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Abstract: As a consequence of the recent financial crisis, the adequacy of 
different Value-at-Risk (VaR) methodologies was heavily questioned. Current 
practice in VaR assessment relies on modeling the whole distribution of 
returns. As an alternative, in this paper we model tail behavior of returns, and 
thus VaR, using conditional Extreme Value Theory (EVT), which combines 
EVT and GARCH methodology. Moreover, we examine the performance of 
conditional EVT with the daily returns of seven stock market indices, of which 
six are from Southeastern Europe (BelexLine, BET, BUX, CROBEX, SBITOP, 
SOFIX) from the period of September 2004 - April 2013, and one from USA 
market (Standard&Poors 500 Index) from the period January 1998 - April 
2013. Backtesting of historical daily returns proves that conditional EVT model 
gives good predictions for all indices and for all confidence levels. 

Keywords: Value-at-Risk, Extreme Value Theory, volatility, fat-tails, 
heteroscedasticity 

Uslovni pristup teorije ekstremnih vrednosti u proceni 
Vrednosti-pod-Rizikom: dokazi sa tržišta jugoistočne 

Evrope i SAD 

Apstrakt: Kao posledica skorašnje finansijske krize, adekvatnost različitih 
metodologija za procenu vrednosti-pod-rizikom (VaR) se često dovodi u 
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pitanje. Ustaljena praksa u proceni VaR-a se oslanja na modelovanje cele 
distribucije prinosa. Kao alternativa takvom pristupu, u ovom radu se 
modeluju repovi distribucije prinosa, a samim tim i VaR, primenom uslovnog 
pristupa teorije ekstremnih vrednosti (EVT) koji kombinuje EVT i GARCH 
metodologiju. Rad ispituje performanse uslovnog pristupa teorije ekstremnih 
vrednosti, primenjenog na dnevne prinose sedam indeksa od kojih su šest 
indeksi tržišta u razvoju jugoistočne Evrope (BelexLine, BET, BUX, CROBEX, 
SBITOP, SOFIX) za period September 2004 - April 2013, a jedan je indeks 
tržišta SAD (Standard&Poors 500 indeks) za period Januar 1998 – April 2013. 
Rezultati back testiranja su pokazali da uslovni pristup teorije ekstremnih 
vrednosti daje dobre rezultate za sve indekse i za sve nivoe poverenja. 

Ključne reči: vrednost-pod-rizikom, teorija ekstremnih vrednosti, volatilnost, 
debeli repovi, heteroskedastičnost 

1. Introduction 

The last two decades proved to be very turbulent for financial markets 
worldwide – the Asian financial crisis in 1997-1998, followed by the dot-com 
bubble in 1997-2000 and the recent credit crisis starting in 2007. As a 
consequence, the problem of quantifying and managing market risk has 
become one of the major concerns of market regulators and financial 
institutions worldwide. Mostly due to its conceptual simplicity among different 
risk measures, Value-at-Risk (VaR) grew to be an industry standard. In 1994, 
J.P. Morgan introduced VaR to the general public in a RiskMetrics technical 
document. Moreover, at the Bank for International Settlements in 1996, the 
Basel Committee on Banking Supervision published a document “Amendment 
to the capital accord to incorporate market risks” promoting the use of VaR for 
capital requirements assessment in financial institutions. The foundations of 
VaR methodology were proposed in more detail by Jorion (1997), and Duffie 
and Pan (1997), which defined it as the maximum potential loss in value of a 
portfolio of financial instruments with a given probability over a certain 
horizon.  

Two most common ways of VaR estimation are: analytical approach and 
historical simulation. Analytical approach assumes that returns follow a known 
distribution, such as normal. Since returns commonly exhibit significant 
autocorrelation and heteroscedasticity, conditional distribution of returns is 
typically modeled. By employing ARCH/GARCH volatility modeling 
techniques, the heteroscedasticity can be eliminated or reduced. However, 
the main weakness of these approaches is that the assumption of conditional 
normality does not seem to hold for real data. In their paper, Jondeau and 
Rockinger (2003) used a database consisting of daily stock-market returns for 
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20 countries to test for similarities between the left and right tails of returns. 
Their results confirmed that none of these returns proved to be normally 
distributed. Da Silva and Mendes (2003) obtained similar results while 
studying ten Asian stock markets. Another problem is the stylized fact that 
financial returns show significant leptokurtosis or “fat-tails” (Mandelbrot, 
1963), which parametric models, assuming normal distribution, fail to capture. 
An alternative to the normal distribution may be to consider a Student-t 
distribution which has heavier tails than the normal one. However, this 
distribution maintains the hypothesis of symmetry that is not often present in 
financial returns. 

On the other hand, historical simulation estimates return distribution of a 
portfolio with the empirical distribution of past returns, thus avoiding 
distributional assumptions. This method practically lets the past data speak for 
itself, while assuming that the past will be a good proxy of the future. 
However, this model has some serious drawbacks, such as choice of window 
size and dependence on a particular data set. From the point of view of 
robustness it is desirable to use very long historic data periods, but this 
implies that observations from the distant past will have the same impact on 
VaR estimation as the recent observations. Additional problem is that 
historical simulation VaR cannot assess the events that did not happened in a 
particular historical sample period, but may happen in the future. 

The fact that VaR deals with the extreme quantiles of the returns’ distribution, 
whereas previously mentioned models deal with the whole distribution, gives 
more intuition for modeling tail behavior. This is the exact focus of Extreme 
Value Theory (EVT), which is the probability theory that studies the 
distribution of extreme realizations under certain assumptions. The most 
valuable feature of this theory is that it concentrates on modeling tail behavior 
with some asymptotic distribution, thus omitting pitfalls of previously 
mentioned parametric approaches. This is of crucial importance for risk 
management which aims to prevent huge unexpected losses. 

In this paper predictive performance of conditional EVT model proposed by 
McNeil and Frey (2000) is studied. For testing the performance of this VaR 
model we use a dataset which consists of seven indices - S&P500 as a 
representative of USA market and six indices from Southeastern European 
emerging markets: Bulgarian (SOFIX), Croatian (CROBEX), Hungarian 
(BUX), Romanian (BET), Slovenian (SBITOP) and Serbian (BELEXline). The 
S&P500 index is chosen as a representative of the most developed financial 
market. The objective was to study the behavior of financial returns on two 
types of different markets – one developed and six markets which belong to 
the same emerging market of Southeastern Europe, since we presume that 
these markets have different characteristics, especially in terms of volatility. 
On the other hand, countries of Southeastern Europe have gone through 
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some major changes, such as liberalization of national markets, transition and 
EU integration. However, financial markets of these countries were 
developing in a rather slow pace, remaining small in terms of trading volume 
and rather shallow in terms of liquidity. The period chosen for S&P500 is last 
15 years, since it covers some major financial downturns, whereas for indices 
of Southeastern Europe countries it is 9 years, since “the youngest” index - 
BELEXLine was established in 2004. Given that at different confidence levels 
VaR models tend to perform differently, in this paper we use three confidence 
levels – 0.95, 0.99 and 0.995. In order to assess risk of both long and short 
position investors, both tails of return distribution were estimated. Finally, the 
performance of the model was tested with the conditional coverage test. 

2. Literature review 

The foundations of the EVT were set by Fisher and Tippett (1928) and 
Gnedenko (1943), who proved that the distribution of the extreme values of an 
independent and identically distributed (iid) sample from a distribution function 
F, when adequately rescaled, can converge to one of the following 
distributions: Gumbel, Weibull, and Fréchet distribution. However, among the 
first authors who applied EVT in risk management practice were McNeil 
(1997, 1998), and Danielsson and de Vries (1997). In one of their first papers, 
McNeil (1998) used block maxima techniques of EVT methodology for VaR 
estimation, whereas Danielsson and de Vries (1997) used semi-parametric 
approach based on the Hill-estimator. Moreover, given that aforementioned iid 
assumption of EVT is often violated with financial returns, McNeil and Frey 
(2000) proposed a conditional EVT framework. This framework is a two-step 
procedure that models firstly the correlation structure of the observations by 
fitting, e.g., a GARCH model to the data, and afterwards performs the 
estimation of parameters of the GPD distribution of obtained GARCH 
residuals (since they are considered as iid). On the other hand, Nystrom and 
Skoglund (2002) proved that maximum likelihood estimators, being compared 
to Hill estimators, give better estimates of parameters of Generalized Pareto 
distributions for all quantiles above 95%. Moreover, they proved that 
maximum likelihood estimator is almost invariant to the choice of threshold.  

More recent studies were mainly focused on relative performance of VaR 
models. Kuester et al. (2006) analyzed more than fifteen VaR models on 30 
years of NASDAQ data and proved that EVT VaR combined with GARCH 
gives the best estimations. Similarly, Chan and Grey (2006), Marinelli et al. 
(2007) and Totic et. al. (2011) showed that EVT models had better predictive 
performance than conventional models for VaR assessment.   
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Further research was done in the field of application of EVT models for risk 
estimation in emerging markets. Jondeau and Rockinger (2003) used GEV 
distribution to analyze tail behavior of indices from Asian, Eastern European 
and Latin American markets. Gancay and Selcuk (2004) examined nine 
emerging markets and proved that EVT based VaR models outperformed all 
others. Assaf (2009) analyzed tail behavior of market indices of four MENA 
countries and showed that returns distributions are fat-tailed and adequately 
modeled with EVT. Uppal (2013) examined conditional EVT estimates for five 
emerging markets (Brazil, China, India, Mexico, South Africa) in the period 
prior to global financial crisis and in the crisis period. Results proved that 
conditional EVT model fits well indices behavior in both periods. Djakovic et 
al. (2011) investigated the performance of GPD application to raw returns of 
major indices of Serbian, Croatian, Slovenian and Hungarian markets for the 
period 2006-2009. In this paper, we extend these samples and enrich it with 
two more indices for Romanian and Bulgarian market, while applying GPD to 
GARCH residuals in order to account for heteroscedasticity.  

3. Methodology 

3.1. Value-at-Risk 

VaR is an attempt to produce a single number that summarizes the downside 
risk of the trading portfolio. It is defined as the potential loss (with specified 
probability) from adverse market movements over a fixed time horizon, 
assuming that the portfolio is not managed during that period (Alexander, 
2001). 
If we denote the price of an asset at time t as Pt, then the return of an asset at 
time t rt can be calculated as 𝑟𝑡 = 𝑙𝑙( 𝑃𝑡

𝑃𝑡−1
). Given that VaR is maximum 

potential loss over one day horizon, with the confidence level αϵ(0,1), daily 
VaR for period t+1 can be expressed as following: 

𝑃(𝑟𝑡+1 ≤ 𝑉𝑉𝑅𝑡,𝛼) = 𝛼           (1) 

Being an industry standard for calculating capital requirements for risk 
purposes, it is of great importance to adequately model behavior of financial 
returns. In order to capture the main features of financial returns as fat-tails 
and volatility clustering we will use peaks over threshold (POT) method of 
EVT and GARCH model. 
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3.2. Extreme Value Theory – Peaks over Threshold model 

From the previous section, we have seen that VaR represents the quantile of 
the distribution of returns, and therefore it is related to the tails of the 
distribution of the underlying data. To model the distribution of tails we argue 
to use an extreme value theory method called peak over threshold (POT) 
method. This method is based on extracting the extremes from a sample of 
observations, which are defined as the exceedances over a predetermined, 
high threshold 𝑢 and modeling the distribution of exceedances over this 
threshold.  

Let X1, X2, … , Xn be a sequence of independent and identically distributed 
random variables with the distribution function F. An exceedance over 
predefined threshold 𝑢 is defined by Y𝑖 = Xi − u and occurs each time when 
Xt > 𝑢 for any t=1,…,n. The behavior of exceedances over threshold Y𝑖 is 
modeled with the conditional probability function 𝐹𝑢 which is of the following 
form: 

𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑢 < 𝑦 𝑋⁄ > 𝑢) = 𝑃(𝑋<𝑦+𝑢,𝑋>𝑦)
𝑃(𝑥>𝑦)

,        0 ≤ 𝑦 < 𝑥 − 𝑢    (2) 
 

<=> 𝐹𝑢(𝑦) = 𝐹(𝑦+𝑢)−𝐹(𝑢)
1−𝐹(𝑢)

      (3) 

Since x =  y +  u  for X >  𝑢, we have the following representation for 
distribution function F: 

𝐹(𝑥) = 𝐹𝑢(𝑦)�1 − 𝐹(𝑢)� + 𝐹(𝑢)          (4) 

Due to scarcity of the data above threshold, the estimation of the conditional 
distribution F(u) is a complex task. At this point EVT gives a useful solution for 
conditional excess distribution function which is stated in the following 
theorem. 

Theorem 1. (Pickands,1974, Balkema & de Haan, 1975) Let (Xn) be a set of n 
independent and identically distributed random variables with common 
distribution function F. Let XF the end of the upper tail of F, possibly a positive 
infinity. If F is such that the limit given by Theorem 1 exists, there are 
constants ξ, β>0 such that Fu(y) for large threshold is well approximated by: 

lim𝑢→𝑥𝐹 sup0<𝑦<𝑥𝐹−𝑢�𝐹𝑢(𝑦) − 𝐺𝜉,𝛽(𝑦)� = 0    (5) 

where 

𝐺𝜉,𝛽(𝑦) = �
1 − (1 + 𝜉𝑦

𝛽
)−

1
𝜉, 𝜉 ≠ 0

1 − 𝑒−
𝑦
𝛽, 𝜉 = 0

     (6) 
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𝐺𝜉,𝛽 is the so called generalized Pareto distribution (GPD). 

The parameter β > 0 is a scale parameter, whereas ξ is the shape parameter, 
or tail index. The value of parameter ξ indicates heaviness of the tail: the 
greater the ξ, the heavier the tail. Additionally, the tail index 𝜉 determines the 
type of three extreme value distributions. If 𝜉 = 0, the distribution is Gumbel 
with infinite left and right tails; characteristic for thin-tailed distributions of 
returns. If 𝜉 < 0, the distribution is Weibull and has an upper bound. Finally, if 
𝜉 > 0, the distribution is Fréchet and has a lower bound, characteristic for fat-
tailed distributions of returns. The previous theorem states that for a large u, 
the excess distribution above this threshold may be taken to be exactly GPD 
for some ξ and β.  

The GPD estimation involves two steps: the choice of threshold and the 
parameter estimation. The choice of threshold is basically a compromise 
between choosing a lower threshold that gives enough observations for 
parameter estimation (some observations may come from the center of the 
distribution), leading to less volatile and more biased estimators, and 
choosing a higher threshold so Theorem 1 holds, but generating few 
excesses and thus making the estimators more volatile and less biased. 𝜉. We 
will use results of McNeil and Frey (2000) who suggested using the largest 
10% of the realized losses for a threshold. Moreover, for parameter estimation 
we will use maximum likelihood estimators. 

After the parameters of GP distribution are obtained, the next step is the 
application of GP distribution to quantile estimation of high out of sample 
quantiles. The crucial question is how to make use of Generalized Pareto 
distributions in an estimate of the unknown distribution F of random variables 
Xi. Since 𝐹𝑢(𝑦) belongs to Generalized Pareto family of distributions, we are 
left with the estimation of 𝐹(𝑢). According to historical simulation method 
𝐹(𝑢)can be estimated as (n- Nu)/n, where Nu is the number of exceedances 
over a given threshold u and n is the total number of observations. By putting 
the HS estimate of 𝐹(𝑢) in equation (4) and employing GPD parameters, we 
get the tail estimator: 

𝐹�(𝑥) = 1 − 𝑁𝑢
𝑛

(1 + 𝜉 𝑥−𝑢
𝛽�

)
−1
𝜉�      (7) 

which is only valid for x >  𝑢. Alternatively, we can set 𝐹(𝑢) at some 
predefined level (for example 0.95), and then from the sample size (for 
example 1000) determine corresponding 𝑁𝑢 (in this example it would be 50). 
Furthermore, threshold can be found as the (𝑙 − 𝑁𝑢) observation  𝑋(𝑛−𝑁𝑢), if 
all observations are ordered from the lowest to highest. 
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Inverting the previous equation for a given probability 𝑞 > 𝐹(𝑢), VaR is 
obtained: 

𝑉𝑉𝑅�𝑞 = 𝑢 + 𝛽�

𝜉�
( 𝑛
𝑁𝑢

(1 − 𝑞)−𝜉� − 1)      (8) 

3.3. Conditional Extreme Value Theory 

As already mentioned, financial returns often exhibit autocorrelation and 
volatility clustering effect, which are both violating iid assumption of EVT. 
Therefore, in order to manage dependence in the time series of financial 
returns we will use conditional extreme value theory model proposed by 
McNeil and Frey (2000).  This model suggests application of peaks over 
threshold method for modeling tail behavior of residuals obtained with 
GARCH model. In this case we used GARCH (1,1) model with constant mean 
equation: 

𝑟𝑡 = 𝜇 + 𝑉𝑡𝑉𝑡 = 𝜎𝑡𝜀𝑡   𝑉𝑙𝑎    𝜀𝑡~𝑁(0,1)   => 𝑉𝑡~𝑁(0,𝜎𝑡2)  (9) 

𝜎𝑡2 = 𝛼0 + 𝛼1𝑉𝑡−12 + 𝛽1𝜎𝑡−12       (10) 

where 𝛼0 > 0, 𝛼1 > 0, 𝛽1 > 0 and 𝛼1 + 𝛽1 < 1. From the GARCH model we 
obtain one period ahead variance forecast and standardized residuals 𝜀𝑖. We 
assume that excess residuals over predefined threshold 𝑢 = 𝜀𝑁𝑢+1 (Nu is the 
number of data in tail which is fixed) follow Generalized Pareto distribution. 
The tail estimator is then: 

𝐹�(𝑥) = 1 − 𝑁𝑢
𝑛

(1 + 𝜉 𝜀−𝑢
𝛽�

)
−1
𝜉�      (11) 

For 𝑞 > 1 − 𝑁𝑢
𝑛

, inverting the previous formula gives: 

𝑉𝑉𝑅�(𝜀)𝑞 = 𝜀𝑁𝑢+1 + 𝛽�

𝜉�
(� 𝑛

𝑁𝑢
(1 − 𝑞))−𝜉� − 1�    (12) 

which is the q-th quantile of residuals. Using the conditional variance forecast 
for one period ahead and q-th quantile of residuals we obtain one day VaR at 
1-q confidence level: 

𝑉𝑉𝑅𝑞 = 𝜎𝑡+1𝑉𝑉𝑅(𝜀)𝑞       (13) 

3.4. Conditional Coverage Test (Cristoffersen test) 

VaR models assume that exceptions should be independently distributed over 
time. If the exceptions exhibited some type of “clustering”, then the VaR 
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model may fail to capture returns variability under certain conditions, which 
could represent a potential problem. If the VaR measure accurately reflects 
the underlying portfolio risk then the chance of violating today's VaR should 
be independent of whether or not yesterday's VaR was violated.  

Christoffersen test is based on breaking up the null hypothesis into two sub-
hypotheses: the sub-hypothesis that the model generates the correct 
frequency of tail losses, and the sub-hypothesis that tail losses are 
independent. These two sub-hypothesis are practically summed into one 
which says that the hit series 𝐼𝑡(𝛼)2 is independent and identically distributed 
and has Bernoulli distribution. To test this hypothesis, a likelihood ratio test of 
conditional coverage is used: 

𝐿𝑅𝑐𝑐 = 2(n00 ln �1−π�01
1−α

� + n01 ln �π�01
α
� + n10 ln �1−π�11

1−α
� + n11 ln �1−π�11

1−α
�  (14) 

where nij denotes the number of observations of the hit sequence with a j 
following an i. Moreover π�01and π�11 are obtained as maximum likelihood 
estimates of 𝜋𝑖𝑖 = 𝑃(𝐼𝑡 = 𝑗/𝐼𝑡−1 = 𝑖):  

𝜋�01 = 𝑛01
𝑛00+𝑛01

         (15) 

𝜋�11 = 𝑛11
𝑛10+𝑛11

        (16)  

This test is asymptotically distributed as χ2 with two degrees of freedom. The 
acceptance region for the null hypothesis is between zero and critical value of 
χ2 with two degrees of freedom. Therefore, if the value of 𝐿𝑅𝑐𝑐 is in this region 
we may claim that the VaR model generates the correct frequency of tail 
losses, and that the tail losses are independent. 

4. Empirical Results 

In this study we examined the predictive performance of conditional EVT in 
VaR estimation on S&P500 index for the period January 1998 - April 2013 
and six indices from Southeastern Europe for the period of September 2004 - 
April 2013. We estimated one day VaR for both tails of returns’ distributions 
and examined model consistency at confidence levels of 0.95, 0.99 and 
0.995. We used “rolling-window” concept with window size of 1000 

                                                 
2Hit function is defined in the following manner: 𝐼𝑡(𝛼) = �

1       𝑖𝑖      𝑥𝑡 ≤ −𝑉𝑉𝑅𝑡−1,𝛼
0        𝑖𝑖       𝑥𝑡 ≥ −𝑉𝑉𝑅𝑡−1,𝛼
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observations. According to this concept, the one period ahead return forecast 
is calculated using the data from the previous 1000 observations. For S&P500 
index we used 2853 “rolling-windows” for each tail and confidence level, 
whereas for BELEXline we used 1158, for BET we used 1132, for BUX we 
used 1149, for CROBEX we used 1098, for SBITOP we used 1130 and for 
SOFIX we used 1107. Different number of “rolling windows” is a consequence 
of different number of working days of stock exchanges in countries across 
Southeastern Europe. All the calculations were performed in MATLAB 
software version R2009a. 

4.1. Data Analysis 

Before VaR assessment and backtesting preliminary data analysis was 
conducted. The results are given in the following table. 

Table 1. Descriptive Statistics 

  S&P500 BELEX 
line BET BUX CROBEX SBITOP SOFIX 

Mean 0.0001 0.0000 0.0001 0.0001 0.0001 -0.0001 -0.0001 
Median 0.0006 0.0000 0.0002 0.0002 0.0002 0.0000 0.0001 
Maximum 0.1100 0.0990 0.0459 0.0572 0.0642 0.0363 0.0317 
Minimum -0.0950 -0.0700 -0.057 -0.054 -0.0467 -0.0366 -0.0493 
Standard 
deviation 0.0130 0.0100 0.0082 0.0077 0.0061 0.0052 0.0060 

Skewness -0.186 0.260 -0.494 -0.085 0.051 -0.457 -0.894 
Kurtosis 10.063 14.671 6.617 6.013 13.342 7.564 8.577 
Jarque-
Berra 
statistic 

8031 1227.2 3976.6 3240.1 15560.9 5151.6 6739.3 

Hi square 
with 2 d.o.f. 5.991 5.991 5.991 5.991 5.991 5.991 5.991 

Number of 
observations 3853 2158 2132 2149 2098 2130 2107 

Ljung Box Q 4995.3 737.4 1019.7 2049.8 2126.8 1833.6 2358.5 

Source: Author 

For all indices mean proved to be zero, which is also often cited stylized fact 
of daily financial returns. Standard deviation for S&P500 is slightly higher, 
which is contrary to the intuition that emerging markets should be more 
volatile. However, this may be due to relatively low liquidity of emerging 
markets when compared to USA market. Among emerging markets the most 
volatile is Serbian market, which can be associated with the highest country 
risk and overall stability. Skewness is negative for majority of the indices, 
meaning that the tail on the left side is longer or fatter, than the right side, 
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whereas for BELEXline and CROBEX is positive. Kurtosis for all indexes is 
high, especially for BELEXline and CROBEX giving indication of strong 
presence of fat-tails. Moreover, high values of Jarque-Berra test statistics 
prove that returns for all indexes strongly deviate from normality. This 
deviation from normality and fat-tails of returns of S&P500 and BELEXline 
indices can be seen even better from the following QQ plot graphs (these 
indices were chosen since they have the highest value of Jarque-Berra 
statistic). 

Graph 1. QQ Plots of BELEXline 

 

Graph 2. QQ Plots of S&P500  
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Finally to test the presence of volatility clustering we tested the autocorrelation 
of squared residuals. The Ljung Box Q statistic for all indices is significantly 
above critical value of 31.404, thus we can conclude that heteroscedasticity is 
strongly present in the data. The preliminary data analysis in both cases 
confirmed the stylized facts about financial returns such as fat-tails and 
volatility clustering, thus giving us incentive to use conditional EVT model for 
modeling VaR.    

4.2. Backtesting 

Testing precision and predictive performance of VaR model is a crucial step 
for validation of risk measurement system. Regarding this, backtesting gives a 
statistical framework for testing whether realized returns are in line with VaR 
prediction. In its simplest form backtesting compares the number of breaches 
of VaR (violations- when realized return was below VaR) and compares it with 
confidence level used. For example, if we consider 99% VaR, violation should 
occur in 1% of the returns. With this simple technique, we obtain the following 
results for lower tail VaR (Table 2.) and for upper tail VaR (Table 3.) 

Table 2. Number and percentage of VaR violations for lower tail 

  Number and percentage of VaR violations  

Confidence level 0.95 0.99 0.995 

Predicted for S&P500 143 (5%) 28 (1%) 14 (0.5%) 

Realized for S&P500 133 (4.66%) 26 (0.91%) 12 (0.42%) 
Predicted for 
BELEXLine 58 (5%) 12 (1%) 6 (0.5%) 

Realized for 
BELEXLine 54 (4.66%) 5 (0.43%) 5 (0.43%) 

Predicted for BET 57 (5%) 11 (1%) 6 (0.5%) 

Realized for BET 45 (3.97%) 13 (1.15%) 5 (0.44%) 

Predicted for BUX 57 (5%) 11 (1%) 6 (0.5%) 

Realized for BUX 51 (4.44%) 12 (1.04%) 7 (0.61%) 

Predicted for CROBEX 55 (5%) 11 (1%) 5 (0.5%) 

Realized for CROBEX 41 (3.7%) 8 (0.73%) 3 (0.27%) 

Predicted for SBITOP 57 (5%) 11 (1%) 6 (0.5%) 

Realized for SBITOP 57 (5%) 10 (0.88%) 4 (0.35%) 

Predicted for SOFIX 55 (5%) 11 (1%) 5 (0.5%) 

Realized for SOFIX 48 (4.34%) 6 (0.54%) 3 (0.27%) 

Source: Author 
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Table 3. Number of VaR violations for upper tail 

 
Number and percentage of VaR violations  

Confidence level 0.95 0.99 0.995 

Predicted for S&P500 143 (5%) 28 (1%) 14 (0.5%) 

Realized for S&P500 143 (5%) 30 (1.05%) 18 (0.63%) 

Predicted for BELEXLine 58 (5%) 12 (1%) 6 (0.5%) 

Realized for BELEXLine 57 (4.92%) 6 (0.51%) 4 (0.34%) 

Predicted for BET 57 (5%) 11 (1%) 6 (0.5%) 

Realized for BET 50 (4.42%) 14 (1.12%) 11 (0.97%) 

Predicted for BUX 57 (5%) 11 (1%) 6 (0.5%) 

Realized for BUX 66 (5.74%) 10 (0.87%) 5 (0.43%) 

Predicted for CROBEX 55 (5%) 11 (1%) 5 (0.5%) 

Realized for CROBEX 50 (4.55%) 6 (0.55%) 2 (0.18%) 

Predicted for SBITOP 57 (5%) 11 (1%) 6 (0.5%) 

Realized for SBITOP 64 (5.66%) 14 (1.24%) 4 (0.53%) 

Predicted for SOFIX 55 (5%) 11 (1%) 5 (0.5%) 

Realized for SOFIX 48 (4.34%) 11 (0.99%) 7 (0.63%) 

Source: Author 

Different number for predicted VaR violations across indices is for the reason 
that we have different number of observations for each index. From the 
backtesting prospective the closer the number of realized violations to the 
number of predicted violations, the better the model. In our case, we can see 
that for 95% confidence level for lower and upper tail the model slightly 
overestimates VaR. For 99% and 99.5% confidence levels for both tails the 
number of VaR violations is in most cases almost exactly the same as 
predicted. 

However, counting the number of violations and calculating its percentage is 
just the first step in backtesting process. In order to test the risk measurement 
model we need more powerful test that will include not only the frequency of 
violations but also dependence structure of violations. Therefore, we 
conducted Christoffersen Conditional coverage test. The results for both tails 
are given in the following two tables – Table 4 and Table 5. 
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Table 4. Conditional coverage test – lower tail 

DATA 

Confidence level 

0.95 0.99 0.995 

Likelihood 
ratio p value Likelihood 

ratio p value Likelihood 
ratio p value 

Expected 5.99 0.05 5.99 0.05 5.99 0.05 

S&P500 1.22 0.54 0.71 0.7 0.48 0.79 

BELEXline 2.68 0.26 4.83 0.09 0.92 0.15 

BET 12.67 0.00 2.46 0.29 0.12 0.94 

BUX 0.80 0.67 0.28 0.87 0.35 0.84 

CROBEX 4.27 0.12 1.02 0.60 1.38 0.50 

SBITOP 0.44 0.80 0.33 0.85 0.57 0.75 

SOFIX 1.45 0.48 2.87 0.24 1.41 0.49 

Source: Author 

Table 5. Conditional coverage test – upper tail 

DATA 

Confidence level 

0.95 0.99 0.995 

Likelihood 
ratio p value Likelihood 

ratio p value Likelihood 
ratio p value 

Expected  5.99 0.05 5.99 0.05 5.99 0.05 

S&P500 1.82 0.4 0.71 0.7 1.14 0.57 

BELEXline 0.51 0.77 3.34 0.19 0.65 0.72 

BET 1.11 0.57 0.95 0.62 4.19 0.12 

BUX 1.32 0.52 0.38 0.83 0.14 0.93 

CROBEX 1.61 0.45 2.80 0.25 2.96 0.23 

SBITOP 2.51 0.29 0.96 0.62 0.09 0.96 

SOFIX 4.37 0.11 2.80 0.25 0.45 0.80 

Source: Author 

The first and the most important result from both tables is that Conditional 
EVT VaR model is correct for all indexes and for both tails at all confidence 
levels (p values are all above 5%). The model is rejected only once for lower 
tail of BET index at 95%, which is due to significantly lower number of VaR 
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violations than predicted, hence the model overestimated VaR. Moreover, p 
values are in majority of the cases high, which confirms that Conditional EVT 
model strongly holds. This is vital, since we tested the model at seven very 
different markets – one very big and developed market and six markets which 
are rather small and shallow. In addition, we can clearly see that fat-tails are 
adequately modeled since at high confidence levels likelihood ratio statistics 
are very low, which is usually not the case with other parametric models. Also, 
asymmetry in returns is well captured since results for upper and lower tails 
are different. Finally, given that the data for all indices were chosen to cover 
stress periods, we can conclude that the model is robust.  

5. Conclusion 

In this paper we investigated predictive performance of conditional EVT VaR 
model of seven indexes – S&P500, BELEXline, BET, BUX, CROBEX, 
SBITOP and SOFIX. Both tails of returns distributions were estimated serving 
as a proxy of investors’ long and short positions. Preliminary data analysis 
proved that distributions of returns for all indices were not normally distributed. 
Moreover, results confirmed presence of fat-tails, meaning that probability of 
high impact losses/gains on these markets is significant. This is an important 
result, especially for the markets with negative skewness, for the reason that it 
indicates high risk of great losses. In addition, data analysis found that 
volatility clustering is strongly present on these markets. These facts present 
crucial challenges for risk managers while assessing risk and trying to capture 
specific risk behavior in these markets. With this in mind, we proposed and 
tested conditional EVT methodology on all markets of Southeastern Europe. 
Obtained results proved that for all confidence levels this methodology models 
adequately tail behavior of returns. 

The main contribution of this study is that it produces quantitative and 
qualitative insight into tail risk of SE emerging markets and its modeling. So 
far, research and practice on these markets relies mostly on conventional 
models for VaR assessment, which adequately capture ether volatility 
clustering effect (EWMA, GACRH models) or fat-tails (historical simulation or 
pure EVT models). In this paper, the applied VaR methodology was tailored to 
fit specific characteristics of SE markets. Moreover, the robustness of 
methodology was tested through choice of time period, which included 
periods before, during and after global financial crisis. For Serbian market this 
is the first study in which conditional EVT approach is successfully applied 
and backtested.  

For all of the above mentioned reasons, we find that results of this study are 
very useful for risk management and investment professionals in the process 
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of risk quantification and investment analysis. However, the scope for further 
research lies in expanding univariate conditional EVT analysis to multivariate 
cases which are applicable to real investment portfolio.    
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