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Abstract: The focus of this paper is on a comprehensive analysis of different 

methods and mathematical techniques used for solving optimal control 

problems (OCP) in growth theory. Most important methods for solving 

dynamic non-linear infinite-horizon growth models using optimal control theory 

are presented and a critical view of the limitations of different methods is 

given. The main problem is to determine the optimal rate of growth over time 

in a way that maximizes the welfare function over an infinite horizon. The 

welfare function depends on capital-labor ratio, the state variable, and the per-

capita consumption, the control variable. Numerical methods for solving OCP 

are divided into two classes: direct and indirect approach. How the indirect 

approach can be used is given in the example of the neo-classical growth 

model. In order to present the indirect and the direct approach simultaneously, 

two endogenous growth models, one written by Romer and another by Lucas 

and Uzawa, are studied. Advantages and efficiency of these different 

approaches will be discussed. Although the indirect methods for solving OCP 

are still the most expanded in growth theory, it will be seen that using direct 

methods can also be very efficient and help to overcome problems that can 

occur by using the indirect approach.  
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Ograničenja u primeni direktnih i indirektnih metoda za 

rešavanje problema optimalne kontrole u teoriji rasta 

Apstrakt: Fokus ovog članka je na detaljnoj i sveobuhvatnoj analizi glavnih 
metoda i matematičkih tehnika koje se koriste za rešavanje problema 
optimalne kontrole u teoriji rasta. Dat je pregled najvažnijih metoda za 
rešavanje dinamičkih nelinearnih modela rasta koristeći optimalnu kontrolu, 
kao i kritički osvrt na njihova ograničenja. Osnovni problem koji treba rešiti 
ovim pristupom je određivanje optimalne stope rasta tokom vremena na način 
koji maksimizira funkciju blagostanja u beskonačnom vremenskom periodu. 
Funkcija blagostanja zavisi od koeficijenta kapitalne opremljenosti rada 
(promjenljive stanja) i od potrošnje po glavi stanovnika (kontrolne 
promjenljive). Numeričke metode za rešavanje problema optimalne kontrole 
su podeljene u dve klase: direktni i indirektni pristup. Na primjeru 
neoklasičnog modela rasta dat je prikaz indirektnog pristupa. Kako bi se 
predstavio istovremeno indirektni i direktni pristup, u radu će biti data i 
primena ovih metoda kod dva endogena modela: Romerov i Lucas-Uzawa 
model. Biće date prednosti i efikasnost jedne metode u odnosu na drugu. Iako 
se indirektne metode za rešavanje problema optimalne kontrole u ovoj oblasti 
i dalje najviše upotrebljavaju u praksi, biće viđeno da primjena direktnih 
metoda može biti vrlo efikasna i korisna u prevazilaženju problema koji se 
mogu javiti kod indirektnog pristupa. 

Ključne reči: optimalna kontrola, direktne i indirektne metode, teorija rasta  

1. Introduction 

Optimal control theory, as an extension of the calculus of variations, 

represents a modern approach to dynamic optimization. Because of the 

complexity of most applications, optimal control problems are most often 

solved numerically. Numerical methods for solving optimal control problems 

date back to the 1950s and the work of Bellman (1957). Since the complexity 

and variety of applications has increased over the last decades, the 

complexity of methods in optimal control increased as well, such that optimal 

control theory has become a discipline that is important to many branches of 

economics. Its principal applications in economics are in financial economics, 

dynamic macroeconomic theory and resource economics. In particular, 

optimal control theory has been applied in growth theory since the article of 

Arrow (1968) and later in both exogenous and endogenous growth models 

such as Ramsey (1928), Solow (1956), Uzawa (1965), Lucas (1988) and 
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Romer (1994). Optimal control techniques and the economic interpretation 

have been discussed by authors such as Arrow and Kurz (1970), Aghion and 

Howitt (1998), Barro and Sala-i-Martin (2003), Cass (1965), Chiang (1992), 

Dixit (1990), Dorfman (1969), Intrilligator (1971), Kamien and Schwartz 

(1991), Koopmans (1963) and others. Since the same principles are applied 

to the new growth models as to the neoclassical growth model, there is a 

great literature as an introduction to optimal control techniques (cf. Acemoglu 

(2007), Aseev (2009)). 

The study of these dynamic growth models follows a usual procedure, which 

is to apply Pontryagin's Maximum Principle and to obtain the necessary 

optimality conditions, together with the transversality condition. If the initial 

values for the state variables are defined, it will give us a complete description 

of the system, enough to explain the economy around its steady state. This 

formulation gives rise to a system of nonlinear differential equations 

describing the economy. Nonlinearity usually arises from the diminishing 

marginal utility of consumption and from the diminishing marginal productivity 

of the factors of production, but can also be the result of incorporating R&D 

(Williams and Jones, 1995) or government spending (Barro, 1990). 

Nonlinearity in the production and utility functions and saddle path stability, 

can influence the analysis of the transitional dynamics after a structural 

change or a policy shock, as (Atolia, Chatterjee, & Turnovsky, 2008) point out. 

One way to overcome this problem would be to linearize the dynamic system 

around its (post-shock) steady state and then to study this linearized, hence 

simplified, version of the dynamic system as an analogue to the original 

nonlinear one. But linearization can potentially be fallacious as Wolman and 

Couper (2003) noticed. Nevertheless, linearization is still the principal method 

used in the growth literature. Consequently, there were some numerical 

methods that tried to overcome this problem of linearization such as the 

projection method (Judd, 1992), the discretization method (Mercenier & 

Michel, 1994), the shooting method (Judd, 1998), the time elimination method 

(Mulligan & Sala-i Martin, 1991), the backward integration procedure (Brunner 

& Strulik, 2002) and the relaxation procedure (Trimborn, Koch, & Steger, 

2004). 

All of these numerical methods, together with the linearization, rely on indirect 

methods to solve the OCP of the growth model. According to Betts (2001), 

indirect methods can sometimes be difficult to apply and the necessary 

optimality conditions might be hard to determine explicitly. Economic models 
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are usually formulated with this in mind and sometimes simplicity is imposed 

onto them so that an analytical solution can be found, which is not always the 

case. 

As opposed to indirect methods, the direct methods solve the OCP in a way 

that the OCP is first discretized and then optimized. More precisely, the direct 

approach uses the following procedure: the first step is to transcribe the 

infinite horizon problem into a finite dimensional problem, the second is to 

prove that this nonlinear programming problem (NLP) is equivalent 

representation of the original and finally an advanced NLP solver will be used 

to find the optimal trajectories.  

Hypothesis that will be verified in this paper is the following: indirect methods 

for solving OCP provide better insight into the core of the optimization process 

in the theory of economic growth, but are sometimes very difficult to solve. 

The following will be verified as well: direct methods seem to be more 

efficient, but the process of discretization (transcription of the infinite horizon 

problem into a finite dimensional problem) of the OCP into a NLP, can be 

quite artificial and sometimes hard to prove. 

The plan will be as follows. Section 2 gives a brief introduction on optimal 

control theory. The study of the neoclassical growth model (with and without 

technological progress) using the indirect approach will be surveyed in 

Section 3. Section 4 deals with the endogenous growth model by Romer but 

still using the indirect approach. The final section is devoted to the direct 

approach, which first discretizes and then optimizes the OCP. This method is 

used for the endogenous growth model by Lucas and Uzawa. The focus of 

this survey is on the main methods and mathematical techniques used for 

solving OCP in growth theory and not to give an extensive list to relevant work 

in the open literature.  

2. On optimal control 

Optimal control theory is a modern approach to dynamic optimization, with the 

initial work of Lev Pontryagin and his collaborators (Pontryagin, Boltyanskii, 

Gamkrelidze, & Mishchenko, 1962) as well as Richard Bellman (Bellman, 

1957). In optimal control theory the aim is to find the optimal path for control 

variables without being constrained to interior solutions, even if it still relies on 

differentiability of functions that enter in the problem. The approach differs 

from calculus of variations in the fact that it uses control variables to optimize 
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the functional, and not state variables. Once the optimal path or value of the 

control variables is found, the solution to the state variables, or the optimal 

paths for the state variables are derived. There is a large choice in the 

literature on optimal control theory (Kirk (2004), Sethi and Thomson (2003), 

Bryson and Ho (1975)).   

In order to solve optimal control problems, numerical methods that are used 

are divided into two major classes: direct and indirect methods (cf. Rao 

(2009), Sargent (2000)). In an indirect method, the calculus of variations is 

used to determine the first-order optimality conditions of the optimal control 

problem. Unlike ordinary calculus (where the objective is to determine points 

that optimize a function), the calculus of variations is the subject of 

determining functions that optimize a function of a function (also known as 

functional optimization). Applying the calculus of variations to the OCP leads 

to the first-order necessary conditions for the original optimal control problem. 

This approach will lead to a two-point (or even multiple-point) boundary value 

problem. Then, this problem will be solved in order to determine possible 

optimal trajectories and examine each of them to see if it is a local minimum, 

maximum, or a saddle point. From the locally optimizing solutions, the 

particular trajectory with the lowest cost is chosen. In a direct method, the 

state and/or control of the optimal control problem will be discretized in some 

manner in order to rewrite the problem to a nonlinear optimization problem or 

nonlinear programming problem (NLP). The NLP is then solved using well 

known optimization techniques (cf. (Gill, Murray, & Saunders, 2005), (Gill, 

Murray, Saunders & Wong, 2015), Betts (2001)). 

Direct and indirect methods come from two different philosophies. On the one 

hand, the indirect approach solves the problem indirectly by converting the 

optimal control problem to a boundary value problem. Therefore, the optimal 

solution is indeed the solution of a system of differential equations that 

satisfies endpoint and/or interior point conditions. On the other hand, in the 

direct approach the optimal solution is found by rewriting an infinite 

optimization problem to a finite optimization problem. Even though these two 

approaches seem unrelated, they have much more in common. In particular, 

in recent years, researchers have discovered that the optimality conditions 

from many direct methods have a well-defined meaningful relationship. 

Therefore, it seems that these two classes of methods are merging as time 

goes by (cf. von Stryk & Bulirsch (1992)). 
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The study of dynamic growth models generally follows the indirect approach, 

which consists in applying Pontryagin's Maximum Principle or the dynamic 

programming
2
, in order to obtain the first order necessary optimality 

conditions, together with the transversality condition. The Pontryagin's 

maximum principle and dynamic programming can be seen as equivalently 

alternative methods. Generally, Pontryagin's maximum principle will be used 

in continuous time and when there is no uncertainty and dynamic 

programming in discrete time and when there is uncertainty. Although it 

seems that the study of growth models in continuous time mainly uses 

Pontryagin's Maximum Principle, the dynamic programming approach could 

be used as well (cf. (Stokey, Lucas & Prescott, 1989), (Ljungqvist & Sargent, 

2012)), such as for example, Fabbri and Gozzi (2008) apply for the 

endogenous growth model with vintage capital. Dynamic optimization 

techniques in growth models together with numerical methods are studied by 

authors such as Sanderson, Tarasyev & Usova (2011), Tarasyev & Watanabe 

(2001), Kryazhimskii & Watanabe (2004). 

3. Neoclassical growth model 

The description of the economic model relies on David Cass (Cass, 1965). 

The economy evolves over time through the interaction of the households and 

firms constituting it. There is a single produced commodity (𝑌), which can be 

consumed or accumulated as capital (𝐾). The households interact with 

producers and engage in an intertemporal allocation exercise. It is assumed 

that there is a single aggregative or representative household and a single 

representative business firm in the economy. The household increases in size 

over time and its rate of growth is given by 

            𝐿(𝑡) = 𝐿0𝑒
𝑛𝑡 (1) 

where 𝑛 is the exponential growth rate of the household size over time and 

𝐿(𝑡) is the size of the household at 𝑡. In what follows, 𝐿(𝑡) will be referred to 

as population at 𝑡. The household decides about an optimal consumption path 

                                                           
2
 The departure point of dynamic programming method is the idea of embedding a 

given OCP into a family of optimal control problems, with the consequence that in 
solving the given problem, we are actually solving the entire family of problems. The 
core of dynamic programming is the Bellman's principle of optimality and Hamilton-
Jacobi-Bellman (HJB) equation. This equation represents a necessary condition for the 
OCP and it is in general a partial differential equation. 
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𝐶(𝑡), 𝑡 ∈ [0, + ∞), where 𝐶(𝑡) is the aggregate consumption enjoyed by 𝐿(𝑡). 

Optimality of the path is judged with reference to an intertemporal welfare or 

utility function of the form 

𝑈 = ∫ 𝑢(𝑐)𝐿(𝑡)𝑒−𝜌𝑡𝑑𝑡 =
+∞

0

∫ 𝑢(𝑐)𝐿0(𝑡)𝑒
−(𝜌−𝑛)𝑡𝑑𝑡

+∞

0

 

= 𝐿0(𝑡)∫ 𝑢(𝑐)𝑒−(𝜌−𝑛)𝑡𝑑𝑡
+∞

0

 

which is a weighted sum of instantaneous utilities derived from 𝑐, the per-

capita consumption 𝐶/𝐿 at 𝑡. The weights reflect two facts. First, 𝑒𝑛𝑡 shows 

that utilities from per-capita consumption receive exponentially higher weights 

with time to take account of the fact that the household size increases at the 

rate 𝑛. Secondly, 𝜌 > 0 stands for the rate of time preference of the 

representative household. Utilities further down in time are valued less than 

utilities enjoyed earlier on. This leads to an exponentially decaying weight 

𝑒−𝜌𝑡 with the passage of time. Generally, 𝜌 will be referred as the discount 

rate. In order to assume convergence, it will be assumed that 𝜌 − 𝑛 >0. This 

is equivalent to suppose having one positive discount rate 𝑟, with 𝑟 = 𝜌 − 𝑛. If 

𝐿0 = 1, then the functional will reduce to 

𝑈 = ∫ 𝑢(𝑐)𝑒−𝑟𝑡𝑑𝑡  𝑤𝑖𝑡ℎ  𝑟 > 0
+∞

0

 

The social utility index function will be assumed to satisfy the following 

𝑢′(𝑐) > 0 𝑢′′(𝑐) < 0

lim
𝑐→0

𝑢′(𝑐) = ∞ lim
𝑐→∞

𝑢′(𝑐) = 0 

In other words, utility is a strictly concave function of 𝑐, the marginal utility is 

unboundedly high for small values of 𝑐, while it is as close to zero as possible 

for large 𝑐. A representative firm has access to a technology for producing 𝑌. 

This is represented by an aggregate production function 

        𝑌(𝑡) = 𝐹(𝐾(𝑡), 𝐿(𝑡)) (2) 

where 𝑌(𝑡) stands for the flow of output at 𝑡 and 𝐾(𝑡) and 𝐿(𝑡) for the flows of 

capital and labor services entering the production process at 𝑡. Note that the 



Ratković K.: Limitations in Direct and Indirect Methods for Solving Optimal Control… 

26 Industrija, Vol.44, No.4, 2016 

use of the same notations for capital stock and services as well as for 

population size and labour services implies that the stock-flow ratios for both 

factors are assumed to be constant (normalized to unity). It will be assumed 

that function 𝐹(𝐾, 𝐿) is positively homogenous of degree 1 i.e.  𝐹(𝛼𝐾, 𝛼𝐿)  =

 𝛼𝐹(𝐾, 𝐿), for any 𝛼, 𝐾, 𝐿 >  0. This implies that, at any unit of time, the 

production volume is proportional to the factors of production available at this 

moment. Such production function can be rewritten in per-capita terms and 

we can define 𝑦 =  𝑌 𝐿⁄  to be the average product of labor and 𝑘 =  𝐾 𝐿⁄  to be 

the capital-labor ratio. The production function can also be expressed by 

𝑦 = 𝜙(𝑘)     𝑤𝑖𝑡ℎ 𝜙′(𝑘) > 0    𝑎𝑛𝑑 𝜙′′(𝑘) < 0     𝑓𝑜𝑟 𝑎𝑙𝑙     𝑘 > 0 

It is assumed that lim𝑘→0 𝜙
′(𝑘) = ∞ and lim𝑘→∞ 𝜙

′(𝑘) = 0. These conditions 

are called Inada conditions
3
 and they ensure the existence of interior 

equilibrium. Indeed, they imply that the first units of capital and labor are 

highly productive and that when capital or labor are sufficiently big, their 

marginal products are close to zero.  

The total output 𝑌 is allocated either to consumption 𝐶 or gross investment 𝐼 

i.e. 𝑌 =  𝐶 +  𝐼. Therefore, net investment 𝐾̇ can be expressed as 

𝐾̇ = 𝑌 − 𝐶 − 𝛿𝐾 

where 𝛿 is the depreciation rate. Dividing this equation by 𝐿:  

 
𝐾̇

𝐿
= 𝑦 − 𝑐 − 𝛿𝑘 = 𝜙(𝑘) − 𝑐 − 𝛿𝐾 (3) 

Since 

𝐾̇ ≝
𝑑𝐾

𝑑𝑡
= 𝑘

𝑑𝐿

𝑑𝑡
+ 𝐿

𝑑𝐾

𝑑𝑡
 

= 𝑘𝑛𝐿 + 𝐿𝑘̇ = 𝐿(𝑘𝑛 + 𝑘̇)   𝑤𝑖𝑡ℎ  𝑛 =
𝑑𝐿

𝑑𝑡
×
1

𝐿
 

                                                           
3 More precisely, Inada conditions require that the first partial derivatives of the 

production function 𝐹(𝐾, 𝐿) with respect to the variables 𝐾 (resp. 𝐿) are positive and 

the second partial derivatives negative. Moreover, limit of the partial derivative of 
𝐹(𝐾, 𝐿), as 𝐾 (resp. 𝐿) approaches ∞, is 0, and as 𝐾 (resp. 𝐿) approaches 0, is ∞ (cf. 

(Inada, 1963)). 
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Therefore, equation (3) becomes 

               𝑘̇ = 𝜙(𝑘) − 𝑐 − (𝑛 + 𝛿)𝑘 (4) 

This equation which includes only per-capita variables, describes how the 

capital-labor ratio varies over time. It is the fundamental differential equation 

of neoclassical growth theory. The OCP is given as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒           𝑈 = ∫ 𝑢(𝑐(𝑡))𝑒−𝑟𝑡𝑑𝑡
+∞

0

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜   𝑘̇ = 𝜙(𝑘)− 𝑐− (𝑛 + 𝛿)𝑘 

𝑘(0) = 𝑘0 

   𝑎𝑛𝑑 0 ≤ 𝑐(𝑡) ≤  𝜙(𝑘(𝑡)) (5) 

where 𝑘 is the state variable and 𝑐 the control variable.  

3.1 The maximum principle 

The Hamiltonian for this problem is 

 𝐻 = 𝑢(𝑐)𝑒−𝑟𝑡 + 𝜆[𝜙(𝑘)− 𝑐 − (𝑛+ 𝛿)𝑘] (6) 

and it is not linear in 𝑐. The function 𝐻 and the two additive components 

𝑢(𝑐)𝑒−𝑟𝑡 and  𝜆[𝜙(𝑘)− 𝑐 − (𝑛+ 𝛿)𝑘] are represented in the following figure: 
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The maximum of 𝐻 corresponds to the value of 𝑐 inside the control region 

[0, 𝜙(𝑘)]. By the necessary condition for the existence of a maximum  

𝜕𝐻

𝜕𝑐
= 𝑢′(𝑐)𝑒−𝑟𝑡 −  𝜆 = 0 (7) 

the following is obtained 𝑢′(𝑐)  =  𝜆𝑒𝑟𝑡. The last equation states that optimally, 

the marginal utility of per-capita consumption should be equal to the shadow 

price of capital multiplied by the exponential term 𝑒𝑟𝑡. The second partials  

𝜕2𝐻

𝜕𝑐2
= 𝑢′′(𝑐)𝑒−𝑟𝑡 < 0 

since it is assumed that 𝑢′′(𝑐)  <  0 and the function 𝐻 is indeed maximized. 

The maximum principle demands two equations of motion:  

𝜆̇ = −
𝜕𝐻

𝜕𝑘
= − 𝜆(𝜙′(𝑘) − (𝑛 + 𝛿)) (8) 

𝑘̇ =
𝜕𝐻

𝜕𝜆
= 𝜙(𝑘) − 𝑐 − (𝑛 + 𝛿)𝑘 (9) 

The first equation is a differential equation, and the second retrieves the 

constraint for the problem of optimal growth. The three equations (7), (8) and 

(9) should allow us to solve for the three variables 𝑐, 𝜆 and 𝑘. Without given 
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expressions of the functions 𝑢(𝑐) and 𝜙(𝑘), only qualitative analysis of the 

model can be done.  

Since the maximum principle demands the differentiation of 𝐻 and the 

discount factor further adds complexity to the derivatives, it is useful to define 

a new Hamiltonian without the discount factor. First, a new Lagrange 

multiplier 𝑚 =  𝜆𝑒𝑟𝑡 can be defined. The new Hamiltonian 𝐻𝑐 =  𝐻𝑒
𝑟𝑡, called 

the current-value Hamiltonian is: 

𝐻𝑐 = 𝑢(𝑐) + 𝑚[𝜙(𝑘)− 𝑐− (𝑛 + 𝛿)𝑘] (10) 

In this case, the maximum principle demands that 

𝜕𝐻𝑐

𝜕𝑐
= 𝑢′(𝑐) −  𝑚 = 0 (11) 

The function 𝐻𝑐 is indeed maximized since the second partials 𝜕2𝐻𝑐 𝜕𝑐
2⁄ =

𝑢′′(𝑐) <  0. The equations of motion for the state variable 𝑘 and the current-

value multiplier 𝑚 are: 

𝑘̇ =
𝜕𝐻𝑐

𝜕𝑚
= 𝜙(𝑘) − 𝑐 − (𝑛 + 𝛿)𝑘 (12) 

𝑚̇ = −
𝜕𝐻𝑐

𝜕𝑘
+ 𝑟𝑚 = −𝑚[𝜙′(𝑘) − (𝑛 + 𝛿 + 𝑟)] (13) 

3.2 Phase diagram analysis 

A phase diagram analysis can be undertaken for the current-value maximum 
conditions (11), (12) and (13). The normal phase diagram should be in the 𝑘𝑚 
space, since the two equations of motion are in variables 𝑘 and 𝑚. In order to 

construct such a diagram, the variable 𝑐 should first be eliminated. But, since 

the condition (11) contains a function 𝑢′(𝑐) of 𝑐, it becomes easier to eliminate 
the variable 𝑚 and to construct the phase diagram in 𝑘𝑐 space. First, 

condition (11) is differentiated, with respect to 𝑡: 𝑚̇ =  𝑢′′(𝑐)𝑐̇. By rearranging 
condition (13), it becomes 

𝑐̇ = −
𝑢′(𝑐)

𝑢′′(𝑐)
[𝜙′(𝑘) − (𝑛 + 𝛿 + 𝑟)]  (14) 

which is a differential equation in the variable 𝑐. Therefore, this gives us the 
following system of differential equations: 

𝑘̇ = 𝜙(𝑘) − 𝑐 − (𝑛 + 𝛿)𝑘 
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                                               𝑐̇ = −
𝑢′(𝑐)

𝑢′′(𝑐)
[𝜙′(𝑘) − (𝑛 + 𝛿 + 𝑟)] (15) 

To construct the phase diagram, the curves 𝑘̇ =  0 and 𝑐̇ =  0 need to be 
plotted. Therefore, two equations are obtained: 

     𝑐 = 𝜙(𝑘) − (𝑛 + 𝛿)𝑘 

𝜙′(𝑘) = 𝑛+ 𝛿+ 𝑟 

 

The first curve is the difference between the curve of the function 𝜙(𝑘) and 

the upward-sloping line (𝑛 + 𝛿)𝑘. The second curve requires that the slope of 

the function 𝜙(𝑘) takes the value 𝑛 + 𝛿 + 𝑟. Since the function 𝜙(𝑘) is 

monotonic and increasing, there is only one point in which this condition is 

satisfied. Hence, the second curve must be plotted as a vertical straight line, 

with horizontal intercept 𝑘̅. The intersection of the two curves determines the 

steady-state values of 𝑘 and 𝑐. These values, denoted by 𝑘 and 𝑐 are known 

in literature as the modified-golden-rule values of capital-labor ratio and per-

capita consumption. 
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If one looks at the pattern of the streamlines in Figure 2, it seems that the 

equilibrium 𝐸(𝑘, 𝑐) is a saddle point. This can be verified by examining the 

characteristic roots of the linearization of the system of differential equations 

(15) of the model. In order to do it, one needs to form the Jacobian matrix 

from (15) and to evaluate it at the steady-state point 𝐸.  

𝐽𝐸(𝑘,𝑐) =

(

 

𝜕𝑘̇

𝜕𝑘

𝜕𝑘̇

𝜕𝑐
𝜕𝑐̇

𝜕𝑘

𝜕𝑐̇

𝜕𝑐)

 = (

𝜙′(𝑘) − (𝑛 + 𝛿) −1

−
𝑢′(𝑐)

𝑢′′(𝑐)
𝜙′′(𝑘) (−

𝑢′(𝑐)

𝑢′′(𝑐)
)
𝑐

′

[𝜙′(𝑘̅) − (𝑛 + 𝛿 + 𝑟)]
) 

 = (

𝑟 −1

−
𝑢′(𝑐)

𝑢′′(𝑐)
𝜙′′(𝑘) 0

) 

Since 𝑟1𝑟2 = |𝐽𝐸| = −
𝑢′(𝑐)

𝑢′′(𝑐)
𝜙′′(𝑘) <0, two roots 𝑟1 and 𝑟2 have opposite 

signs and therefore the steady state is locally a saddle point.  

3.3 Transversality conditions 

Selecting a stable branch in the family of streamlines is almost the same as 

choosing a particular solution from a family of general solutions by finding a 
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particular constant. In order to do it, one will use the boundary conditions that 

can be: either a specific initial 𝑐0 such that (𝑘0, 𝑐0 ) is on the stable branch or 

an appropriate transversality condition. Since one has general functions and 

therefore does not have quantitative solutions of differential equations, it is not 

possible to describe a transversality condition. However, the phase-diagram 

analysis can be used in order to verify that the steady-state solution satisfies 

the expected transversality conditions. First transversality condition that the 

steady-state solution is expected to satisfy is 

                                                                lim𝑡→∞  𝜆 = 0 (16) 

Indeed, the solution path for  𝜆 is  𝜆∗ = 𝑢′(𝑐)𝑒−𝑟𝑡. It is clear that lim𝑡→∞ 𝑒
−𝑟𝑡  =

 0. On the other hand lim𝑡→∞ 𝑢′(𝑐) is finite, since it was assumed earlier that 

lim𝑐→0 𝑢
′(𝑐) = ∞ and in this case 𝑐∗ doos not tend to zero when 𝑡 → ∞. 

Another transversality condition in the solution is 

                                                                 lim𝑡→∞  𝐻 = 0 (17) 

One knows from (6) that the solution path for 𝐻 is  

𝐻∗ = 𝑢(𝑐∗)𝑒−𝑟𝑡 + 𝜆∗[𝜙(𝑘∗) − 𝑐∗ − (𝑛 + 𝛿)𝑘∗] 

By (16), lim𝑡→∞  𝜆
∗ = 0 and lim𝑡→∞  𝑢(𝑐

∗)𝑒−𝑟𝑡 = 0, since lim𝑡→∞  𝑢(𝑐
∗) is finite 

and lim𝑡→∞  𝑒
−𝑟𝑡 = 0. The expression in the brackets 𝜙(𝑘∗)− 𝑐∗ − (𝑛 + 𝛿)𝑘∗ 

is exactly 𝑘̇ which is equal to zero in the steady state. Therefore, this 

transversality condition is also satisfied. 

3.4 Exogenous growth model with technological progress 

The neoclassical growth model that has been discussed in the previous 

section provides a steady state in which per-capita consumption 𝑐, stays 

constant at 𝑐̅, with no further improvement in the average standard of living, 

which comes from the static nature of the production function 𝑌 =  𝐹(𝐾, 𝐿). 

Once technological progress is allowed, one can easily remove the cap on 

per-capita consumption. There are three types of ``neutral’’ technological 

progresses (the term neutral is because it leaves a certain economic variable 

unaffected under certain condition): Hicks-neutral, Harrod-neutral and Solow-

neutral. The production function with Harrod-neutral technological progress is 
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                                                      𝑌 =  𝐹(𝐾, 𝐴(𝑡)𝐿) (18) 

where 𝐹 is linearly homogenous in 𝐾 and 𝐴(𝑡)𝐿. Harrod-neutral technological 

progress leaves the output-capital ratio (𝑌 𝐾⁄ ) unchanged at the same MPPK 

(marginal product of capital). In exogenous growth models, Harrod neutrality 

is frequently assumed since it is perfectly consistent with the notion of a 

steady state. If we define efficiency labor 𝜂 =  𝐴𝐿, then the production 

function (18) becomes 

                                                                  𝑌 =  𝐹(𝐾, 𝜂 ) (19) 

If one now consider efficiency labor 𝜂  to be the relevant labor-input variable, 

then (19) can be seen as a static production function. Using the homogeneity, 

one can rewrite: 

𝑦𝜂 = 𝜙(𝑘𝜂)    𝑤ℎ𝑒𝑟𝑒 𝑦𝜂 =
𝑌

𝜂
  𝑎𝑛𝑑 𝑘𝜂 =

𝐾

𝜂
 

This function is analogue to the production function 𝑦 =  𝜙(𝑘) in the 
neoclassical growth model. Following the same steps as at the beginning of 
this section, while maintaining all the assumptions on 𝜙, one can find the 
equation of motion for the new state variable 𝑘𝜂. 

One obtains 

                                                 𝑘𝜂̇ = 𝜙(𝑘𝜂)− 𝑐𝜂 − (𝑎 + 𝑛+ 𝛿)𝑘𝜂 (20) 

                                            𝑤ℎ𝑒𝑟𝑒   𝑐𝜂 =
𝐶

𝜂
,  𝑎 =

𝐴̇

𝐴
    𝑎𝑛𝑑 𝑛 =

𝐿̇

𝐿
 (21) 

Hence, one has the following OCP: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒           𝑈 = ∫ 𝑢 (𝑐𝜂(𝑡)) 𝑒
−𝑟𝑡𝑑𝑡

+∞

0

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜   𝑘𝜂̇ = 𝜙(𝑘𝜂)− 𝑐𝜂 − (𝑎 + 𝑛+ 𝛿)𝑘𝜂 

𝑘𝜂(0) = 𝑘𝜂0 

                                                      𝑎𝑛𝑑 0 ≤ 𝑐𝜂 ≤  𝜙(𝑘𝜂) (22) 

The current-value Hamiltonian in the new problem is 
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                                 𝐻𝑐
′ = 𝑢(𝑐𝜂) + 𝑚′[𝜙(𝑘𝜂)− 𝑐𝜂 − (𝑎 + 𝑛+ 𝛿)𝑘𝜂] (23) 

where 𝑚′ is the new current-value costate variable. By analogy, the maximum 
principle demands for the following conditions: 

                                                  𝑚′ = 𝑢′(𝑐𝜂) (24) 

                                                   𝑘𝜂̇ = 𝜙(𝑘𝜂)− 𝑐𝜂 − (𝑎 + 𝑛 + 𝛿)𝑘𝜂 (25) 

                                                   𝑚′̇ = −𝑚′[𝜙′(𝑘𝜂)− (𝑎 + 𝑛+ 𝛿+ 𝑟)] (26) 

By eliminating the variable 𝑚′, the following system of differential equations is 
obtained: 

𝑘𝜂̇ = 𝜙(𝑘𝜂)− 𝑐𝜂 − (𝑎 + 𝑛+ 𝛿)𝑘𝜂 

                𝑐𝜂̇ = −
𝑢′(𝑐𝜂)

𝑢′′(𝑐𝜂)
[𝜙′(𝑘𝜂)− (𝑎 + 𝑛+ 𝛿+ 𝑟)] 

The new phase diagram is constructed: 

          𝑘𝜂̇ = 0 ⇔ 𝑐𝜂 = 𝜙(𝑘𝜂)− (𝑎 + 𝑛+ 𝛿)𝑘𝜂 

𝑐𝜂̇ = 0 ⇔ 𝜙′(𝑘𝜂) =𝑎+ 𝑛+ 𝛿+ 𝑟 

The new phase diagram is qualitatively the same as the one in the 
neoclassical growth model. However, there is one major difference which 
concerns the new steady state. Before, the per-capita consumption 𝑐 = 𝐶 𝐿⁄   

was constant in a steady state. Now, one has that 𝑐𝜂 =  𝐶 𝜂⁄ =  𝐶 𝐴𝐿⁄  is 

constant. Therefore, per-capita consumption 𝑐 =  𝑐𝜂𝐴 will rise over time, as 

long as 𝐴 increases as a result of technological progress. 

4. Endogenous growth model by Romer: indirect approach 

Even though the exogenous technological progress remains quite simple, it 

does not explain the origin of progress. In order to do it, it is necessary to 

endogenize the technological progress. Endogenous growth models were 

conceived as an attempt to overcome this theoretical nuance and to give a 

consistent report to what causes economies to keep on growing (Romer 

(1990), Lucas (1988), Uzawa (1965), Jones and Manuelli (1990)). 
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Knowledge in the Romer model (Romer, 1990), can be classified into two 

components: human capital and technology. Human capital is person-specific 

and it is a ``rival good˝ in the sense that its use by one firm excludes its use 

by another. Technology is available to the public and it is a ``nonrival good˝ in 

the sense that its use by one firm does not limit its use by others. Human 

capital and technology are created by conscious action. In order to reduce the 

number of state variables, human capital is assumed to be fixed and 

inelastically supplied. Human capital will be denoted by 𝑆, and by 𝑆0 its fixed 

total. Since 𝑆 can be used for the production of the final good 𝑌 or for the 

improvement of technology 𝐴, one has:  

𝑆0 = 𝑆𝑌 + 𝑆𝐴 

On the other hand, technology 𝐴 is not fixed and can be created by engaging 

human capital 𝑆𝐴 in research and applying the existing technology 𝐴: 

                                                                 𝐴̇ = 𝜎𝑆𝐴𝐴 (27) 

where 𝜎 denotes the research success parameter. One sees that 𝐴̇ 𝐴⁄ =

𝜎𝑆𝐴  >  0 if 𝜎 and 𝑆𝐴 are positive. Therefore, technology can grow without 

bound. In the production of the final good 𝑌 variables 𝐿 and 𝐾 are inputs with 

human capital 𝑆𝑌 and technology 𝐴. The production function is assumed to be 

of Cobb-Douglas type: 

                                                             𝑌 = 𝑆𝑦
𝛼𝐿0
𝛽
𝐴𝑥̅1−𝛼−𝛽 (28) 

where 𝐿0 denotes fixed and inelastically supplied amount of ordinary labor 

and 𝑥 is the common level of use of ``design˝. Since the amount of capital 

actually used will be 

𝐾 = 𝛾𝐴𝑥̅ 

Therefore, the equation (28) becomes:  

𝑌 = 𝑆𝑦
𝛼𝐿0
𝛽
𝐴 (

𝐾

𝛾𝐴
)
1−𝛼−𝛽

 

                                                             = (𝑆𝑦𝐴)
𝛼
(𝐿0𝐴)

𝛽𝐾1−𝛼−𝛽𝛾𝛼+𝛽−1 (29) 
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One can see from the last expression that technology can be considered as 

human capital increasing (𝑆𝑦𝐴) and as labor-increasing (𝐿0𝐴), but it is 

detached from 𝐾. It is in a certain way endogenously characterized by Harrod-

neutrality. 

Since the net investment is just the output that is not consumed, by 

substituting:  

                                                 𝐾̇ = 𝑌 − 𝐶  

                                                     = 𝛾𝛼+𝛽−1𝐴𝛼+𝛽(𝑆0 − 𝑆𝐴)
𝛼𝐿0

𝛽𝐾1−𝛼−𝛽 − 𝐶 (30) 

One can now consider an OCP with two state variables 𝐴 and 𝐾, and two 

control variables 𝐶 and 𝑆𝐴, while the equations of motion are (27) and (30). 

Assuming the constant elasticity of substitution (CES) utility function:  

𝑢(𝐶) =
𝐶1−𝜃

1 − 𝜃
𝑤𝑖𝑡ℎ 0 < 𝜃 < 1 

the following OCP can be defined:  

                 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒           ∫
𝐶1−𝜃

1 − 𝜃
𝑒−𝜌𝑡𝑑𝑡

+∞

0

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜   𝐴̇ = 𝜎𝑆𝐴𝐴 

        𝐾̇ = 𝛾𝛼+𝛽−1𝐴𝛼+𝛽(𝑆0 − 𝑆𝐴)
𝛼𝐿0

𝛽𝐾1−𝛼−𝛽 − 𝐶 

                                               𝑎𝑛𝑑  𝐴(0) = 𝐴0    𝐾(0) = 𝐾0 (31) 

In order to simplify the expression (30), one defines ∆= 𝛾𝛼+𝛽−1𝐴𝛼+𝛽(𝑆0 −

𝑆𝐴)
𝛼𝐿0

𝛽𝐾1−𝛼−𝛽. Then the current-value Hamiltonian is 

                                            𝐻𝑐 =
𝐶1−𝜃

1−𝜃
+ 𝜆𝐴(𝜎𝑆𝐴𝐴)+ 𝜆𝐾(∆ − 𝐶) (32) 

where 𝜆𝐴 and 𝜆𝐾 denote the shadow prices of 𝐴 and 𝐾, respectively. By the 

necessary condition for the existence of a maximum 

                                 
𝜕𝐻𝑐

𝜕𝐶
= 𝐶−𝜃 − 𝜆𝐾 = 0    ⇔        𝜆𝐾 = 𝐶

−𝜃 (33) 
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𝜕𝐻𝑐

𝜕𝑆𝐴
= 𝜆𝐴𝜎𝐴 − 𝜆𝐾𝛼(𝑆0 − 𝑆𝐴)

−1∆= 0    ⇔       ∆=
𝜆𝐴𝜎𝐴

𝜆𝐾𝛼
(𝑆0 − 𝑆𝐴)  (34) 

The maximum principle demands in addition to the two equations of motion 𝐴̇ 

and 𝐾̇, two equations of motion for the costate variables:  

        𝜆𝐴̇ = −
𝜕𝐻𝑐
𝜕𝐴

+ 𝜌𝜆𝐴 = −𝜆𝐴𝜎𝑆𝐴 − 𝜆𝐾(𝛼 + 𝛽)𝐴
−1∆ + 𝜌𝜆𝐴 

                               𝜆𝐾̇ = −
𝜕𝐻𝑐

𝜕𝐾
+ 𝜌𝜆𝐾 = −𝜆𝐾(1 − 𝛼 − 𝛽)𝐾

−1∆ + 𝜌𝜆𝐾 (35) 

Having four differential equations, it is not possible to construct a phase 

diagram and it is difficult to solve the system explicitly. However, some 

questions can be answered in the steady state. Variables 𝑌, 𝐾, 𝐴 and 𝐶 grow 

at the same rate. Therefore, by (27), one has: 

                                               
𝐴̇

𝐴
=
𝑌̇

𝑌
=
𝐾̇

𝐾
=
𝐶̇

𝐶
= 𝜎𝑆𝐴 (36) 

Since the growth rate should be expressed only in terms of parameters, it is 

necessary to find the expression for 𝑆𝐴. Indeed, the expressions for 𝜆̇𝐴 𝜆𝐴⁄  and 

𝜆̇𝐾 𝜆𝐾⁄  can be found from (35) and then use the fact that in the steady 

state: 𝜆̇𝐴 𝜆𝐴⁄ = 𝜆̇𝐾 𝜆𝐾⁄ . Therefore, 𝑆𝐴 reaches in the steady state the constant 

value:  

                                                    𝑆𝐴 =
𝜎(𝛼+𝛽)𝑆0−𝛼𝜌

𝜎(𝛼𝜃+𝛽)
 (37) 

The growth rate is 

                                                 
𝐴̇

𝐴
=
𝑌̇

𝑌
=
𝐾̇

𝐾
=
𝐶̇

𝐶
=
𝜎(𝛼+𝛽)𝑆0−𝛼𝜌

𝛼𝜃+𝛽
 (38) 

The expression (38) tells us how the various parameters affect the growth 

rate. One can see that the research success parameter 𝜎 and the human 

capital 𝑆0 have a positive effect on the growth rate, and that the discount rate 

𝜌 has the negative effect.  
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5. Endogenous growth model by Lucas and Uzawa: direct 

approach 

The Uzawa-Lucas model introduces human capital ℎ, as another productive 

input of the economy that is produced by a different technology than that of 

physical capital 𝐾. Also, labor 𝐿 can either be employed in final output 

production, 𝜇, with the rest 1 − 𝜇 that is dedicated to formal education. This 

model exposes steady-state growth, in the sense that consumption and 

capital (physical and human) is unbounded. The introduction of human capital 

and specialized labor adds another state and control variable respectively to 

the system, and adds complexity as well. In fact, the transition process of this 

model is still vague, since the indirect methods for solving the underlying OCP 

give origin to rigid ordinary differential equations, which gives an extra 

difficulty, as Trimborn et al. (2004) noticed. This model uses the framework 

specified in Section 3. Households try to maximize their utility by consuming 

according to a standard CES function 𝑢(𝐶). One has the following production 

function: 

                                                  𝑌 = 𝐴𝐾𝛼(𝑢ℎ𝐿)1−𝛼 (39) 

Physical capital 𝐾 and human capital ℎ follow the laws of motion:  

                                                 𝐾̇ = 𝑌 − 𝐶 − 𝛿𝐾 (40) 

                                                 ℎ̇ = 𝐵(1 − 𝑢)ℎ − 𝛿ℎℎ (41) 

where 𝐵 is a constant reflecting productivity of quality adjusted effort in 

education and 𝛿ℎ  (0 ≤ 𝛿ℎ  <  𝐵) is the depreciation rate of human capital, 

which is set 𝛿ℎ =  0. 

Using per-capita variables 𝑘, 𝑦 and 𝑐 and without population growth (𝑛 =  0), 

the following OCP can be defined: 

                 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒           ∫
𝐶1−𝜃

1 − 𝜃
𝑒−𝜌𝑡𝑑𝑡

+∞

0

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜   𝑘̇ = 𝐴𝐾𝛼(𝑢ℎ)1−𝛼 − c − δk 

    ℎ̇ = 𝐵(1 − 𝑢)ℎ 
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                                               𝑎𝑛𝑑  𝑘(0) = 𝑘0    ℎ(0) = ℎ0 (42) 

The outline that will be presented results from the work of Fontes (2001) and 

follows the approach used by Lopes et al. (2013). The first step is to 

transcribe the infinite horizon problem into a finite dimensional problem. The 

second is to prove that this nonlinear programming problem (NLP) is 

equivalent to the original one. Finally, an advanced NLP solver could be used 

in order to find the optimal trajectories. As opposed to indirect methods, the 

OCP is first discretized and then optimized.  

The first step is to present the following theorem that enables us to discretize 

the infinite horizon problem. 

Theorem 1. (Lopes et al., 2013) 

Consider the following generic optimal control problem: 

𝑃∞:      𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
+∞

0

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜   𝑥̇ = 𝑓(𝑥, 𝑢) 

  𝑥(0) = 𝑥0 

                                      𝑎𝑛𝑑  𝑥(𝑡) ∈ 𝛤(𝑡)   𝑢(𝑡) ∈ 𝛺(𝑡) (43) 

where we assume that there is a finite solution. Furthermore, we assume that 

after some time 𝑇, the state is within some invariant set 𝑆 ( 𝑖. 𝑒.  𝑥(𝑡) ∈  𝑆, 𝑆 ⊂

 𝛤(𝑡), ∀𝑡 ≥  𝑇) for which the problem still has a finite solution.  

Then there exists a terminal cost function W, such that the optimal control 

problem is equivalent to the finite horizon problem:  

𝑃𝑇:      𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 +𝑊(𝑥(𝑡))
𝑇

0

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜   𝑥̇ = 𝑓(𝑥, 𝑢) 

  𝑥(0) = 𝑥0 

                                𝑎𝑛𝑑  𝑥(𝑡) ∈ 𝛤(𝑡)   𝑢(𝑡) ∈ 𝛺(𝑡)   𝑥(𝑇) ∈ 𝑆 (44) 
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Proof. Consider problem 𝑃∞ with 𝛤(𝑡) =  𝑆 for all 𝑡 ≥ 𝑇. Then the value for 𝑃∞ 

is 

𝑉(0, 𝑥0) = 𝑚𝑖𝑛 {∫ 𝐿(𝑥, 𝑢(𝑡))𝑑𝑡 + 𝑉(𝑡, 𝑥(𝑡))
𝑇

0

} 

Now, one can define 

𝑊(𝑥(𝑡)) = 𝑉(𝑇, 𝑥(𝑇)) = min
𝑥∈𝑆

{∫ 𝐿(𝑥, 𝑢)𝑑𝑡
+∞

𝑇

} 

and discretize 𝑃∞ into 𝑃𝑇.  

Theorem 1 can be applied only when the set 𝑆 is such that the 

characterization of the solution to the problem is possible 

𝑊(𝑥(𝑡)) = min
𝑥∈𝑆

{∫ 𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
+∞

𝑇

} 

and therefore 𝑊(𝑥) can explicitly be computed for any 𝑥 ∈  𝑆. 

The following procedure is applied:  

1. Transcription of the infinite-horizon problem into an equivalent finite-horizon 

problem by applying Theorem 1;   

2. Adding the necessary boundary conditions that ensure that the set 𝑆 is 

invariant (and so 𝑊(𝑥) exists for any 𝑥 ∈  𝑆);   

3. Using a NLP solver to determine the trajectories of the control and state 

variables.  

It is known that in balanced growth we have: 

                                                            
𝑐̇

𝑐
=
𝑦̇

𝑦
=
𝑘̇

𝑘
=
ℎ̇

ℎ
= 𝛾 (45) 

If one defines 

𝑤 =
𝑘

ℎ
    𝑎𝑛𝑑    𝜒 =

𝑐

𝑘
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and it is known that in the steady state, for 𝑡 ≥ 𝑇, one has 𝑤̇ =  0 and 𝜒̇ =  0  

(Barro et al., 2003). Define the control functions   

                                     𝑐(𝑡) = 𝜒𝑘(𝑡)    𝑎𝑛𝑑   𝑘(𝑡) = 𝑤ℎ(𝑡) (46) 

such that 𝜒 and 𝑤 are equal to a given positive constant. 

One has 

𝑘̇

𝑘
=  𝐴𝑘𝛼−1(𝑢ℎ)1−𝛼 −  𝜒 − δ = (

𝑢ℎ

𝐴𝑘
)
1−𝛼

−  𝜒 − δ = (
𝑢

𝐴𝑤
)
1−𝛼

−  𝜒 − δ 

but also 

𝑘̇

𝑘
=
𝑤ℎ̇

𝑤ℎ
= 𝐵(1 − 𝑢) = 𝛾 

Therefore, equation (46) is obtained with 𝑢(𝑡)  =  𝑢 constant and one has:  

(
𝑢

𝐴𝑤
)
1−𝛼

−  𝜒 − δ = B(1 − 𝑢)  

Moreover, one has  

𝑐̇

𝑐
=
𝑘̇

𝑘
=
ℎ̇

ℎ
= 𝐵(1 − 𝑢) 

which implies that 𝑐̇ =  𝛾𝑐 in a balanced growth path. At the time 𝑡 =  𝑇 

consumption 𝑐 will continue to grow at rate 𝛾 

𝑐(𝑡) = 𝑐(𝑇)𝑒𝛾(𝑡−𝑇),     𝑡 ∈  [𝑇, +∞) 

which enables us to compute 𝑊. Utility will be bounded as 𝜌 > 𝛾(1 − 𝜃) so 

that 𝑈(∙,∞)  =  0. Then the boundary cost is given by  

𝑊 = −∫
(𝑐(𝑇)𝑒𝛾(𝑡−𝑇))

1−𝜃

1 − 𝜃
𝑒−𝜌𝑡𝑑𝑡

+∞

𝑇

 

Finding the integral 

                                     𝑊 = −
𝑒𝛾(1−𝜃)−𝜌

𝜌−𝛾(1−𝜃)
 ∙  
(𝑐(𝑇)𝑒−𝛾𝑇)

1−𝜃

1−𝜃
 (47) 
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The boundary condition will be 

                       𝑆 = {(𝑘, ℎ) ∈ 𝑅2 ∶  
𝑘̇

𝑘
=
ℎ̇

ℎ
= 0}     𝑠. 𝑡.    𝑘(𝑇), ℎ(𝑇) ∈ 𝑆 (48) 

The system defined by (42) together with the boundary cost 𝑊 (47) and the 

boundary condition 𝑆 (48) can now be solved numerically using a NLP solver. 

Lopes et al. (2013) use the software ICLOCS that solves OCP with general 

path and boundary constraints and free or fixed final time (actually this 

software uses another software called IPOPT to solve the transformed NLP 

problem). 

More generally, there are numerous and powerful softwares (NLP solvers) 

that are used to find numerical solutions of OCP. Some of them can be 

named: SNOPT, ICLOCS, DIRCOL, SOCS, OTIS, GESOP/ASTOS, DITAN 

and PyGMO/PyKEP. 

These numerical results should be evaluated in order to measure the 

accuracy of numerical methods. There are different studies of this procedure 

of evaluation (Aruoba et al. (2006), Ambler and Pelgrin (2006) and Heer and 

Maubner (2008)). 

It is important to notice, that using the direct approach, optimal trajectories 
can be determined numerically and without demanding the linearization of the 
differential equations. This can avoid some problems that can occur by a 
change of base or any other manipulation. It also allows the study of the 
transition process when it is not necessary for the system to depart from a 
steady state or to be at a steady state. Furthermore, it is a powerful tool to 
study some complex phenomena like anticipated or multiple, sequential 
shocks. Mainly, to study such shocks using indirect methods, authors like 
Trimborn (2007) suggest a reformulation of the optimization problem, which 

consists in decomposing the functional form of the objective function from 𝑓(1) 
to 𝑓(2) and the state equations from 𝑔(1) to 𝑔(2) at time 𝑡̃ when shock occurs. 
The necessary optimality conditions would have to be augmented with the 
conditions derived from the interior boundary condition. Moreover, the adjoint 
variable functions introduced by the Maximum Principle have to satisfy the 
condition of continuity, also known as the Weierstrass-Erdmann corner 
condition. Using the direct approach, it is not required to reformulate the 
model. Indeed, one does not need to determine or even know any necessary 
optimality conditions, which can be particularly useful for problems whose 
adjoint functions are hard to find.  
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Conclusion 

The indirect and direct methods for solving OCP can be used in both, 

exogenous and endogenous models of growth. The indirect methods for 

solving OCP provide better insight into the core of the optimization process in 

the theory of economic growth, but are sometimes very difficult to solve. In 

particular, the linearization of the dynamic system of differential equations can 

become very difficult. As a result, simplicity of the model is often required, so 

that the analytical solutions could be found. On the other side, direct methods 

seem to be faster and more efficient, even if they do not follow the logical, 

standard procedure of optimization. Moreover, they allow the study of the 

transitional dynamics of models that are not at their steady-state, and also to 

study expected and unexpected shocks. However, the process of 

discretization (transcription of the infinite horizon problem into a finite 

dimensional problem) of the OCP into a NLP, can become quite artificial and 

sometimes hard to prove. In general, the choice of a method for solving OCP 

will mainly depend on two major points: the importance of the insight of the 

optimization process and the complexity of the given OCP.      
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