Fine-scale Mapping of Heat-hazard Risk and Vulnerability Using Geo-spatial Techniques: Insights from a Tropical Indian City

Keywords: extreme heat, heat-hazard risk, heat vulnerability index, sensitivity, exposure, adaptive capacity, local climate zone

Abstract


Unprecedented extreme heat events (EHEs) have amplified associated health risks, but they present great differences within the urban environment. This paper aims to assess heat-hazard risk (HHR) and associated vulnerability in Nagpur, a heat-prone Indian city using remotely sensed and on-site meteorological data. HHR was generated through high resolution local climate zone (LCZ) maps via the product of hazard and vulnerability which featured census-tract socio-economic variables (sensitivity and adaptive capacity) and exposure. Principal component analysis (PCA) with equal weighting was applied to develop a composite fine-scale heat vulnerability index (HVI). Out of 136 wards, a total of 68 wards were identified to have ‘high’ or ‘very high’ HVI featuring about 49.06% of the population. LCZ-based spatial mapping showed a heterogeneous heat ‘risk-scape’ across the city. ‘High’ and ‘very high’ heat vulnerability/risk (HV/R) signature was observed in city core, its adjoining areas (LCZs 3 and 3F) and urban fringes (LCZs 9 and 93). Conversely, open areas with moderate vegetation cover and natural classes (LCZs 6, 6B, A and B) showed ‘moderate’ to ‘low’ HHR. The findings of this research will enable the urban practitioners and policymakers to deal with explicit determinants of heat vulnerability and risk especially in regions with low adaptive capacity.  

References

Adnan, M. S. G., Kabir, I., Hossain, M. A., Enan, M. S., Chakma, S., Tasneem, S. N., Hassan, Q. K., & Dewan, A. (2023). Heatwave vulnerability of large metropolitans in Bangladesh: an evaluation. Natural Hazards. (preprint version). https://doi.org/10.21203/rs.3.rs-3093933/v1

Aubrecht, C., & Özceylan, D. (2013). Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability. Environment International, 56, 65–77. 10.1016/j.envint.2013.03.005

Azhar, G., Saha, S., Ganguly, P., Mavalankar, D., & Madrigano, J. (2017). Heat Wave Vulnerability Mapping for India. International Journal of Environmental Research and Public Health, 14(4), 357. 10.3390/ijerph14040357

Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., … & Stewart, I. (2015). Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information, 4(1), 199–219. 10.3390/ijgi4010199

Brooks, N., Adger, W. N., & Kelly, P. M. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global environmental change, 15(2), 151-163. https://doi.org/10.1016/j.gloenvcha.2004.12.006

Cai, Z., Tang, Y., Chen, K., & Han, G. (2019). Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity. Sustainability, 11(7), 2032. https://doi.org/10.3390/su11072032

Chen, B., Xie, M., Feng, Q., Wu, R., & Jinag, L. (2022). Diurnal heat exposure risk mapping and related governance zoning: A case study of Beijing, China. Sustainable Cities and Society, 81, 103831. https://doi.org/10.1016/j.scs.2022.103831

Chen, R., Wen, Z., Lin, W., & Qiao, Y. (2023). Diverse relationship between the tropical night in South China and the water vapor transport over the South China Sea and the plausible causes. Atmospheric Research, 296, 107080. https://doi.org/10.1016/j.atmosres.2023.107080

Chen, T-L., Lin, H., & Chiu, Y-H. (2021). Heat vulnerability and extreme heat risk at the metropolitan scale: A case study of Taipei metropolitan area, Taiwan. Urban Climate, 41, 101054. https://doi.org/10.1016/j.uclim.2021.101054

Cheval, S., Dumitrescu, A., Amihăesei, V., Irașoc, A., Paraschiv, M.-G., & Ghent, D. (2022). A country scale assessment of the heat hazard-risk in urban areas. Building and Environment, 229, 109892. https://doi.org/10.1016/j.buildenv.2022.109892

Crichton, D. (1999) The Risk Triangle. In: Ingleton, J., Ed., Natural Disaster Management, Tudor Rose, London, 102-103.

Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(1), 242–261. https://doi.org/10.1111/1540-6237.8402002

Dube, T., & Mutanga, O. (2015). Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 36–46. https://doi.org/10.1016/j.isprsjprs.2014.11.001

Dutta, P., Sathish, L., Mavankar, D., Ganguly, P. S., & Saunik, S. (2020). Extreme Heat Kills Even in Very Hot Cities: Evidence from Nagpur, India. The international journal of occupational and environmental medicine, 11(4), 188–195. https://doi.org/10.34172/ijoem.2020.1991

Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., … & Jay, O. (2021). Hot weather and heat extremes: health risks. The Lancet, 398(10301), 698–708. https://doi.org/10.1016/S0140-6736(21)01208-3

Ellena, M., Melis, G., Zengarini, N., Di Gangi, E., Ricciardi, G., Mercogliano, P., & Costa, G. (2023). Micro-scale UHI risk assessment on the heat-health nexus within cities by looking at socio-economic factors and built environment characteristics: The Turin case study (Italy). Urban Climate, 49, 101514. https://doi.org/10.1016/j.uclim.2023.101514

Estoque, R. C., Ooba, M., Seposo, X. T., Togawa, T., Hijioka, Y., Takahashi, K., & Nakamura, S. (2020). Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-15218-8

Gaillard, J. C. (2010). Vulnerability, capacity and resilience: Perspectives for climate and development policy. Journal of International Development: The Journal of the Development Studies Association, 22(2), 218-232. https://doi.org/10.1002/jid.1675

Gasparrini, A., & Armstrong, B. (2011). The impact of heat waves on mortality. Epidemiology (Cambridge, Mass.), 22(1), 68–73. https://doi.org/10.1097/EDE.0b013e3181fdcd99

Ghosh, A. (2024). Smart Heat-health Action Plans: A programmatic, progressive and dynamic framework to address urban overheating. Geographica Pannonica, 28(3), 221-237. https://doi.org/10.5937/gp28-51694

Gu, S., Huang, C., Bai, L., Chu, C., & Liu, Q. (2016). Heat-related illness in China, summer of 2013. International Journal of Biometeorology, 60(1), 131–137. 10.1007/s00484-015-1011-0

Ha, K. J., & Yun, K. S. (2012). Climate change effects on tropical night days in Seoul, Korea. Theoretical and applied climatology, 109, 191-203. https://doi.org/10.1007/s00704-011-0573-y

Hess, J. J., McDowell, J. Z., & Luber, G. (2012). Integrating climate change adaptation into public health practice: using adaptive management to increase adaptive capacity and build resilience. Environmental health perspectives, 120(2), 171–179. https://doi.org/10.1289/ehp.1103515

Huang, H., Ma, J., & Yang, Y. (2023). Spatial heterogeneity of driving factors for urban heat health risk in Chongqing, China: A new identification method and proposal of planning response framework. Ecological Indicators, 153, 110449. https://doi.org/10.1016/j.ecolind.2023.110449

Hu, K., Yang, X., Zhong, J., Fei, F., & Qi, J. (2017). Spatially Explicit Mapping of Heat Health Risk Utilizing Environmental and Socioeconomic Data. Environmental Science and Technology, 51(3), 1498–1507. 10.1021/acs.est.6b04355

Inostroza, L., Palme, M., & de la Barrera, F. (2016). A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile. PLOS ONE, 11(9), e0162464. https://doi.org/10.1371/journal.pone.0162464

IPCC. (2007). Summary for policymakers. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 7–22). Cambridge University Press.

IPCC. (2014). Summary for policymakers. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, ... L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–32). Cambridge University Press.

IPCC. (2018). Global warming of 1.5°C: An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, et al., Eds.). In press.

IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In press.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151. https://doi.org/10.1177/001316446002000116

Karanja, J., & Kiage, L. (2021). Perspectives on spatial representation of urban heat vulnerability. Science of The Total Environment, 774, 145634. https://doi.org/10.1016/j.scitotenv.2021.145634

Karanja, J., Vanos, J., Georgescu, M., Frazier, A. E., & Hondula, D. (2025). The Imperative for Hazard and Place-Specific Assessment of Heat Vulnerability. Environmental health perspectives. https://doi.org/10.1289/EHP14801

Karanja, J., Wanyama, D., & Kiage, L. (2022). Weighting mechanics and the spatial pattern of composite metrics of heat vulnerability in Atlanta, Georgia, USA. Science of The Total Environment, 812, 151432. https://doi.org/10.1016/j.scitotenv.2021.151432

Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., & Mattsson, E. (2015). Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sensing, 7(8), 10017–10041. https://doi.org/10.3390/rs70810017

Keith, L., Meerow, S., Hondula, D. M., Turner, V. K., & Arnott, J. C. (2021). Deploy heat officers, policies and metrics. Nature, 598(7879), 29–31. https://doi.org/10.1038/d41586-021-02677-2

Klok, S., Kornus, A., Kornus, O., Danylchenko, O., & Skyba, O. (2023). Tropical nights (1976–2019) as an indicator of climate change in Ukraine. IOP Conference Series: Earth and Environmental Science, 1126(1), 012023. https://doi.org/10.1088/1755-1315/1126/1/012023

Kotharkar, R., Aneja, S., & Ghosh, A. (2019). Heat vulnerability index for urban heat wave risk adaptation for Indian cities: A case study of Akola. 5th International Conference on Countermeasures to Urban Heat Islands (IC2UHI), 02–04 December 2019, International Institute of Information Technology – Hyderabad, India. https://doi.org/10.37285/bsp.ic2uhi.10

Kotharkar, R., Dongarsane, P., & Ghosh, A. (2024a). Quantification of summertime thermal stress and PET range in a tropical Indian city. Urban Climate, 53, 101758. https://doi.org/10.1016/j.uclim.2023.101758

Kotharkar, R., Dongarsane, P., Ghosh, A. & Kotharkar, V. (2024b). Numerical analysis of extreme heat in Nagpur city using heat stress indices, all-cause mortality and local climate zone classification. Sustainable Cities and Society, 101, 105099. https://doi.org/10.1016/j.scs.2023.105099

Kotharkar, R., & Ghosh, A. (2021a). Review of heat wave studies and related urban policies in South Asia. Urban Climate, 36, 100777. https://doi.org/10.1016/j.uclim.2021.100777

Kotharkar, R., & Ghosh, A. (2021b). Progress in extreme heat management and warning systems: A systematic review of heat-health action plans (1995-2020). Sustainable Cities and Society, 76, 103487. https://doi.org/10.1016/j.scs.2021.103487

Kotharkar, R., Ghosh, A., Kapoor, S., & Reddy, D. G. K. (2022). Approach to local climate zone based energy consumption assessment in an Indian city. Energy & Buildings, 259, 111835. https://doi.org/10.1016/j.enbuild.2022.111835

Kotharkar, R., Ghosh, A., & Kotharkar, V. (2021). Estimating summertime heat stress in a tropical Indian city using Local Climate Zone (LCZ) framework. Urban Climate, 36, 100784. https://doi.org/10.1016/j.uclim.2021.100784

Kotharkar, R., Vidyasagar, A., & Ghosh, A. (2024). Application of LCZ to urban heat island studies. In R. Wang, M. Cai, C. Ren, & Y. Shi (Eds.), Local climate zone application in sustainable urban development (pp. 79-103). Springer. https://doi.org/10.1007/978-3-031-56168-9_5

Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29(1), 41–55. https://doi.org/10.1146/annurev. publhealth.29.020907.0908

Kumar, A., & Singh, D. P. (2021). Heat stroke-related deaths in India: An analysis of natural causes of deaths, associated with the regional heatwave. Journal of Thermal Biology, 95, 102792. 10.1016/j.jtherbio.2020.102792

La, Y., Bagan, H., & Yamagata, Y. (2020). Urban land cover mapping under the local climate zone scheme using Sentinel-2 and PALSAR-2 data. Urban Climate, 33, 100661. https://doi.org/10.1016/j.uclim.2020.100661

Lehnert, M., Savić, S., Milošević, D., Dunjić, J., & Geletič, J. (2021). Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS International Journal of Geo-Information, 10(4), 260. 10.3390/ijgi10040260

Li, F., Yigitcanlar, T., Li, W., Nepal, M., Nguyen, K., & Dur, F. (2024). Understanding urban heat vulnerability: Scientometric analysis of five decades of research. Urban Climate, 56, 102035. https://doi.org/10.1016/j.uclim.2024.102035

Li, F., Yigitcanlar, T., Nepal, M., Thanh, K., & Dur, F. (2022). Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review. Energies, 15(19), 6998. http://dx.doi.org/10.3390/en15196998

Li, F., Yigitcanlar, T., Nepal, M., Nguyen, K., Dur, F., & Li, W. (2025). Mapping heat vulnerability in Australian capital cities: A machine learning and multi-source data analysis. Sustainable Cities and Society, 119, 106079. https://doi.org/10.1016/j.scs.2024.106079

Luber, G., & McGeehin, M. (2008). Climate change and extreme heat events. American journal of preventive medicine, 35(5), 429–435. https://doi.org/10.1016/j.amepre.2008.08.021

Ma, L., Huang, G., Johnson, B. A., Chen, Z., Li, M., Yan, Z., Zhan, W., Lu, H., Hw, W., & Lian, D. (2023). Investigating urban heat-related health risks based on local climate zones: A case study of Changzhou in China. Sustainable Cities and Society, 91, 104402. https://doi.org/10.1016/j.scs.2023.104402

Maragno, D., Dalla Fontana, M., & Musco, F. (2020). Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning. Sustainability, 12, 1056. https://doi.org/10.3390/su12031056

Ministry of Home Affairs (MHA). (2011). Census of India, 2011. The Registrar General & Census Commissioner, Government of India. https://www.censusindia.gov.in/2011common/census_2011.html

Mills, G., Ching, J., See, L., Bechtel, B., & Foley, M. (2015). An introduction to the WUDAPT project. In Proceedings of the 9th International Conference on Urban Climate (pp. 20–24).

Mohite, S., & Surawar, M. (2024). Assessing pedestrian thermal comfort to improve walkability in the urban tropical environment of Nagpur city. Geographica Pannonica, 28(1). https://doi.org/10.5937/gp28-48166

Nanda, L., Chakraborty, S., Mishra, S. K., Dutta, A., & Rathi, S. K. (2022). Characteristics of Households' Vulnerability to Extreme Heat: An Analytical Cross-Sectional Study from India. International journal of environmental research and public health, 19(22), 15334. https://doi.org/10.3390/ijerph192215334

National Disaster Management Authority (NDMA). (2019). National guidelines for preparation of action plan – Prevention and management of heat wave, 2019. Ministry of Home Affairs, Government of India. https://ndma.gov.in

Navarro-Estupiñan, J., Robles-Morua, A., Díaz-Caravantes, R., & Vivoni, E. R. (2020). Heat risk mapping through spatial analysis of remotely-sensed data and socioeconomic vulnerability in Hermosillo, México. Urban Climate, 31, 100576. https://doi.org/10.1016/j.uclim.2019.100576

Nayak, S. G., Shrestha, S., Kinney, P. L., Ross, Z., Sheridan, S. C., Pantea, C. I., … & Hwang, S. A. (2018). Development of a heat vulnerability index for New York State. Public Health, 161, 127–137. 10.1016/j.puhe.2017.09.006

Oke, T. R. (2004). Initial guidance to obtain representative meteorological observations at urban sites (IOM Report No. 81, WMO/TD-No. 1250, 47 pp.). World Meteorological Organization. https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81UrbanMetObs.pdf

Pascal, M., Lagarrigue, R., Tabai, A., Bonmarin, I., Camail, A., Laaidi, K., … & Denys, S. (2021). Evolving heat waves characteristics challenge heat warning systems and prevention plans. International Journal of Biometeorology, 65, 1683–1694. https://doi.org/10.1007/s00484-021-02123-y

Raja, D. R., Hredoy, M. S. N., Islam, M. K., Islam, K. M. A., & Adnan, M. S. G. (2021). Spatial distribution of heatwave vulnerability in a coastal city of Bangladesh. Environmental Challenges, 4, 100122. https://doi.org/10.1016/j.envc.2021.100122

Rathi, S. K., Chakraborty, S., Mishra, S. K., Dutta, A., & Nanda, L. (2021). A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India. International journal of environmental research and public health, 19(1), 283. https://doi.org/10.3390/ijerph19010283

Reckien, D. (2018). What is in an index? Construction method, data metric, and weighting scheme determine the outcome of composite social vulnerability indices in New York City. Regional Environmental Change, 18(5), 1439–1451. 10.1007/s10113-017-1273-7

Reid, C., O’Neill, M., Gronlund, C., Brines, S., Brown, D., Diez-Roux, A., & Schwartz, J. (2009). Mapping Community Determinants of Heat Vulnerability. Environmental Health Perspectives, 117(1). 10.1289/ehp.0900683

Ren, J., Yang, J., Zhang, Y., Xiao, X., Xia, J. C., Li, X., & Wang, S. (2022). Exploring thermal comfort of urban buildings based on local climate zones. Journal of Cleaner Production, 340, 130744. https://doi.org/10.1016/j.jclepro.2022.130744

Rinner, C., Patychuk, D., Bassil, K., Nasr, S., Gower, S., & Campbell, M. (2010). The Role of Maps in Neighborhood-level Heat Vulnerability Assessment for the City of Toronto. Cartography and Geographic Information Science, 37(1), 31–44. 10.1559/152304010790588089

Romero-Lankao, P., Qin, H., & Dickinson, K. (2012). Urban vulnerability to temperature-related hazards: A meta-analysis and meta-knowledge approach. Global Environmental Change, 22(3), 670-683. 10.1016/j.gloenvcha.2012.04.002

Runnalls, K. E., & Oke, T. R. (2006). A Technique to Detect Microclimatic Inhomogeneities in Historical Records of Screen-Level Air Temperature. Journal of Climate, 19, 959–978. https://doi.org/10.1175/JCLI3663.1

Santamouris, M. (2019). Recent Progress on Urban Overheating and Ηeat Island Research. Integrated Assessment of the Energy, Environmental, Vulnerability and Health Impact Synergies with the Global Climate Change. Energy and Buildings, 207(1), 109482. 10.1016/j.enbuild.2019.109482

Schmidtlein, M. C., Deutsch, R. C., Piegorsch, W. W., & Cutter, S. L. (2008). A Sensitivity Analysis of the Social Vulnerability Index. Risk Analysis, 28(4), 1099–1114. https://doi.org/10.1111/j.1539-6924.2008.01072.x

Sharma, J., & Ravindranath, N. H. (2019). Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environmental Research Communications, 1(5). 10.1088/2515-7620/ab24ed

Shih, W.-Y., & Mabon, L. (2021). Understanding heat vulnerability in the subtropics: Insights from expert judgements. International Journal of Disaster Risk Reduction, 63, 102463. https://doi.org/10.1016/j.ijdrr.2021.102463

Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. https://doi.org/10.1175/BAMS-D-11- 00019.1

Uejio, C. K., Wilhelmi, O. V., Golden, J. S., Mills, D. M., Gulino, S. P., & Samenow, J. P. (2011). Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health & Place, 17(2), 498–507. 10.1016/j.healthplace.2010.12.005

Verdonck, M. -L., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J., Schneider, A., Dewulf, R., & Van Coillie, F. (2018). The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data. Landscape and Urban Planning, 178, 183–197. https://doi.org/10.1016/j.landurbplan.2018.06.004

Verdonck, M. L., Okujeni, A., van der Linden, S., Demuzere, M., De Wulf, R., & Van Coillie, F. (2017). Influence of neighbourhood information on ‘Local Climate Zone’mapping in heterogeneous cities. International Journal of Applied Earth Observation and Geoinformation, 62, 102–113. 10.1016/j.jag.2017.05.017

Wehner, M., Stone, D., Krishnan, H., AchutaRao, K., & Castillo, F. (2016). The Deadly Combination of Heat and Humidity in India and Pakistan in Summer 2015. Bulletin of the American Meteorological Society, 97(12), 81–86. https://doi.org/10.1175/bams-d-16-0145.1

Wilhelmi, O. V., & Hayden, M. H (2010). Connecting people and place: a new framework for reducing urban vulnerability to extreme heat. Environmental Research Letters, 5(1), 014021. https://doi.org/10.1088/1748-9326/5/1/014021

Wolf, T., & McGregor, G. (2013). The development of a heat wave vulnerability index for London, United Kingdom. Weather and Climate Extremes, 1, 59–68. https://doi.org/10.1016/j.wace.2013.07.004

World Meteorological Organization. (2021). State of the global climate 2020 (WMO-No. 1264). World Meteorological Organization. https://library.wmo.int/doc_num.php?explnum_id=10618

Wouters, H., De Ridder, K., Poelmans, L., Willems, P., Brouwers, J., Hosseinzadehtalaei, P., … & Demuzere, M. (2017). Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophysical Research Letters, 44(17), 8997–9007. https://doi.org/10.1002/2017GL074889

Wu, J., Liu, C., & Wang, H. (2022). Analysis of Spatio-temporal patterns and related factors of thermal comfort in subtropical coastal cities based on local climate zones. Building and Environment, 207, 108568. https://doi.org/10.1016/j.buildenv.2021.108568

Zanter, K. (2016). Landsat 8 data users handbook. U.S. Geological Survey. https://landsat.usgs.gov/landsat-8-l8-data-users-handbook

Zhou, Y., Zhang, G., Jiang, L., Chen, X., Xie, T., Wei, Y., … & Lun, F. (2021). Mapping local climate zones and their associated heat risk issues in Beijing: Based on open data. Sustainable Cities and Society, 74(4), 103174. 10.1016/j.scs.2021.103174

Zou, Q., Yang, J., Zhang, Y., Bai, Y., & Wang, J. (2025). Variation in community heat vulnerability for Shenyang City under local climate zone perspective. Building and Environment, 267, 112242. https://doi.org/10.1016/j.buildenv.2024.112242

Zuhra, S. S., Tabinda, A. B., & Yasar, A. (2019). Appraisal of the heat vulnerability index in Punjab: a case study of spatial pattern for exposure, sensitivity, and adaptive capacity in megacity Lahore, Pakistan. International Journal of Biometeorology, 63(12). 10.1007/s00484-019-01784-0

Published
2025/07/03
Section
Original Research