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CREATION OF IMAGE MODELS FOR INSPECTING VISUAL FLAWS 
ON CAPACITIVE TOUCH SCREENS

Yuan-Shyi Peter Chiu, Hong-Dar Lin* 
Department of Industrial Engineering and Management, Chaoyang University of Technology,Wufong District, Taiwan                                                                                   

Touch screens (TSs) are commonly applied in many electronic appliances such as smartphones, tablets, etc. Cur-
rently, capacitive touch screens (CTSs) are the main touch technology of screen panels due to many excellent elec-
tronic properties. Problems exist in inspecting fl aws inlaid in appearances of CTSs with structural patterns. Area fl aws 
are a type of common visual defect that comprises dust, bubbles, ripple marks, and other fl aws of bigger sizes. These 
fl aws have the attributes of low contrast, brightness with slow changes, unusual and non-orientation forms, and 
sometimes both bright and dark fl aws existing at the same time in a region. This paper suggests image models based 
on transformation fi ltering to inspect the area fl aws on appearances of CTSs. We apply the Haar wavelet transform 
with fl at zone fi ltering technique to eliminate the structural patterns of background by means of fi ltering an approxi-
mate sub-image of a breakdown wavelet domain image. Subsequently, the fi ltered image is reversely transformed 
to obtain a rebuilt image in spatial domain. Last, the rebuilt image with intensifi ed fl aws can be simply partitioned 
into three species (black fl aws, gray fl aws, and white background) by using a statistical interval estimation method. 
Therefore, the intricate area fl aws are precisely identifi ed by the suggested scheme. We contrast our approach with 
three traditional methods with real samples under complex background and conduct quantitative comparisons. The 
effectiveness and accuracy of the developed image models are confi rmed by expert assessments, as well as by 
comparative analysis with the known methods in the fi eld of spatial localizations and production-related effects of 
fl aw detection.
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INTRODUCTION

According to the growth of smartphones, common 
touchtone phones are progressively being substituted to 
arouse a wave of touch screen devices. Touch screens 
(TSs) are adopted not only for mobile phones but also 
for computers, televisions, cameras, handheld game 
consoles and other 3C products. Thus, the increasing 
need for TSs encourages the expansion of the TS indus-
try. Currently, touch technology of screen panels can be 
mainly divided into resistive (an earlier technology), ca-
pacitive, optical, electromagnetic, and ultrasonic types. 
Since resistive touch screens (RTSs) are susceptible 
to scrape and fi re, low light transmittance, and slow re-
sponse shortcomings, the RTS products cannot satis-
fy the modern requirements for touch technology and 
thus have a market share much lower than that of the 
capacitive touch screens (CTSs). The CTSs, being an 
unshakable market leader in the TS industry, have the 
advantages of waterproofness, stain proofness, scratch 
proofness, fast response, anti-ultraviolet, etc.  
The appearance quality of TSs infl uences their yield 
rates remarkably in manufacturing process. Lin et al. [1] 
reported a total fl aw rate is 36.2% of 12 inspection tasks 
in the manufacturing process of a professional TS pro-
ducer. Four production operations are related to the vi-
sual quality of sensing circuits, inclusive of TS clean, pro-
tect fi lm attachment, sensing circuit pre-test and function 
fi lm attachment. This fl aw rate of the four operations is 

14.1% that is roughly up to 38.95% of the total fl aw rate 
in the production procedures. Accordingly, automated vi-
sual detection for the appearance fl aws on the TSs is 
absolutely essential in the manufacturing process [2, 3].  
CTSs are composed of transparent glass substrates, on 
the surface of which an oxide metal is regularly coated. 
Figure 1 shows a CTS screen with duplicate modes of 
sensing circuits and an enlargement of part of a CTS 
surface. The CTSs have multi-layer structures and are 
categorized as structural textures. Appearance fl aws in-
fl uence the exteriors of CTSs as well as their durability, 
reliability and serviceability. It is a severe examination 
work when fl aws are inlaid on appearances of CTSs hav-
ing structural textures (sensing circuits). Small appear-
ance fl aws, regularly arising in the production process of 
TSs, arouse much more damages and losses when they 
emerge in electronic components than in manufacturing 
parts. Thence, to exist in current rival market of sci-tech 
products, TS producers cannot afford to neglect small 
appearance fl aws [4, 5].
The appearance fl aws are usually classifi ed into two 
types: linear and areal. The areal type includes dust, wa-
ter signs, foams and additional fl aws of bigger dimen-
sions. These fl aws have the attributes of low contrast, 
brightness with gradual changes, irregular and non-di-
rectional shapes, and occasionally both bright and dark 
fl aws existing at the same time in a region. This kind of 
fl aws compared with the linear type is more complicate 
to identify its regularity.
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(a)                                                       (b)                    
Figure 1: A CTS display screen (a) with duplicate modes of sensing circuits and (b) an enlargement 

of part of a CTS surface

Figure 2: Three CTS images having directional repetitive textures: (a) a fl aw-free image; (b) two 
defective images with various area fl aws

Thus, this paper proposes an automated inspection sys-
tem to detect the areal fl aws on TSs. Figure 2 shows 
a fl aw-free image and two defective images with area 
fl aws of CTS appearances having directional repetitive 
textures. The directional textures indicate grid forms with 
linear circuits in four ways: horizontal, vertical, and two 
diagonals. Those background sensing circuits make the 
fl aw detection task harder when area fl aws are inlaid 
in the appearances of directional textures. We thereby 
propose an image restoration approach based on WT to 
conquer these problems of automated areal fl aw inspec-
tion of CTSs. 
The rest of the paper is organized as follows: First, we re-
view the literature on optical methods of image process-
ing for fl aw detection. Second, we explain the proposed 
image models for inspecting fl aws on CTSs. Third, we 
conduct the experiments and evaluate the performance 
of the proposed models with known methods. Four, we 
present the conclusion and the future work. 

LITERATURE REVIEW

Optical inspection of appearance fl aws has turned into 
an important work for industries who exert to enhance 
output quality and process effi ciency [6, 7]. Flaw inspec-
tion techniques compute a set of textural characteristics 
in a moving mask and seek for crucial partial changes 
among the feature vectors in spatial or frequency do-
mains [8]. Lin and Chiu [9] developed a machine vision 

system to fi nd mass centers of chips, locate cutting lines 
and estimate process regulation plans for the automated 
and high-speed dicing of electronic passive components. 
Adamo et al. [10] proposed a low-cost inspection system 
based on the Canny edge detection for online defects 
assessment in satin glass. Liu et al. [11] presented the 
method based on watershed transform methods to seg-
ment the possible defective regions and extract features 
of bottle wall by rules.  
Automatic thresholding techniques have also been 
abroad utilized in the machine vision fi elds for automatic 
optical detection of fl aws [12]. The Otsu method [13] is 
the representative approach of threshold techniques for 
common images regarding consistency and appearance 
measures. It means chosen threshold values maximizing 
the between-class variances of intensity histogram. It of-
fers satisfying outcomes for thresholding an image hav-
ing an intensity histogram of bimodal distribution. Ng [14] 
modifi ed the Otsu method by choosing optimum thresh-
old values for unimodal and bimodal distributions, and 
evaluated the effectiveness of this improved technique 
on fl aw inspections. Navarro et al. [15] developed a sen-
sor system with thresholding technology for inspecting 
blemishes in ship hull surfaces.  
Three popular transforms, Fourier, Gabor and wavelet, 
are ordinary frequency transformations applied in tex-
ture analysis [16]. Nasira and Banumathi[17] utilized the 
Fourier transform and image processing to detect textile 
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fl aws. Tsai and Hsiao [18] developed a wavelet transform 
method to detect fl aws inlaid in uniformly textured surfac-
es. Lin [19] implemented a wavelet-based multivariate 
statistical method to detect water fl aws with little gray lev-
el contrast on the surface of ceramic components. Li [20] 
used the wavelet transform to strengthen fl aw areas and 
abstract discriminatory characteristics from reconstruct-
ed images and the support vector machine to categorize 
fi ve major fl aw classes on copper surfaces. Chang [21] 
emphasized on structure plan and execution of on-line 
textile fl aw inspection system using Gabor fi ltering. Lin 
and Chiu [22] combined block cosine transform and grey 
relational analysis for blemish detection on domed sur-
faces in packets of light emitting diodes.  
Directional textures with uniform modes are regularly 
observed on artifi cial objects, like manufactured parts, 
cloth textiles, and electronic components. Lu and Tsai 
[23] presented a machine vision system applying inde-
pendent component analysis for automatic detection of 
tiny defects on LCD panel appearances including pure 
and intricate styles. Regarding fl aws detection of TSs, 
Chen et al. [24] developed an automatic visual inspec-
tion device for analogical RTSs. This equipment used 
image processing techniques to detect fl aws on surfaces 
of RTSs. The RTSs have the pattern of regular spac-
ers in spatial domain and lead to the mode of repeated 
dots in Fourier domain. Lin and Tsai [25] suggested a 
Fourier transform based approach to detect linear fl aws 
on CTS appearances. The linear fl aws such as scratch-
es and cracks are regular fl aws with directional shapes. 
This kind of fl aws compared with the areal type is less 
complicated to identify its regularity. Hung and Hsieh [2] 
developed an adaptive model with the ability of learning 
online to separate defects by using the features of repet-
itive patterns of the sensing circuits. This approach has 
a limitation of shadow effect problem that infl uence on 
defect detection. Liang et al. [3] proposed a sparse rep-
resentation-based approach to detect touch screen fl aws 
in low-resolution images. They used a sparsity ratio of 
the sparse representation coeffi cients like a measure for 
distinguishing defective images.  The positions of detect-
ed defects can only be approximately located. For a new 
type of compound CTS patterns without primitives nor 
periodicity, Jiang et al. [5] introduced a combined method 
of nonnegative matrix factorization with tolerance model 
for defect detection in such CTS patterns.  This method 
can only be dependably used in such new type of CTS 
patterns. Therefore, the purpose of this research is to 
fi nd effi cient and effective techniques to automatically 
detect the appearance fl aws on CTSs.  

MATERIALS AND METHODS

This study explores the area fl aw detection techniques of 
the fashionable CTS components. The suggested meth-
od transforms a CTS testing image with four distinct ways 
of regular lines in background to wavelet domain. Then, 
the directional textures of background will be eliminat-

ed by means of fi ltering the approximate subimage of a 
breakdown image in wavelet domain. It is hard to exactly 
inspect area fl aws inlaid in intricate directional textures. 
Consequently, we propose an entire image reconstruc-
tion approach applying wavelet transform and fl at zone 
fi ltering procedure for area fl aw inspection on surfaces of 
CTSs. This technique does not proceed with the proce-
dures of feature extraction and template matching.  

Image Modeling& Analysis

This study develops a Wavelet Transform (WT) based 
fl at zone fi ltering approach to detect area fl aws of CTSs. 
The paper extends the earlier work [4] of the authors by 
a considerable amount of discussion and further exper-
iments. When a CTS image with four distinct ways of 
line patterns of sensing circuits is transformed to wavelet 
domain, the directional textures of background can be 
eliminated by means of fi ltering the approximate subim-
age of a break-down wavelet domain image. The fi ltering 
scope is determined by a statistical interval. Within the 
range, the frequency elements will be replaced by the 
mean value of wavelet frequencies. Subsequently, the 
fi ltered image will be reversely transformed to obtain a 
rebuilt image in spatial domain. Last, the rebuilt image 
can be easily partitioned into three species (black fl aws, 
gray fl aws, and white background) by using a statistical 
interval estimation method and some characteristics of 
the identifi ed fl aws are abstracted.  

Wavelet Transform

WT offers an easy path to gain a multi-resolution depic-
tion, where texture properties can be likely abstracted. 
We apply the Haar WT to execute image transformation 
for frequency fi ltering since the advantages of Haar WT 
comprise partial image processing, easy computations, 
fast processing, memory saving, and numerous image 
properties [26-28]. The Haar WT is one of the easiest 
and fundamental WTs. A typical breakdown of a spatial 
domain image can be performed by early using 1D Haar 
WT to each row of pixel values and next carrying out 
another 1D WT to each column. This Haar WT can be 
calculated step-by-step by the average and half of differ-
ences of two adjacent pixels. Due to the transform notion 
of the 1D WT, the Haar WT could deal with a 2D image 
of (M x N) pixels in the later procedures. The row transfer 
expresses as:

gR (m,n)= [(g(m,2n)+g(m,2n+1))/2],

gR (m,n+[Q/2] )= [(g(m,2n)-g(m,2n+1))/2]

where 0 ≤ m ≤ (P-1), 0 ≤ n ≤ [Q/2]-1, and [ ] is the 
Gauss operator. The column transfer denotes as:

gC(m,n)=[(gR (2m,n)+gR (2m+1,n))/2],

gC(m+[P/2],n)= [(gR (2m,n)-gR (2m+1,n))/2],                 (2)

(1)
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where 0 ≤ m ≤ [P/2]-1, and 0 ≤ n ≤ (Q-1). 
In the above notations (Eqs. (1-2)), g(m,n) is a testing 
image,gR (m,n) the row transfer function of g(m,n), and 
gC (m,n) the column transfer function of gR (m,n). While 
gC (m,n) is as well the result of the wavelet breakdown of 
g(m,n), the fi nal results of a Haar WT can be designated 
as:  
S(m,n)=gC (m,n), T1(m,n)=gC (m,n+[Q/2]),
      
T2(m,n)=gC(m+[P/2],n), T3(m,n)=gC(m+[P/2],n+[Q/2]),   (3)

where 0 ≤ m ≤ [P/2]-1, and 0 ≤ n ≤ [Q/2]-1.  
One layer of wavelet breakdown produces one approxi-
mate subimage and three detailed subimages including 
subtle compositions with horizontal, vertical and diago-
nal directions. An image is broken down by WT into one 
approximate subimage (S) and three detailed subimages 
(T1, T2 and T3). The four subimages with sizes of (P/2 
x Q/2) pixels constitute the wavelet features. One-lay-
er Haar wavelet breakdown is utilized to accurately fi nd 
the pixels with the textural features. Multi-layer wavelet 
breakdown produces rougher expression of a testing im-
age. A big number of breakdown layers will lead to the 
mixture effect for the fl aws and may arouse localization 
deviations of the found fl aws [29].  

Transformation Filtering

The wavelet approach transforms images into a depic-
tion where presenting spatial and frequency properties. It 
is appropriate for depicting partial variations in a uniform 
textured image. For one layer of wavelet breakdown, we 
gain one approximate subimage and three detailed su-
bimages including subtle compositions with horizontal, 
vertical and diagonal directions. Through carefully fi lter-
ing the approximate subimage in distinct breakdown lay-
ers for inverse WT, the rebuilt image will eliminate period-
ical, repeated texture patterns and enhance exclusively 
regional fl aws. A statistical decision interval method can 
then be applied to distinguish between fl aw areas and 
uniform districts in a rebuilt image. This changes a hard 
fl aw inspection problem in intricate textured images into 
an easy interval estimation problem in uniform images.  
Due to the oscillations of frequency tendency and the 
properties of low and high frequency districts, we devise 
a fl at zone fi lter pivoted at the origin of a 2D wavelet 
spectrum to fi ltrate primary low frequency elements of 
the spectrum image. A suitable band is early selected 
for the fl at zone fi lter in the WT spectrum. The frequency 
elements inside the band of the fl at zone fi lter (low fre-
quencies) are then set to the mean value of frequency, 
and those beyond the fi lter (medium and high frequen-
cies) are preserved. Last, we transform reversely the fi l-
tered WT image back to spatial domain. Selecting an ad-
equate band based on the level of frequency fl uctuations 
for the fl at zone fi ltering task can remarkably intensify 
the fl aw regions in spatial domain. This intensifi ed effects 

can be obviously viewed in the rebuilt images.  
Contrast to ordinary band fi ltering, the suggested fl at 
zone fi ltering utilize the mean value of overall frequen-
cy instead of zero to substitute the original frequency 
elements inside the chosen zone area in WT domain. 
The fl at zone fi ltering process is to decrease the vari-
ation between background and texture. The major in-
tention is to eliminate the directional background tex-
tures having small changes in intensity, and preserve 
the area fl aws having larger changes in intensity. We 
use the concept of statistical decision interval to cal-
culate the fl at zone area x̅±kσ and substitute all of the 
frequency elements inside the region by the frequen-
cy mean value x̅. The procedure can be expressed as:

WT(u,v)=  x̅,  if  x̅-kσ < WT(u,v) < x̅+kσ;                       (4)

WT(u,v)= WT(u,v), otherwise;
                            
where WT(u, v) is a WT frequency image, x̅ and σ are the 
mean value and standard deviation of the frequency in 
WT(u, v), and k is a constant determined empirically. Fig-
ure 3 shows two 3D WT spectrum diagrams which are 
the before and after plots of the fl at zone fi ltering are ex-
ecuted. Figure 3(a) is the 3D diagram of a WT spectrum 
and Figure 3(b) is the 3D diagram of a WT spectrum with 
fl at zone fi ltering process. After the fl at zone fi ltering op-
eration, the frequency elements having larger frequency 
are intensifi ed in WT domain.

(a)
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Figure 3: Two 3-D diagrams of WT spectrum which are 
before and after plots of the fl at zone fi ltering applied: 

(a) the 3D diagram of a WT spectrum



Journal of Applied Engineering Science  Vol. 16, No. 3, 2018
ISSN 1451-4117

337

Yuan-Shyi Peter Chiu, Hong-Dar Lin - Creation of image models for inspecting visual fl aws on capacitive touch screens

(b)

Figure 3: Two 3-D diagrams of WT spectrum which are 
before and after plots of the fl at zone fi ltering applied: 
(b) the 3D diagram of a WT spectrum after fl at zone 

fi ltering applied

Inverse Transformation and Segmentation

After the appropriate zone is decided, the frequency fi l-
tering procedure can exactly identify the fl aw-free low 
frequency districts and these frequency values are as-
signed to a mean value in wavelet domain. Then, we 
conduct reverse WT on the fi ltered frequency image to 
spatial domain for fl aw segmentation later. In this study, 
we intend to eliminate most duplicate modes in the re-
built image by choosing an appropriate zone in the ap-
proximate subimages for the mean value replacement. 
Since structural textures may express high directivity, re-
building the detailed subimages with directional empha-
sis distinct from those of the regular textures will delete 
most directional duplicate modes in an original image, 
and retain merely partial fl aws in a rebuilt image. The 
directional duplicate modes will lead to a roughly uniform 
intensity, while the partial fl aws will produce different in-
tensities in the rebuilt image.  
The rebuilt images have consistent intensities for pix-
els pertaining to homogeneous background areas, but 
they also give remarkably distinct intensities for pixels 
pertaining to heterogeneous fl aw regions. The gray lev-
el variability in homogeneous areas is small, while the 
gray level variability in heterogeneous regions is very 
large compared with the whole rebuilt image. Thence, 
a statistical method is used to establish an interval for 
differentiating fl aws from duplicate modes in the rebuilt 
image. The rebuilt image g' (x,y) will be roughly a uniform 
intensity image if a fl aw-free testing image is processed. 
The upper and lower interval limits (LL,LU) for gray level 
changes in the rebuilt image are denoted as:

L=μg' ± h σg'                                                                   (5)

where L is a threshold for separating fl aws from back-
ground, h is a control constant, μg' and σg' are a mean 
and a standard deviation of the rebuilt image with size 
M × M. The outcome three-level image G(x, y) for fl aw 
segmentation is:  

(6)

If an intensity value locates in the interval limits (LL,LU) 
then gray level is assigned to 255 (white) as a white back-
drop. Otherwise, gray level is assigned to 0 (black) as a 
part of dark fl aw if an intensity is less than LL and gray 
level is assigned to 127 (gray) as a part of gray fl aw if an 
intensity is more than LU. Once a pixel with an intensity 
locates in the interval limits, this pixel is categorized as 
a homogeneous background component. Otherwise, it is 
categorized as a heterogeneous fl aw component. If the 
fl aw size to be inspected is usually very small compared 
with a whole testing image, μg' and σg' can be calculated 
straightly from the rebuilt image of the testing image to 
adapt lighting changes in the inspection surroundings.  
These interval ranges are utilized to differentiate be-
tween uniform line modes and fl aws in a rebuilt image. 
The superior and inferior ranges of intensities in a rebuilt 
image are located at a distance hσg' from the mean μg'. 
Moreover, choosing an appropriate control parameter 
leads to accurately distinguishing fl aws from ordinary 
areas; however, an inappropriate control parameter out-
puts numerous incorrectly inspecting ordinary areas as 
fl aws. A little constant value h provides a strict control 
and can lead to erroneous alerts. A great constant value 
h offers a loosen control and can produce lost alerts. A 
supervised appearance inspection problem is explored 
in this study. The developed learning systems are ordi-
nary in computer vision and are proper for supervised 
environments in production sites. The number of WT 
breakdown layers and the size of fl at zone fi ltering uti-
lized for image rebuild are decided in advance from a 
texture model. The infl uence of number of multi-resolu-
tion levels and parameter settings of WT fi ltering process 
on inspection performance are assessed by trial and 
error in the experiments.  

EXPERIMENTS AND DISCUSSION

To assess the effect of the suggested method, assess-
ments were carried out on actual CTSs supplied by a TS 
production plant in Taiwan. All trial samples were arbi-
trarily chosen from the production process of TSs. Fig-
ure 4 illustrates the structures of the exploratory circum-
stance where we capture a CTS sample to be taken as 
testing images in the laboratory. The CTS images (270) 
having thickness 0.78mm, where 132 have no fl aws and 
138 have diverse area fl aws, were examined in our as-
sessments. All images of the CTS appearance have the 
same size of 256 x 256 pixels and an intensity of 8 bits. 
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(a)                                                                                       (b)

Figure 4: Structures of the exploratory circumstance where scanning a trial CTS sample: (a) equipment 
framework of experiments; (b) a trial CTS sample is put on testing platform

Figure 5: The user interface design of the implemented visual inspection system
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The suggested fl aw detection arithmetic is implemented 
on a personal computer (CPU i5-3230M 2.6 GHz and 
4GB RAM) by R2009b version of MATLAB language. 
To numerically confi rm the manifestation of the suggest-
ed method, we contrast the outcomes of our assess-
ments contrary to those supplied by technical assessors 
(i.e. the ground truth). Three impartial measures: correct 
classifi cation rate (CCR) and incorrect classifi cation 
rates (α and β) were assessed for the effect of the area 
fl aw detection methods. Statistical type I error (α) mea-
sures a probability of generating erroneous alerts, which 
judge regular areas as fl aws. The area of regular regions 
judged as fl aws is divided by the area of real regular 
regions to gain type I error. Statistical type II error (β) 
measures a probability of generating lost alerts, which 
invalid to alert actual fl aws. The area of undetected fl aws 
is divided by the area of real fl aws to gain type II error. 
The higher the effect assessment measures: (1-α), (1-
β), and CCR, the more exact the detection outcomes. 
The correct classifi cation rate CCR is denoted as:

CCR = (C(1-α) + C(1-β)) / Ctotal * 100%                              (7)

where C(1-α) is the pixel number of regular regions cor-
rectly detected as fl aw-free areas, C(1-β) is the pixel num-
ber of actual fl aw regions right detected as fl aw areas, 
and Ctotal  is the pixel number of a testing image.  
Figure 5 displays a user interface design of the imple-
mented system. The system interface shows the out-
comes and differences executed by the suggested fi l-
tering procedure in distinct phases for inspecting area 
blemishes in CTS appearances. The image (1) and im-
age (2) are a captured image and a corresponding gray 
scale image from a part of a trial sample. The image (3) 
is the transformed image of WT with the second break-
down layer and the image (4) depicts the fi ltered image 
after the fl at zone fi ltering operation conducted in WT do-
main. The image (5) and image (6) are the rebuilt image 
of the fi ltered image and the resulting three-level images 
that show the detected black fl aws in black and gray fl aws 
in gray by the proposed inspection system, respectively. 
The outcomes disclose that the area blemishes in CTS 
appearance are accurately separated in the three-level 
image, no matter of background with structural patterns.

Choices of important parameters

WT breakdown of an image with textures in the appropri-
ate level will effectively stress the partial fl aws in a con-
sistent appearance. To evaluate the infl uence of alternat-
ing number of breakdown layers on the rebuilt results, 
experiments present the rebuilt images from breakdown 
layers 1, 2, 3, and 4, separately. All these images are 
individually rebuilt from a fi ltered approximate subim-
age and three homologous detailed subimages with the 
Haar wavelet. Both images indicate that very small the 
number of breakdown layers (e.g. 1 and 2) cannot ad-
equately segment fl aws from the repeated texture pat-

terns and causes many erroneous alerts. Nevertheless, 
over large the number of breakdown layers produces 
the mixed effect of the fl aws and results in lots of lost 
alerts. The number of breakdown layer 3 is more proper 
to emphasize fl aws in the rebuilt image. Our experiments 
on a diversity of textured images have verifi ed that WT 
breakdown layer 3 is normally adequate for this area fl aw 
inspection application. 
If a decisive thresholding changes, two paired mea-
sures, erroneous alert rate (α) and detection rate (1-β), 
describing the outcomes of a hypothesis testing will vary 
[30]. When different thresholding are applied, the sets 
of erroneous alert rates and detection rates are fi gured 
as points in a Receiver Operating Characteristic (ROC) 
curve. The upper-left corner on a ROC fi gure represents 
an ideal outcome having 100% detection rate and a 0% 
erroneous alert rate. The more the ROC curve moves 
toward the upper-left corner,the better the trial executes. 
High-energy frequency elements related with repetitive 
line modes may arise approximately the primary zones 
in wavelet domain images. To remarkably fi lter out most 
consistent line modes and entirely retain the area fl aws 
in spatial domain images,the frequency elements on the 
primary zones must be replaced by the mean value of 
the frequency elements from the wavelet domain im-
ages. The fi ltering wideness decides the districts of the 
zone neighborhoods will be fi ltered out for high-energy 
frequency elements. Experiments indicate the fl aw de-
tection effect of the suggested method with k value of 1.1 
is better than those of the other k values. The fl at zone 
fi ltering method with larger k value eliminates consistent 
line modes and partial fl aws in the rebuilt image and lead 
to ignoring small fl aws. It suggests the more exact re-
gions of zone neighborhoods are fi ltered, the better the 
fl aw inspection outcomes will obtain.

Contrast effects of distinct area fl aw detection methods

Three traditional methods commonly applied to defect 
detection are compared to contrast effects of fl aw detec-
tion. To reveal the fl aw detection outcomes, Figure 6 dis-
plays partial outcomes of inspecting area fl aws by Otsu 
method [13], Iterative method [31], three-level method 
(two threshold values in spatial domain without frequen-
cy fi ltering), the suggested method, and ground truth, 
separately. The three spatial domain skills, the Otsu, It-
erative and three-level methods, make many incorrect 
alerts on area fl aw inspection. The frequency domain 
skill, the suggested method, inspects majority of area 
fl aws and makes few incorrect alerts. Consequently, the 
frequency domain technique excels the spatial domain 
approaches in the area fl aw inspection of the CTSs.
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Figure 6: Resulting examples of area fl aw inspection on CTS by: (a) Otsu method, (b) Iterative method, 
(c) three-level method, (d) proposed method, and (e) the ground truth

To contrast the effects of different area fl aw inspection 
methods, Table 1 sums up the detection outcomes of 
our tests. Three spatial domain skills and one frequen-
cy domain technique are assessed contrary to the out-
comes by technical assessors. The mean fl aw detection 
rates (1-β)of all testing images by these methods are, 
separately, 81.07% (Otsu method), 80.87% (Iterative 
method), 90.14% (three-level method), and 92.07% 
(suggested method). Nevertheless, the three spatial do-
main skills have remarkably larger erroneous alert rates 
(α), 26.70% (Otsu method), 20.41% (Iterative method), 
and 11.64% (three-level method). Otherwise, the sug-
gested approach has quite smaller erroneous alert rate, 
4.43%. In addition, the suggested approach has larger 

Methods α (%) 1-β (%) CCR (%) Time (sec.)

Otsu method 26.70 81.07 73.46 0.04

Iterative method 20.41 80.87 79.48 0.06

Three - level method 11.64 90.14 87.98 0.14

Proposed method 4.43 92.07 95.32 0.16

Table 1: Contrast effects table of four fl aw detection methods

CCR than do the other methods used to area fl aw in-
spection of CTS samples. The average processing time 
for dealing with a 256 x 256 image is: 0.04 seconds by 
Otsu method, 0.06 seconds by Iterative method, 0.14 
seconds by three-level method, and 0.16 seconds by 
the suggested method. Therefore, the suggested meth-
od conquers some troubles of inspecting area fl aws 
on CTSs and outperforms in the ability of accurately 
differentiating area fl aws from textured background.
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Experiments on wavelet fi ltering effects

To further assess the effect of WT fi ltering process in 
the suggested method, experiments with and without 
the fl aw enhancement effect of fi ltering on CTSs are 
both executed. All testing images with and without the 
WT fl aw enhancement procedure are separated by the 
three-level method to investigate how they differ in terms 
of area fl aw inspection. Both of the three-level method 
and suggested WT-based fi ltering method achieve good 
performance in detecting area fl aws of CTSs and the 
appearance fl aws that hurt the product quality. Table 2 
illustrates the production-related effects of appearance 
fl aw detections by the present method, three-level meth-
od, and suggested method. The merits of the suggest-
ed method are fourfold: (1).Both of the three-level and 
suggested methods excel in the ability of accurately dis-
criminating area fl aws from ordinary areas. The suggest-
ed method has smaller erroneous alert rate and larger 
fl aw detection rate than do the traditional methods. (2).
The two methods have larger CCRs than do the pres-
ent method (human visual inspection) used to area fl aw 
detection of CTS surfaces. (3).The retest rates for de-
tecting appearance fl aws of CTSs are as follows: 20.6% 
by present method, 7.7% by three-level method, and 
2.6% by suggested method. The retest rate is the per-
centage of reinspection and retesting of CTSs that have 
undertaken rework or other corrections. The suggested 
method has separately almost three times and eight 
times smaller average retest rate than do the three-level 
method and present method. (4).The suggested meth-
od has the smallest material wastage rate 3.2% than do 
the present inspection method and three-level method 
because of the excellent fl aw detection accuracy. The 
contrast outcomes of the experiments evidently illustrate 
the feasible and adequate property of the suggested WT-
based fi ltering method in inspecting area fl aws on CTSs.

CONCLUSION

This study is devoted to the current scientifi c and tech-
nical research.  We fi rst reviewthe literature on optical 

Methods Retest rate Material wastage

Present method
(Human visual inspection) 20.6% 16.7%

Three-level method 7.7% 4.8%

Suggested method 2.6% 3.2%

Table 2: The production-related effects of appearance fl aw detections by the three methods

methods of image processing for defect detection on 
touch screens and confi rm the importance and urgency 
of the development. Then, we introduce a visual inspec-
tion system with image models based on transformation 
fi ltering for automatic detection of area fl aws on CTS 
surfaces with structural textures. The duplicated line 
patterns of four directional textures in the testing images 
can be simply reduced by detecting the band region of an 
approximate subimage of a breakdown image in wavelet 
domain, assigning them to a mean value of frequency 
elements by the fl at zone fi lter, and taking reverse WT 
to obtain rebuilt image. In the fi ltered rebuilt image of a 
CTSsurface, the periodic line regions will have a roughly 
uniform intensity distribution,while the fl aw regions will be 
obviously preserved. A statistical interval is consequently 
estimated to establish the interval limits for differentiating 
among black fl aws, gray fl aws, and consistent line pat-
tern background. Thus, the intricate area fl aws can be 
precisely identifi ed by the proposed system. The created 
methods of digital image processing allow to justify local-
ization of fl aws on CTS surfaces. Assessment outcomes 
indicate the suggested method reaches a larger 92.07% 
probability of accurately differentiating fl aw areas from 
regular regions and a smaller 4.43% probability of mis-
takenly judging regular regions as fl aws on repetitive tex-
tured appearances of CTSs.  
In the computation time of the suggested method, the 
time of taking forward and reverse WT requires almost 
0.1 second averagely without searching any optimiza-
tion algorithms for parameter determination in advance. 
This computation time will be remarkably reduced when 
the parameter optimization has been executed and the 
WT is carried out in a hardware chip. Thence, the ways 
of further study will concentrate on investigating exist-
ing techniques to look for the most effi cient and effective 
way for the proposed application.  
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