Human Thermal Load of Cfb Climate Summer Weather Based on the Concept of Required Skin Evaporation
Abstract
We analyzed the human thermal load of summer weather in the Cfb climate based on the results of a new model based on the human body energy balance equation and the skin surface evaporation gradient formula. The active surface of the model is the skin surface, the person is lying in a resting position, its skin type is Fitzpatrick skin type IV. For that purpose, longitudinal research method was performed in 2022 in Martonvásár, Hungary (East-Central Europe), comprising 331 observations in which weather conditions and thermal sensation types were recorded simultaneously. The main observation is that in warm climates and/or weather situations, the amount of thermal load can be very simply characterized by latent heat flux density values of the skin evaporation. From a human point of view, the most important characteristics of summer weather in the Cfb climate are as follows: 1) The latent heat flux density of skin surface evaporation varied between 10 and 300-350 Wm-2, while the operative temperature ranged between 25 °C and 80 °C. 2) The relationship between skin surface evaporative resistance and operative temperature can be characterized by an exponential function. In cases of thermal sensation type "neutral", skin surface evaporative resistance values are mostly above 0.5 hPa·m2·W-1. Observations made by people with different skin types are essential to generalize the results.
References
Ács, F. (2024). On the Comparison of Generic and Human-based Climate Classification Methods. Research Advances in Environment, Geography and Earth Science, 7, 64–78. https://doi.org/10.9734/bpi/raeges/v7/1631
Ács, F., Kristóf, E., & Zsákai, A. (2025) (in press). Human thermal load of foggy and cloudless mornings in the cold season. Geofizika, 42.
Ács, F., Zsákai, A., Kristóf, E., Szabó, A. I., & Breuer, H. (2020). Carpathian Basin climate according to Köppen and a clothing resistance scheme. Theoretical and Applied Climatology, 141, 299–307. https://doi.org/10.1007/s00704-020-03199-z
Ács, F., Zsákai, A., Kristóf, E., Szabó, A.I., & Breuer, H. (2022). Individual local human thermal climates in the Hungarian lowland: Estimations by a simple clothing resistance-operative temperature model. International Journal of Climatology, 43(3), 1273–1292. https://doi.org/10.1002/joc.7910
Basarin, B., Lukić, T., & Matzarakis, A. (2020). Review of Biometeorology of Heatwaves and Warm Extremes in Europe. Atmosphere, 11(12), 1276. https://doi.org/10.3390/atmos11121276
Bátori, L. (2022). Examination of the impact of climate change on sport on the example of the heat index. In International Conference National Higher Education Environmental Science Student Conference, June 3-5, Shanghai.
Błażejczyk, K., Baranowski, J., Jendritzky, G., Błażejczyk, A., Bröde, P., & Fiala, D. (2015). Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification. Geographia Polonia, 88, 439–453. 10.7163/GPol.0027
Bokros, K., & Lakatos, M. (2022). Analaysis of hot spells in Budapest from the early 20th century to the present. Légkör, 67(4), 208–218. (in Hungarian)
Boras, M., Herceg-Bulić, I., Zgela, M., & Nimac, I. (2022). Temperature characteristics and heat load in the City of Dubrovnik. Geofizika, 39(2), 259–279. https://doi.org/10.15233/gfz.2022.39.16.
Brunt, D. (1932). Notes on radiation in the atmosphere. Quaterly Journal of Royal Meteorological Society, 58(247), 389–420.10.1002/qj.49705824704.
Campbell, G. S., & Norman, J. M. (1997). An introduction to environmental biophysics (2nd ed.). Springer.
Enescu, D. (2019). Models and Indicators to Assess Thermal Sensation under Steady-State and Transient Conditions. Energies, 12(5), 841. https://doi.org/10.3390/en12050841
Fanger, P. O. (1970). Thermal comfort: Analysis and applications in environmental engineering. Danish Technical Press.
Fitzpatrick, T. B. (1975). "Soleil et peau" [Sun and skin]. Journal de Médecine Esthétique (in French), 2, 33–34.
Fouilett, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S., Guihenneuc-Jouyaux, C., Clavel, J. Jougla, & E. Hemon D. (2006). Excess mortality related to ´ the August 2003 heat wave in France. International Archives of Occupational and Environmental Health, 80(1), 16–24.
Gulyás, Á. & Matzarakis, A. (2009). Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary. Időjárás, 113(3), 221–231.
Hantel, H., & Haimberger, L. (2016). Grundkurs Klima. Springer Spektrum. https://doi.org/10.1007/978-3-662-48193-6
ISO 8996. (2004). Ergonomics of the thermal environment – Determination of metabolic rate (2nd ed.). International Organization for Standardization.
Khosla, R., & Guntupalli, K.K. (1999). Heat-related illnesses. Crit Care Clin, 15(2), 251–263. 10.1016/s0749-0704(05)70053-1
Konzelmann, T., van de Wal, R. S., Greuell, W., Bintanja, R., & Henneken, E. A. (1994). Abe-Ouchi, A. Parameterization of global and longwave incoming radiation for the Greenland Ice Sheet. Global Planetary Change, 9(1-2), 143–164. 10.1016/0921-8181(94)90013-2
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger classification updated. Meteorologische. Zeitschrift, 15(3), 259–263.
Kovács, A., Németh, Á., Unger, J., & Kántor, N. (2017). Tourism climatic conditions of Hungary – present situation and assessment of future changes. Időjárás, 121(1), 79–99.
Köppen, W. (1900). Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geographische Zeitschrift, 6(11), 593–611.
Köppen, W. (1936). Das geographische System der Klimate. Gebrüder Borntraeger.
Matzarakis, A., & Gulyás, Á. (2006). A contribution to the thermal bioclimate of Hungary: Mapping of the physiologically equivalent temperature. In A. Kiss, G. Mezősi, & Z. Sümeghy (Eds.), Landscape, environment and society: Studies in honour of professor Ilona Bárány-Kevei on the occasion of her birthday (pp. 479–488). University of Szeged.
Matzarakis, A., Rudel, E., Zygmuntowski, M., & Koch, E. (2005). Thermal Human Bioclimate Conditions for Austria and the Alps. Croatian Meteorological Journal, 40, 190–193.
Megyeri-Korotaj, O.A., Bán, B., Suga, R., Allaga-Zsebeházi, G., & Szépszó, G. (2023). Assessment of Climate Indices over the Carpathian Basin Based on ALADIN5.2 and REMO2015 Regional Climate Model Simulations. Atmosphere, 14, 448, https://doi.org/10.3390/
Mieczkowski, Z.T. (1985). The tourism climatic index: a method of evaluating world climates for tourism. Canadian Geographic, 29, 220–233.
Mohan, M., Gupta, A. & Bhati, S. (2014). A modified approach to analyse thermal comfort classification. Atmospheric and Climate Sciences, 4, 7–19. 10.4236/acs.2014.41002
Monteith, J. L. (1965). Evaporation and environment. In Proceedings of the 19th Symposium of the Society for Experimental Biology (pp. 205–236). Cambridge University Press.
Nielsen, K. P., Zhao, L., Stamnes, J. J., Stamnes, K., & Moan, J. (2008). The optics of human skin: Aspects important for human health. In E. Bjertnes (Ed.), Solar radiation and human health (pp. 35–46). The Norwegian Academy of Science and Letters.
Páldy, A., Bobvos, J., & Málnási, T. (2018). The impact of climate change on human health and health care system in Hungary. Magyar Tudomány, 179(9), 1336–1348. 10.1556/2065.179.2018.9.7
Parsons, K. C. (2003). Human thermal environments (2nd ed.). Taylor & Francis.
Parsons, R. A. (1997). Evaporative heat loss from skin. In 1997 ASHRAE Handbook (Chapter 8: Thermal Comfort, p. 8.3). Frank M. Coda.
Potchter, O., Cohen, P., Lin, T.P., & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: a comprehensive review of approaches, methods and quantification. Science of The Total Environment, 631–632, 390–406. 10.1016/j.scitotenv.2018.02.276
von Humboldt, A. (1845). Kosmos: Entwurf einer physischen Weltbeschreibung [Cosmos: A sketch of the physical description of the universe] (in German). Cotta.
Yang, S.Q., & Matzarakis, A. (2016). Implementation of human thermal comfort information in Köppen-Geiger climate classification— the example of China. International Journal of Biometeorology, 60, 1801–1805. 10.1007/s00484-016-1155-6
