Urban Stormwater Management with Rain Gardens – A Case Study of Kecskemét, Hungary

  • Edit Hoyk John von Neumann University, Faculty of Horticulture and Rural Development, Kecskemét, Hungary https://orcid.org/0000-0002-2956-8308
  • György Csomós University of Debrecen, Faculty of Engineering, Department of Civil Engineering, Debrecen, Hungary https://orcid.org/0000-0003-2487-4450
  • Krisztián Szórát Bács-Kiskun County Government Office, Agricultural and Rural Development Support Department, Kecskemét, Hungary
  • Jenő Zsolt Farkas ELTE Centre for Economic and Regional Studies, Great Plain Research Department, Kecskemét, Hungary https://orcid.org/0000-0002-4245-2908
Keywords: rain garden, stormwater, water retention, extreme precipitation, Hungary

Abstract


This research explores the potential benefits of rain gardens, a form of nature-based solutions (NbS) for urban stormwater management in Kecskemét, Hungary. An experimental rain garden was established using plants with varying drought tolerances to capture rainwater from a single-family house roof. This garden was monitored for a year to assess its rainwater retention capacity and observe plant development and survival. Concurrently, we identified areas within Kecskemét prone to flash floods from heavy rainfall, demarcating promising locations for rain garden conversion. Our primary goal was to identify applicable plant species and quantify how much rainfall could be retained in rain gardens. Our results show that drought-tolerant plants (e.g. Festuca amethystina, Festuca pallens glauca) perform better in the dry conditions typical of Kecskemét. Based on our calculation, the possible rainwater retention is about 1,500 m³, with 60 planned rain gardens. These findings suggest that the widespread urban application of rain gardens, as a nature-based solution, can significantly contribute to mitigating flash floods and enhancing urban resilience to extreme weather events.

References

Ashley, R. M., Balmforth, D. J., Saul, A. J., & Blanskby, J. D. (2005). Flooding in the future – predicting climate change, risks and responses in urban areas. Water Science and Technology, 52(5), 265–273. https://doi.org/10.2166/wst.2005.0142

Autixier, L., Mailhot, A., Bolduc, S., Madoux-Humery, A.-S., Galarneau, M., Prévost, M., & Dorner, S. (2014). Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of The Total Environment, 499, 238–247. https://doi.org/10.1016/j.scitotenv.2014.08.030

Boguniewicz-Zabłocka, J., & Capodaglio, A. G. (2020). Analysis of Alternatives for Sustainable Stormwater Management in Small Developments of Polish Urban Catchments. Sustainability, 12(23), 10189. https://doi.org/10.3390/su122310189

Bortolini, L., & Zanin, G. (2018). Hydrological behaviour of rain gardens and plant suitability: A study in the Veneto plain (north-eastern Italy) conditions. Urban Forestry & Urban Greening, 34, 121–133. https://doi.org/10.1016/j.ufug.2018.06.007

Bruner, S. G., Palmer, M. I., Griffin, K. L., & Naeem, S. (2023). Planting design influences green infrastructure performance: Plant species identity and complementarity in rain gardens. Ecological Applications, 33. https://doi.org/10.1002/eap.2902

Burszta-Adamiak, E., Biniak-Pieróg, M., Dąbek, P. B., & Sternik, A. (2023). Rain garden hydrological performance – Responses to real rainfall events. Science of The Total Environment, 887. https://doi.org/10.1016/j.scitotenv.2023.164153

Chaves, M. T. R., Rodrigues Moreira, J. G., Correia, K. P., Eloi, W. M., & Farias, T. R. L. (2025). Vegetation adaptability in a tropical urban rain garden: A study in northeast Brazil. Urban Forestry & Urban Greening, 107. https://doi.org/10.1016/j.ufug.2025.128810

City of New York. (2011). New York City Green Infrastructure Plan 2010. https://www.nyc.gov/assets/dep/downloads/pdf/water/stormwater/green-infrastructure/gi-annual-report-2011.pdf

Chen, C. F., Chen, Y. W., Lin, C. H., & Lin, J. Y. (2024). Field performance of 15 rain gardens in different cities in Taiwan. Science of The Total Environment, 947. https://doi.org/10.1016/j.scitotenv.2024.174545

Chen, C. F., Chen, Y. W., & Lin, J. Y. (2025). Rain gardens can be combined with urban planning strategies to increase urban resilience. Landscape and Ecological Engineering. https://doi.org/10.1007/s11355-025-00678-1

De Toffol, S., Laghari, A. N., & Rauch, W. (2009). Are extreme rainfall intensities more frequent? Analysis of trends in rainfall patterns relevant to urban drainage systems. Water Science and Technology, 59(9), 1769–1776. https://doi.org/10.2166/wst.2009.182

Doğmuşöz, B. B. (2024). Plant selection for rain gardens in temperate climates: The case of Izmir, Turkey. Journal of Design for Resilience in Architecture & Planning, 5(1), 18–34. https://doi.org/10.47818/DRArch.2024.v5i1117

Ge, M., Huang, Y., Zhu, Y., Kim, M., & Cui, X. (2023). Examining the Microclimate Pattern and Related Spatial Perception of the Urban Stormwater Management Landscape: The Case of Rain Gardens. Atmosphere, 14(7), 1138. https://doi.org/10.3390/atmos14071138

Greksa, A., Blagojević, B., & Grabić, J. (2023). Nature-based Solutions in Serbia: Implementation of Rain Gardens in the Suburban Community Kać. Environmental Processes, 10(3). https://doi.org/10.1007/s40710-023-00659-2

Gulshad, K., Szydłowski, M., Yaseen, A., & Aslam, R. W. (2024). A comparative analysis of methods and tools for low impact development (LID) site selection. Journal of Environmental Management, 354. https://doi.org/10.1016/j.jenvman.2024.120212

Herrera, J., Bonilla, C. A., Castro, L., Vera, S., Reyes, R., & Gironás, J. (2017). A model for simulating the performance and irrigation of green stormwater facilities at residential scales in semiarid and Mediterranean regions. Environmental Modelling & Software, 95, 246–257. https://doi.org/10.1016/j.envsoft.2017.06.020

HungaroMet. (2024). Changes in precipitation extremes.

https://www.met.hu/eghajlat/eghajlatvaltozas/megfigyelt_hazai_valtozasok/homerseklet_es_csapadektrendek/csapadek_szelsosegek/

Hou, J., Liu, F., Tong, Y., Guo, K., Ma, L., & Li, D. (2020). Numerical simulation for runoff regulation in rain garden using 2D hydrodynamic Model. Ecological Engineering, 153, 105794. https://doi.org/10.1016/j.ecoleng.2020.105794

Ishimatsu, K., Ito, K., Mitani, Y., Tanaka, Y., Sugahara, T., & Naka, Y. (2016). Use of rain gardens for stormwater management in urban design and planning. Landscape and Ecological Engineering, 13(1), 205–212. https://doi.org/10.1007/s11355-016-0309-3

Jiang, Y., Yuan, Y., & Piza, H. (2015). A Review of Applicability and Effectiveness of Low Impact Development/Green Infrastructure Practices in Arid/Semi-Arid United States. Environments, 2(2), 221–249. https://doi.org/10.3390/environments2020221

Jiang, Y., Zevenbergen, C., & Ma, Y. (2018). Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environmental Science & Policy, 80, 132–143. https://doi.org/10.1016/j.envsci.2017.11.016

Kasprzyk, M., Szpakowski, W., Poznańska, E., Boogaard, F. C., Bobkowska, K., & Gajewska, M. (2022). Technical solutions and benefits of introducing rain gardens – Gdańsk case study. Science of The Total Environment, 835, 155487. https://doi.org/10.1016/j.scitotenv.2022.155487

Kecskemét Megyei Jogú Város. (2020). Környezetvédelmi Programja és Cselekvési Terve 2020–2025 [Environmental Protection Programme and Action Plan of the City of Kecskemét 2020–2025]. Kecskemét. https://kecskemet.hu/uploaded_files/files/document/2022-02/Kecskem%C3%A9t_MJV_K%C3%B6rnyezetv%C3%A9delmi_Program_%C3%A9s_Cselekv%C3%A9si_Terve_2020-2025.pdf

Kecskemét Megyei Jogú Város. (2021). Kecskemét Megyei Jogú Város Klímastratégiája [Climate Strategy of the City of Kecskemét]. https://kecskemet.hu/uploaded_files/files/document/2022-02/Kecskem%C3%A9t_MJV_Kl%C3%ADmastrat%C3%A9gi%C3%A1ja.pdf

Kelly, D., Wilson, K., Kalaichelvam, A., & Knott, D. (2020). Hydrological and planting design of an experimental raingarden at the Royal Botanic Garden Edinburgh. Sibbaldia: The International Journal of Botanic Garden Horticulture, (19), 69–84. https://doi.org/10.24823/sibbaldia.2020.298

KSH [Központi Statisztikai Hivatal (Central Statistical Office)]. (2024). Weather data by meteorological station, 2024. Available at: https://www.ksh.hu/stadat_files/kor/hu/kor0056.html

Laukli, K., Gamborg, M., Haraldsen, T. K., & Vike, E. (2022). Soil and plant selection for rain gardens along streets and roads in cold climates: Simulated cyclic flooding and real-scale studies of five herbaceous perennial species. Urban Forestry & Urban Greening, 68, 127477. https://doi.org/10.1016/j.ufug.2022.127477

Liao, K. H., Deng, S., & Tan, P. Y. (2017). Blue-green infrastructure: New frontier for sustainable urban stormwater management. In P. Y. Tan & C. Y. Jim (Eds.), Greening cities (pp. 203–226). Springer. https://doi.org/10.1007/978-981-10-4113-6_10

Liu, L., Fryd, O., & Zhang, S. (2019). Blue-Green Infrastructure for Sustainable Urban Stormwater Management—Lessons from Six Municipality-Led Pilot Projects in Beijing and Copenhagen. Water, 11(10), 2024. https://doi.org/10.3390/w11102024

Löschner, L., Herrnegger, M., Apperl, B., Senoner, T., Seher, W., & Nachtnebel, H. P. (2016). Flood risk, climate change and settlement development: a micro-scale assessment of Austrian municipalities. Regional Environmental Change, 17(2), 311–322. https://doi.org/10.1007/s10113-016-1009-0

Luo, P., Mu, D., Xue, H., Ngo-Duc, T., Dang-Dinh, K., Takara, K., … Schladow, G. (2018). Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30024-5

Makó, A., Tóth, B., Hernádi, H., Farkas, Cs., & Marth, P. (2010). Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions. Agrokémia És Talajtan, 59(1), 29–38. https://doi.org/10.1556/agrokem.59.2010.1.4

Nguyen, T. T., Ngo, H. H., Guo, W., Wang, X. C., Ren, N., Li, G., Ding, J., Liang, H. (2019). Implementation of a specific urban water management - Sponge City. Science of The Total Environment, 652, 147–162. https://doi.org/10.1016/j.scitotenv.2018.10.168

O’Donnell, E. C., Lamond, J. E., & Thorne, C. R. (2017). Recognising barriers to implementation of Blue-Green Infrastructure: a Newcastle case study. Urban Water Journal, 14(9), 964–971. https://doi.org/10.1080/1573062x.2017.1279190

O’Hogain, S., & McCarton, L. (2018). Nature-based solutions. In A technology portfolio of nature-based solutions (pp. 1–9). Springer. https://doi.org/10.1007/978-3-319-73281-7_1

Osheen, & Singh, K. K. (2019). Rain garden—A solution to urban flooding: A review. In Rain gardens (pp. 27–35). Springer Singapore. https://doi.org/10.1007/978-981-13-6717-5_4

Papagiannaki, K., Kotroni, V., Lagouvardos, K., Ruin, I., & Bezes, A. (2017). Urban Area Response to Flash Flood–Triggering Rainfall, Featuring Human Behavioral Factors: The Case of 22 October 2015 in Attica, Greece. Weather, Climate, and Society, 9(3), 621–638. https://doi.org/10.1175/wcas-d-16-0068.1

Rosenberger, L., Leandro, J., Pauleit, S., & Erlwein, S. (2021). Sustainable stormwater management under the impact of climate change and urban densification. Journal of Hydrology, 596, 126137. https://doi.org/10.1016/j.jhydrol.2021.126137

Siwiec, E., Erlandsen, A. M., & Vennemo, H. (2018). City Greening by Rain Gardens - Costs and Benefits. Ochrona Srodowiska i Zasobów Naturalnych, 29(1), 1–5. https://doi.org/10.2478/oszn-2018-0001

Suleiman, L., Olofsson, B., Saurí, D., & Palau-Rof, L. (2020). A breakthrough in urban rain-harvesting schemes through planning for urban greening: Case studies from Stockholm and Barcelona. Urban Forestry & Urban Greening, 51, 126678. https://doi.org/10.1016/j.ufug.2020.126678

Tang, S., Luo, W., Jia, Z., Liu, W., Li, S., & Wu, Y. (2015). Evaluating Retention Capacity of Infiltration Rain Gardens and Their Potential Effect on Urban Stormwater Management in the Sub-Humid Loess Region of China. Water Resources Management, 30(3), 983–1000. https://doi.org/10.1007/s11269-015-1206-5

Tokarczyk-Dorociak, K., Walter, E., Kobierska, K., & Kołodyński, R. (2017). Rainwater Management in the Urban Landscape of Wroclaw in Terms of Adaptation to Climate Changes. Journal of Ecological Engineering, 18(6), 171–184. https://doi.org/10.12911/22998993/76896

Vaculová, V., & Štěpánková, R. (2017). Application of Rain Gardens to an Urban Area – Housing Estate in Nitra, Slovakia. Acta Horticulturae et Regiotecturae, 20(1), 1–5. https://doi.org/10.1515/ahr-2017-0001

Wang, Y., Jiang, Z., & Zhang, L. (2022). Sponge City Policy and Sustainable City Development: The Case of Shenzhen. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.772490

Zaręba, A., Krzemińska, A., Adynkiewicz-Piragas, M., Widawski, K., van der Horst, D., Grijalva, F., & Monreal, R. (2022). Water Oriented City—A ‘5 Scales’ System of Blue and Green Infrastructure in Sponge Cities Supporting the Retention of the Urban Fabric. Water, 14(24), 4070. https://doi.org/10.3390/w14244070

Zhang, J., Fu, D., & Zevenbergen, C. (2022). Moving towards water sensitive cities: A planning framework, underlying principles, and technologies—Case study Kunshan Sponge City. In Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-819166-8.00185-7

Zhang, L., Oyake, Y., Morimoto, Y., Niwa, H., & Shibata, S. (2019). Rainwater storage/infiltration function of rain gardens for management of urban storm runoff in Japan. Landscape and Ecological Engineering, 15(4), 421–435. https://doi.org/10.1007/s11355-019-00391-w

Zhang, L., Oyake, Y., Morimoto, Y., Niwa, H., & Shibata, S. (2020). Flood mitigation function of rain gardens for management of urban storm runoff in Japan. Landscape and Ecological Engineering, 16(3), 223–232. https://doi.org/10.1007/s11355-020-00409-8

Zevenbergen, C., Fu, D., & Pathirana, A. (2018). Transitioning to Sponge Cities: Challenges and Opportunities to Address Urban Water Problems in China. Water, 10(9), 1230. https://doi.org/10.3390/w10091230

Published
2025/12/18
Section
Original Research