 02202-0
Bogdanović, D., Milošević, Z., Lazarević, K. K., Doličanin, Z. C., Ranđelović, D., & Bogdanović, S. D. (2013). The impact of the July 2007 heat wave on daily mortality in Belgrade, Serbia. Central European journal of public health, 21(3), 140-145. https://doi.org/10.21101/cejph.a3840
Borrell, C., Marí-Dell’Olmo, M., Rodríguez-Sanz, M., Garcia-Olalla, P., Caylà, J. A., Benach, J., & Muntaner, C. (2006). Socioeconomic position and excess mortality during the heat wave of 2003 in Barcelona. European journal of epidemiology, 21, 633-640. https://doi.org/10.1007/s10654-006-9047-4
Boudreault, J., Lavigne, É., Campagna, C., & Chebana, F. (2024). Estimating the heat-related mortality and morbidity burden in the province of Quebec, Canada. Environmental research, 257, 119347. https://doi.org/10.1016/j.envres.2024.119347
Brown, S.J. (2020). Future changes in heatwave severity, duration and frequency due to climate change for the most populous cities. Weather and Climate Extremes, 30, 100278. https://doi.org/10.1016/j.wace.2020.100278
Cleland, S.E., Steinhardt, W., Neas, L.M., West, J.J., & Rappold, A.G. (2023). Urban heat island impacts on heat-related cardiovascular morbidity: A time series analysis of older adults in US metropolitan areas. Environment international, 178, 108005. https://doi.org/10.1016/j.envint.2023.108005
D'Ippoliti, D., Michelozzi, P., Marino, C., de'Donato, F., Menne, B., Katsouyanni, K., Kirchmayer U., Analitis A., Medina-Ramon M., Paldy A., Atkinson R., Kovants S., Bisanti L., Schneider A., Lefranc A., Iniguez C., & Perucci, C. A. (2010). The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environmental Health, 9, article number 37. https://doi.org/10.1186/1476-069X-9-37
Díaz, J., Jordán, A., García, R., López, C., Alberdi, J., Hernández, E., & Otero, A. (2002). Heat waves in Madrid 1986–1997: effects on the health of the elderly. International archives of occupational and environmental health, 75, 163-170. https://doi.org/10.1007/s00420-001-0290-4
Donaldson, G.C., Keatinge, W.R., & Näyhä, S. (2003). Changes in summer temperature and heat-related mortality since 1971 in North Carolina, South Finland, and Southeast England. Environmental research, 91(1), 1-7. https://doi.org/10.1016/s0013-9351(02)00002-6
Faye, M., Dème, A., Diongue, A.K., & Diouf, I. (2021). Impact of different heat wave definitions on daily mortality in Bandafassi, Senegal. PloS one, 16(4), e0249199. https://doi.org/10.1371/journal.pone.0249199
Fechter-Leggett, E.D., Vaidyanathan, A., & Choudhary, E. (2016). Heat Stress Illness Emergency Department Visits in National Environmental Public Health Tracking States, 2005–2010. Journal of Community Health, 41(1), 57-69. 10.1007/s10900-015-0064-7
Gasparrini, A. (2011). Distributed lag linear and non-linear models in R: the package dlnm. Journal of statistical software, 43(8), 1-20.
Gasparrini, A., & Armstrong, B. (2011). The impact of heat waves on mortality. Epidemiology, 22(1), 68-73. https://doi.org/10.1097/ede.0b013e3181fdcd99
Guardaro, M., Hondula, D.M., Ortiz, J., & Redman, C.L. (2022). Adaptive capacity to extreme urban heat: The dynamics of differing narratives. Climate Risk Management, 35, 100415. https://doi.org/10.1016/j.crm.2022.100415
Guo, Y., Gasparrini, A., Armstrong, B.G., Tawatsupa, B., Tobias, A., Lavigne, E., de Sousa Zanotti Stagliorio Coelho,M., Pan, X., Kim, H., Hashizume, M., Honda, Y., Guo, J.L.L., Wu, C.F., Zanobetti, A., Schwartz, D.J., Bell, L.M., Scortichini, M., Michelozzi, P., Punnasiri,4 Li, K.S., Tian, L., Garcia, S.D.O., Xerxes Seposo, X., Overcenco, A., Zeka, A., Goodman, P., Dang, T. N., Dung, D.V., Mayvaneh, F., Saldiva, P.H.N., Williams, G., & Tong, S. (2017). Heat wave and mortality: a multicountry, multicommunity study. Environmental health perspectives, 125(8), 087006. https://doi.org/10.1289/EHP1026
IPCC. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama, Eds.). Cambridge University Press. https://doi.org/10.1017/9781009325844
Karimi, A., Mohammad, P., García-Martínez, A., Moreno-Rangel, D., Gachkar, D., & Gachkar, S. (2023). New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 25(10), 10485-10531. https://doi.org/10.1007/s10668-022-02530-0
Jagai, J.S., Grossman, E., Navon, L., Sambanis, A., & Dorevitch, S. (2017). Hospitalizations for heat-stress illness varies between rural and urban areas: an analysis of Illinois data, 1987-2014. Environmental Health, 16, article number 38. doi:10.1186/s12940-017-0245-1
Keith, L., & Meerow, S. (2022). Planning for urban heat resilience. American Planning Association. Chicago.
Kim, D.W., Deo, R.C., Lee, J.S., & Yeom, J.M. (2017). Mapping heatwave vulnerability in Korea. Natural Hazards, 89, 35-55. https://doi.org/10.1007/s11069-017-2951-y
Li, Y., Odamne, E.A., Silver, K., & Zheng, S. (2017). Comparing urban and rural vulnerability to heat-related mortality: a systematic review and meta-analysis. Journal of Global Epidemiology and Environmental Health, 9-15. https://doi.org/10.29199/GEEH.101016
Liu, J., Varghese, B.M., Hansen, A., Zhang, Y., Driscoll, T., Morgan, G., Dear K., Goourley M., Capon A., & Bi, P. (2022). Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. The Lancet Planetary Health, 6(6), e484-e495. https://doi.org/10.1016/S2542-5196(22)00117-6
Mashhoodi, B., & Kasraian, D. (2024). Heatwave exposure inequality: An urban-rural comparison of environmental justice. Applied Geography, 164, 103216. https://doi.org/10.1016/j.apgeog.2024.103216
McCarthy, M., Armstrong, L., & Armstrong, N. (2019). A new heatwave definition for the UK. Weather (00431656), 74(11), 382-387. https://doi.org/10.1002/wea.3629
McGeehin, M.A., & Mirabelli, M. (2001). The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environmental health perspectives, 109(suppl 2), 185-189. doi: 10.1289/ehp.109-1240665
Meade, R.D., Akerman, A.P., Notley, S.R., McGinn, R., Poirier, P., Gosselin, P., & Kenny, G.P. (2020). Physiological factors characterizing heat-vulnerable older adults: a narrative review. Environment international, 144, 105909. https://doi.org/10.1016/j.envint.2020.105909
Milošević, D., Savić, S., Kresoja, M., Lužanin, Z., Šećerov, I., Arsenović, D., Dunjić J., & Matzarakis, A. (2021). Analysis of air temperature dynamics in the “local climate zones” of Novi Sad (Serbia) based on long-term database from an urban meteorological network. International Journal of Biometeorology, 66, 371-384. doi: https://doi.org/10.1007/s00484-020-02058-w
Mitchell, D., Kornhuber, K., Huntingford, C., & Uhe, P. (2019). The day the 2003 European heatwave record was broken. The Lancet Planetary Health, 3(7), e290-e292. https://doi.org/10.1016/S2542-5196(19)30106-8
Muccione, V., Biesbroek, R., Harper, S., & Haasnoot, M. (2024). Towards a more integrated research framework for heat-related health risks and adaptation. The Lancet Planetary Health, 8(1), e61-e67. https://doi.org/10.1016/S2542-5196(23)00254-1
Perkins-Kirkpatrick, S.E., & Lewis, S.C. (2020). Increasing trends in regional heatwaves. Nature communications, 11, article number 3357. https://doi.org/10.1038/s41467-020-16970-7
Petkova, E.P., Dimitrova, L.K., Sera, F., & Gasparrini, A. (2021). Mortality attributable to heat and cold among the elderly in Sofia, Bulgaria. International journal of biometeorology, 65(6), 865-872. https://doi.org/10.1007/s00484-020-02064-y
Republički zavod za statistiku. (2003). Popis stanovništva, domaćinstava i stanova u 2002. Pol i starost [2002 Census of population, households and dwellings. Sex and age] (Knjiga 2). Beograd: Republički zavod za statistiku.
Republički zavod za statistiku. (2012a). Popis stanovništva, domaćinstava i stanova 2011. u Republici Srbiji. Starost i pol [2011 Census of Population, Households and Dwellings in the Republic of Serbia. Age and sex] (Knjiga 2). Beograd: Republički zavod za statistiku.
Republički zavod za statistiku. (2012b). Opštine i regioni u Republici Srbiji, 2012 [Municipalities and regions in the Republic of Serbia, 2012]. Beograd: Republički zavod za statistiku.
RHMZS. (2023). Sezonski bilten za Srbiju. Leto 2023. godine [Republic Hydrometeorological Service of Serbia. Seasonal issue for Serbia. Summer 2023]. QF-E-003.
Reid, C.E., O’neill, M.S., Gronlund, C.J., Brines, S.J., Brown, D.G., Diez-Roux, A.V., & Schwartz, J. (2009). Mapping community determinants of heat vulnerability. Environmental health perspectives, 117(11), 1730-1736. https://doi.org/10.1289/ehp.0900683
Royé, D., Codesido, R., Tobías, A., & Taracido, M. (2020). Heat wave intensity and daily mortality in four of the largest cities of Spain. Environmental research, 182, 109027. https://doi.org/10.1016/j.envres.2019.109027
Robinson, P.J. (2001). On the definition of a heat wave. Journal of Applied Meteorology and Climatology, 40(4), 762-775. https://doi.org/10.1175/1520-0450(2001)040%3C0762:OTDOAH%3E2.0.CO;2
Russo, S., Dosio, A., Graversen, R.G., Sillmann, J., Carrao, H., Dunbar, M.B., Singleton A., montagna P., Barbola P., & Vogt, J.V. (2014). Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research: Atmospheres, 119(22), 12500-12512. https://doi.org/10.1002/2014JD022098
Savić, S., Arsenović, D., Lužanin, Z., Milošević, D., Dunjić, J., Šećerov, I., Kojić M., Radić I., Harhaji S., & Arsić, M. (2023). Hospital admission tendencies caused by day-to-day temperature changes during summer: a case study for the city of Novi Sad (Serbia). International Journal of Biometeorology, 67(4), 695-704. https://doi.org/10.1007/s00484-023-02447-x
Savić, S., Marković, V., Šećerov, I., Pavić, D., Arsenović, D., Milošević, D., Dolinaj D., Nagy I., & Pantelić, M. (2018). Heat wave risk assessment and mapping in urban areas: case study for a midsized Central European city, Novi Sad (Serbia). Natural hazards, 91, 891-911. https://doi.org/10.1007/s11069-017-3160-4
Sheridan, S.C., & Lin, S. (2014). Assessing variability in the impacts of heat on health outcomes in New York City over time, season, and heat-wave duration. EcoHealth, 11, 512-525. https://doi.org/10.1007/s10393-014-0970-7
Silveira, I.H., Hartwig, S.V., Moura, M.N., Cortes, T.R., Junger, W.L., Cirino, G., Ignotti E., & de Oliveira, B.F.A. (2023). Heat waves and mortality in the Brazilian Amazon: Effect modification by heat wave characteristics, population subgroup, and cause of death. International Journal of Hygiene and Environmental Health, 248, 114109. https://doi.org/10.1016/j.ijheh.2022.114109
Smith, K. R., Woodward, A., Campbell-Lendrum, D., Chadee, D. D., Honda, Y., Liu, Q., Olwoch, J. M., Revich, B., Sauerborn, R., Aranda, C., Berry, H., Butler, C., Chafe, Z., Cushing, L., Ebi, K. L., Kjellstrom, T., Kovats, S., Lindsay, G., Lipp, E., McMichael, T., Murray, V., Sankoh, O., O’Neill, M., Shonkoff, S. B., Sutherland, J., & Yamamoto, S. (2014). Human health: Impacts, adaptation, and co-benefits. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 709–754). Cambridge University Press.
Stanojević, G., Spalević, A., Kokotović, V., & Stojilković, J. (2014). Does Belgrade (Serbia) need heat health warning system? Disaster Prevention and Management, 23(5), 494-507. http://dx.doi.org/10.1108/dpm-11-2013-0200
Steul, K., Schade, M., & Heudorf, U. (2018). Mortality during heatwaves 2003–2015 in Frankfurt-Main–the 2003 heatwave and its implications. International journal of hygiene and environmental health, 221(1), 81-86. https://doi.org/10.1016/j.ijheh.2017.10.005
Sun, Z., Chen, C., Yan, M., Shi, W., Wang, J., Ban, J., Sun Q., He, Z.M., & Li, T. (2020). Heat wave characteristics, mortality and effect modification by temperature zones: a time-series study in 130 counties of China. International journal of epidemiology, 49(6), 1813-1822. https://doi.org/10.1093/ije/dyaa104
Tong, S., & Ebi, K. (2019). Preventing and mitigating health risks of climate change. Environmental research, 174, 9-13. https://doi.org/10.1016/j.envres.2019.04.012
Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Peterson P., & Evans, T. (2021). Global urban population exposure to extreme heat. Proceedings of the National Academy of Sciences, 118(41), e2024792118. https://doi.org/10.1073/pnas.2024792118
Turner, V.K., French, E.M., Dialesandro, J., Middel, A., Hondula, D., Weiss, G.B., & Abdellati, H. (2022). How are cities planning for heat? Analysis of United States municipal plans. Environmental research letters, 17(6), 064054. http://dx.doi.org/10.1088/1748-9326/ac73a9
Urban, A., Hanzlíková, H., Kyselý, J., & Plavcová, E. (2017). Impacts of the 2015 heat waves on mortality in the Czech Republic—A comparison with previous heat waves. International journal of environmental research and public health, 14(12), 1562. https://doi.org/10.3390/ijerph14121562
van Daalen, R.K., Tonne, C., Semenza, C.J., Rocklöv, J., Markandya, A., Dasandi, N., Jankin, S., ... & Lowe, R. (2024). The 2024 Europe report of the Lancet Countdown on health and climate change: unprecedented warming demands unprecedented action. The Lancet Public Health, 9(7), 495-522. https://doi.org/10.1016/S2468-2667(24)00055-0
Ventura, S., Miró, J. R., Peña, J. C., & Villalba, G. (2023). Analysis of synoptic weather patterns of heatwave events. Climate Dynamics, 61(9), 4679-4702. https://doi.org/10.1007/s00382-023-06828-1
Výberči, D., Švec, M., Faško, P., Savinová, H., Trizna, M., & Mičietová, E. (2015). The effects of the 1996–2012 summer heat events on human mortality in Slovakia. Moravian Geographical Reports, 23(3), 58-70. http://dx.doi.org/10.1515/mgr-2015-0018
Vicedo-Cabrera, A.M., Ragettli, M.S., Schindler, C., & Röösli, M. (2016). Excess mortality during the warm summer of 2015 in Switzerland. Swiss medical weekly, 146(4950). https://doi.org/10.4414/smw.2016.14379
Watts, N., Amann, M., Ayeb-Karlsson, S., Belesova, K., Bouley, T., Boykoff, M., ... & Costello, A. (2018). The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. The Lancet, 391(10120), 581-630. https://doi.org/10.1016/S0140-6736(17)32464-9
Winklmayr, C., Muthers, S., Niemann, H., Mücke, H.G., & an der Heiden, M. (2022). Heat-related mortality in Germany from 1992 to 2021. Deutsches Ärzteblatt International, 119(26), 451-457. 10.3238/arztebl.m2022.0202
World Health Organization. (2023). Climate change and health. Retrieved from https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health
Xu, Z., Cheng, J., Hu, W., & Tong, S. (2018). Heatwave and health events: a systematic evaluation of different temperature indicators, heatwave intensities and durations. Science of the total environment, 630, 679-689. https://doi.org/10.1016/j.scitotenv.2018.02.268
Xu, Z., FitzGerald, G., Guo, Y., Jalaludin, B., & Tong, S. (2016). Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environment international, 89, 193-203. https://doi.org/10.1016/j.envint.2016.02.007
Yadav, N., Rajendra, K., Awasthi, A., Singh, C., & Bhushan, B. (2023). Systematic exploration of heat wave impact on mortality and urban heat island: A review from 2000 to 2022. Urban Climate, 51, 101622. https://doi.org/10.1016/j.uclim.2023.101622
Yin, Z., Liu, Z., Liu, X., Zheng, W., & Yin, L. (2023). Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecological Indicators, 154, 110765. https://doi.org/10.1016/j.ecolind.2023.110765
Zaninović, K., & Matzarakis, A. (2014). Impact of heat waves on mortality in Croatia. International journal of biometeorology, 58, 1135-1145. https://doi.org/10.1007/s00484-013-0706-3