When Ungauged Micro-Watersheds Conceal Danger: A Morphometric and Morphodynamic Analysis of Flood Risk. Case Study: The City of Aïn M’lila, Algeria
Abstract
Extreme weather events-particularly episodes of intense rainfall-are increasingly disrupting hydrological regimes and triggering frequent, destructive floods, especially in urban environments. These floods have severe repercussions on populations, infrastructure, and economic activities. While large river basins are typically monitored and extensively studied, small ungauged urban catchments remain poorly documented despite their critical role in generating localized hydrological hazards. This study focuses on a small ungauged watershed located in Aïn M’lila (northeastern Algeria), which experiences recurrent flash floods that frequently lead to urban inundation. In the absence of hydrological instrumentation, the objective is to generate insight into the watershed’s hydrological functioning and the associated geomorphological impacts using alternative, integrative methods. The approach combines morphometric analysis, a morphodynamic reading of surface flow dynamics, and targeted field observations of flood traces and erosion patterns. This methodological framework offers a more precise characterization of the watershed’s specific features, enhances understanding of its behavior during extreme rainfall events, and provides a transferable basis for flood risk assessment in other similarly data-scarce urban contexts. This study contributes in three concrete ways: (1) by demonstrating a reproducible workflow that integrates 30 m DEM-based morphometry with field-scale morphodynamic observations for ungauged urban micro-watersheds; (2) by providing quantified morphometric metrics linked to hydrological response indicators (e.g., drainage density, time of concentration) and interpreting their physical meaning for flash-flood generation; and (3) by combining spatial evidence with participatory survey data to inform practical recommendations for low-cost monitoring and urban planning interventions.
References
Achite, M., Katipoğlu, O. M., Jehanzaib, M., Elshaboury, N., Kartal, V., & Ali, S. (2023). Hydrological drought prediction based on hybrid extreme learning machine: Wadi Mina Basin Case Study, Algeria. Atmosphere, 14(9), 1447. https://doi.org/10.3390/atmos14091447
Alam, A., Ahmed, B., & Sammonds, P. (2021). Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International, 575, 295–307. https://doi.org/10.1016/j.quaint.2020.04.047
Benzougagh, B., Dridri, A., Boudad, L., Sdkaoui, D., & Baamar, B. (2019). Apport des SIG et télédétection pour l’évaluation des caractéristiques physiques du bassin versant d’oued Inaouene (Nord-Est Maroc) et leurs utilités dans le domaine de la gestion des risques naturels. American Journal of Innovative Research and Applied Sciences, 8(4), 120–130.
Bouchachou, A. (2023). Morphodynamic reading of hydrological risks in small urban catchments: The case of Ain M’lila (Algeria) (Master’s thesis, University of Larbi Ben M’hidi, Oum El Bouaghi).
Bravard, J. P., & Petit, F. (2000). Les cours d'eau : Dynamique du système fluvial. Collection U.
Elahcene, O., Terfous, A., Remini, B., Ghenaim, A., & Poulet, J. B. (2013). Etude de la dynamique sédimentaire dans le bassin versant de l'Oued Bellah (Algérie). Hydrological Sciences Journal, 58(1), 224–236. 10.1080/02626667.2012.742530
Garzon, L. F. L., Johnson, M. F., Mount, N., & Gomez, H. (2023). Exploring the effects of catchment morphometry on overland flow response to extreme rainfall using a 2D hydraulic-hydrological model (IBER). Journal of Hydrology, 627, 130405. https://doi.org/10.1016/j.jhydrol.2023.130405
Ghaleno, M. R. D., Meshram, S. G., & Alvandi, E. (2020). Pragmatic approach for prioritization of flood and sedimentation hazard potential of watersheds. Soft Computing, 24(20), 15701–15714. https://doi.org/10.1007/s00500-020-04899-4
Gravelius, H. (1914). Grundriß der gesamten Gewässerkunde. Band 1: Flußkunde [Compendium of hydrology]. Göschen.
Hamad, R. (2020). Multiple morphometric characterization and analysis of Malakan valley drainage basin using GIS and remote sensing, Kurdistan Region, Iraq. American Journal of Water Resources, 8(1), 38–47. 10.12691/ajwr-8-1-5
Horton, R. E. (1945). Erosional development of streams and their drainage density: A hydrophysical approach to quantitative geomorphology. Geological Society of America Bulletin, 56, 275–370.
IPCC. (2021). Chapter 8: Water cycle changes. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-8/
Jakubínský, J., Bácová, R., Svobodová, E., Kubíček, P., & Herber, V. (2014). Small watershed management as a tool of flood risk prevention. Proceedings of the International Association of Hydrological Sciences, 364, 243–248. https://doi.org/10.5194/PIAHS-364-243-2014
Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and RemoteSensing, 54(11), 1593–1600.
Jourgholami, M., Karami, S., Tavankar, F., Lo Monaco, A., & Picchio, R. (2020). Effects of slope gradient on runoff and sediment yield on machine-induced compacted soil in temperate forests. Forests, 12(1), 49. https://doi.org/10.3390/f12010049
Lei, W., Dong, H., Chen, P., Lv, H., Fan, L., & Mei, G. (2020). Study on runoff and infiltration for expansive soil slopes in simulated rainfall. Water, 12(1), 222. https://doi.org/10.3390/w12010222
Mashauri, F., Mbuluyo, M., & Nkongolo, N. (2023). Influence des paramètres hydro-morphométriques sur l’écoulement des eaux des sous-bassins versants de la Tshopo, République Démocratique du Congo. Revue Internationale de Géomatique, 32, 79–98. https://doi.org/10.32604/RIG.2023.044124
Meddi, M., Talia, A., & Martin, C. (2009). Évolution récente des conditions climatiques et des écoulements sur le bassin versant de la Macta (Nord-Ouest de l'Algérie). Physio-Géo. Géographie physique et environnement, 3, 61–84.
Merheb, M., Moussa, R., Abdallah, C., Colin, F., Perrin, C., & Baghdadi, N. (2016). Hydrological response characteristics of Mediterranean catchments at different time scales: A meta-analysis. Hydrological Sciences Journal, 61(14), 2520–2539. https://doi.org/10.1080/02626667.2016.1140174
Ministère des Forêts, de la Faune et des Parcs (MFFP), Québec. (2018). Guide de réalisation d’aménagements durables en forêt privée – Annexe 6 : Méthodes de calcul des débits de pointe. https://mffp.gouv.qc.ca
Nait-Si, H., Nmiss, M. H., Benbih, M., Boukdoun, A., & Ouammou, A. (2025). Impact des caractéristiques hydro-morphométriques sur la réponse hydrologique du bassin versant de l'oued Adoudou (Anti-Atlas occidental, Maroc) [Impact of hydro-morphometric characteristics on the hydrological response of the Oued Adoudou watershed (Western Anti-Atlas, Morocco)]. Revista de Estudios Andaluces, 50, 185–217. https://doi.org/10.12795/rea.2025.i50.09
Obeidat, M., Awawdeh, M., & Al‐Hantouli, F. (2021). Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk Management, 14(2), e12711. https://doi.org/10.1111/jfr3.12711
Özcan, Z., Trinh, T., Kavvas, M. L., & Alp, E. (2025). Assessment of climate change for predicting water–energy–food–ecosystem nexus vulnerability in a semi-arid basin. Journal of Water and Climate Change, 16(2), 712–735. https://doi.org/10.2166/wcc.2024.703
Seethapathi, P. V., Dutta, D., & Kumar, R. S. (Eds.). (2008). Hydrology of small watersheds. TERI Press.
Shekar, P. R., & Mathew, A. (2024). Morphometric analysis of watersheds: A comprehensive review of data sources, quality, and geospatial techniques. WatershedEcology and the Environment, 6, 13–25. https://doi.org/10.1016/j.wsee.2023.12.001
Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038i006p00913
Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology (pp. 439–476). McGraw-Hill.
Topography Platform. (2023). Données MNT 30m. https://www.topography.com
Tramblay, Y., & Somot, S. (2018). Future evolution of extreme precipitation in the Mediterranean. Climatic Change, 151(2), 289-302. https://doi.org/10.1007/s10584-018-2300-5
Vaze, J., & Teng, J. (2007). Impact of DEM resolution on topographic indices and hydrological modelling results. In MODSIM 2007 International Congress on Modelling and Simulation.
World Bank. (2020). Adaptation to climate change in the Middle East and North Africa (MENA) region. https://www.worldbank.org/en/topic/climatechange/publication/adaptation-to-climate-change-in-mena
