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Vehicle routing, with its many variants, is one of the most important and frequently solved problems in transportation 
engineering. The aim of this paper is to develop a decision-making support tool for addressing the issue of dispatching 
vehicles in scenarios characterized by uncertain demands within soft time windows. In real-world scenarios, it is not 
uncommon for customer demands to exhibit flexibility, where certain early arrivals or delays may be deemed 
acceptable. Therefore, this paper introduces vehicle routing in more realistic contexts, offering potential practical 
implementations. The methodology for solving the problem is based on a fuzzy logic system whose membership 
functions are additionally adjusted using a neural network. Such a tool, neuro-fuzzy logic, is suitable for solving a 
defined routing problem since it can consider all the mentioned uncertainties in the distribution systems. Each user 
is assigned a performance index that considers travel time, demand, and delivery time windows. Then, the 
performance index is used as input data in the proposed vehicle routing tool based on the Clarke-Wright algorithm. 
The described approach has been tested on a concrete example, mimicking a distribution network resembling real-
world conditions, incorporating estimated travel times between customers. The results demonstrate that the proposed 
approach can effectively handle customer demands, with an average delay of 5.05 minutes during the 80-minute 
distribution. In future research, some environmental factors could be included in the proposed model. In addition, one 
of the directions of future research could be vehicle re-routing using the ideas from this paper. 

Keywords: vehicle routing, uncertain demands, soft time windows, fuzzy logic, neural networks 

1 INTRODUCTION 

The transportation of people and goods is one of the most important undertakings of today's society. Every day, a 
significant number of resources are spent on fuel, transportation, and equipment to get people or goods to the right 
place at the right time. In such a complex and vast system, even small improvements can result in significant savings. 
For this reason, a growing number of engineers and researchers are striving to find ways to improve today's 
transportation system from the standpoint of efficiency, safety, and environmental compatibility. 
Furthermore, transportation is one of the largest polluters in the world [1]. In addition to various technological 
advances in this area, optimizing the operation of the vehicle fleet can also help reduce CO2 emissions [2]. The 
principle is clear: fewer vehicles spending less time on the network means less pollution. It has been shown that 
solving route choice and vehicle routing problems can significantly reduce hazardous gas emissions [3]. 
The vehicle routing problem generally consists of the following: At a given location (garage, depot...), there are m 
vehicles, and n customers need to be supplied with certain goods. It is necessary to determine the best routes for 
the delivery vehicles while serving the customers in a transportation network. The goal is to determine the routes 
with a minimum value of a predefined objective function, usually the total transportation cost. 
In real-world goods distribution systems, customers often allow flexibility regarding the timing of goods delivery. It is 
common for delivery requests to be expressed with vague statements such as "around 3 o'clock" or even within a 
broader timeframe like "between 2 and 3 o'clock." This time flexibility can arise from stochastic subjective factors 
related to customers, such as management organization within the customer company, the personality characteristics 
of the individuals in charge, the state of supplies, etc. Furthermore, while traffic congestion contributes to variations 
in travel time, weather conditions and seasonal variations are the next factors that affect delivery schedules.  
For certain vehicle routing problems, customer demands can also be uncertain. Typical examples include garbage 
collections and postal deliveries, where the quantity of garbage and the number of postal units can vary with each 
distribution. Additionally, customer demand may fluctuate due to a variety of factors, such as changing trends, 
promotional campaigns, and economic crises, as customers endeavor to align their supply with end-user spending 
patterns. 
The motivation for this study stems from the recognition of the complexities and uncertainties inherent in real-world 
distribution systems. Traditional vehicle routing approaches often struggle to effectively handle uncertain demands 
and soft time windows, which are common in practical scenarios. Therefore, there is a need for a decision-making 
support tool that can address these challenges and provide more efficient and reliable routing strategies. 
Since its inception by Zadeh in 1965 [4], fuzzy theory has established itself as a valuable tool for managing ambiguous 
information. In the pursuit of devising an efficient routing strategy for real-world applications, a fuzzy logic system 
has been developed to account for available delivery time and uncertain customer demands. The capabilities of the 
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initial fuzzy logic system are essentially improved to better understand and adapt to patterns in customer demands 
and delivery time windows within the same delivery network through the upgrade to an Adaptive Neuro-Fuzzy 
Inference System (ANFIS). ANFIS, initially proposed by Jang 1993 [5], combines the strengths of neural networks 
and fuzzy logic to learn from historical data and, in this paper, provide more accurate predictions about routing 
strategies.  
This study aims to address vehicle routing with uncertain demands and soft time windows by developing and testing 
a novel decision-making tool based on neuro-fuzzy logic. The contributions of this paper can be summarized as 
follows: 

1. Development and introduction of a decision-making support tool tailored for vehicle routing in scenarios 
characterized by uncertain demands and soft time windows. 

2. Introduction of a neuro-fuzzy logic methodology to effectively handle uncertainties inherent in distribution 
systems, improving the adaptability and robustness of routing strategies. 

3. Implementation of a performance index for users, considering various factors such as travel time, demand, 
and delivery windows, to support routing decisions and improve overall efficiency. 

The paper is organized as follows: After a brief introduction and a review of relevant studies from the literature, the 
second section is dedicated to methodology. This is followed by a practical example, which is followed by the results 
and discussion. The last section is devoted to conclusions and future research. 

2 LITERATURE REVIEW 

There are numerous mathematical formulations of the vehicle routing problem. One of the first and most widely 
accepted was proposed by Balinski and Quandt in [6]. The vehicle routing problem is reduced to a combinatorial 
optimization problem and can be solved by algorithms for finding the route of a travelling salesman. Further 
development of the mathematical formulation and application of dynamic programming in solving the classical vehicle 
routing problem can be found in the paper of Laporte and Nobert [7]. The application of genetic algorithms to solve 
the vehicle routing problem can be found in the paper of Prins [8]. Using a real network, the author proved the 
efficiency of the proposed algorithm. A more comprehensive presentation of the classical vehicle routing problem 
and algorithms for its solution can be found in the paper by Toth and Vigo [9]. An up-to-date literature review of the 
state of the art can be found in the paper by authors Konstantakopoulos, Gayialis, and Kechagias [10]. 
In the field system of goods distribution, delivery vehicles have a limited capacity. Customers have a certain demand 
for goods, and it is necessary to determine the number of vehicles for distribution and, more importantly, their routes, 
unlike the classical routing problem, where it is assumed that the vehicle has an unlimited capacity. The problem of 
routing vehicles with limited capacity was posed in the work of Dantzig and Ramser [11] and has since attracted the 
attention of many researchers. Routing problems of this type are generally reduced to combinatorial optimization 
problems. Heuristic approaches have been proposed by the following papers [12-14]. Metaheuristic approaches can 
be found in papers [15-16]. 
In the routing problem with time windows, each of the customers has made a demand regarding the arrival time of 
the delivery vehicle. If the distributor does not comply, it must pay additional penalties for non-compliance. 
Metaheuristic approaches have achieved the most significant results in solving vehicle routing problems with time 
windows. Tabu search has been applied by the following authors: Potvin et al. [17]. An example of problem-solving 
with simulated annealing can be found in the paper of Chiang and Russell [18]. Genetic algorithms have been used 
by the following authors to solve the subject problem [19-20]. Bee colony optimization based on group intelligence of 
these insects was applied in the paper of Nikolić and Teodorović [21]. 
In practice, customers are often not so decisive when it comes to the arrival time of goods. Therefore, the authors, 
who wanted to approximate the real system, developed a routing problem with soft time windows. This problem can 
be reduced to a combinatorial optimization problem, which was shown in the paper of Taillard et al. [22]. A specific 
interactive algorithm for vehicle route construction was developed by Figliozzi [23]. Using examples from the 
literature, the author has shown that this algorithm is competitive with others. The introduction of the concept of 
Customer Service Index and the application of fuzzy logic to solve the problem in question can be found in the paper 
of Tang et al. [24]. The algorithm developed in this material is based on a similar idea, i.e., the definition of the 
customer's priority index. 
A realistic distribution system often assumes that customer demands are not exactly defined. The application of fuzzy 
logic in solving this type of vehicle routing problem can be found in the paper Teodorović and Pavković [25]. The 
hybrid approach of applying metaheuristics based on the artificial intelligence of bees and phase logic is the work of 
Lučić and Teodorović [26]. The application of data clustering for routing vehicles with uncertain customer demands 
can be found in the paper of Sungur, Ordonez, and Dessouky [27]. The authors generated routes based on the 
principle of least cost per network link and demonstrated the justification of their approach with a practical example. 
In this paper, the problem of vehicle routing for the case where customer demand is uncertain and the time windows 
for delivering goods to the customer are of the "soft" type is considered. The problem that the author addresses in 
this paper can be formulated as follows: For the given distribution network consisting of customers and links between 
these customers, find the routes for the delivery. The constraints are such that the customers` demands are uncertain, 
delivery is with soft time windows, and vehicles have limited capacity. 
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The authors Tas et al. [28] attempted to solve a similar problem by reducing it to combinatorial optimization and 
applying tabu search. In their case, travel times to customers were assumed to be uncertain, which is common in 
this field, but they did not consider customer demand to be uncertain values, but rather distribution costs. Xu, Yan, 
and Li [29] addressed the same problem defined in this paper using particle swarm optimization, while Yang, Wang, 
and Wu [30] used genetic algorithms. Khodashenas et al. [31] addressed an integrated multi-depot vehicle routing 
problem (MDVRP) with simultaneous pickup and delivery (SPD) and package layout, considering unpredictable 
pickup, delivery, and transfer costs. They employed the NSGA II and MOALO algorithms to solve this problem. 
Yadegari et al. [32] introduce a novel fuzzy mixed-integer nonlinear mathematical model to address the two-echelon 
allocation-routing problem under uncertainty. 
As shown in the literature review, many authors have reduced the vehicle routing problem to combinatorial 
optimization problems. Then, they found solutions using operational research methods (mostly metaheuristics). 
Considering the nature of the problem and the given constraint of goods demand and delivery times, it is not always 
possible to accurately predict the transportation time of the vehicles in the network and the vehicle routes according 
to their capacity. The reason for this is the frequent congestion of the network, especially in the morning hours, the 
presence of traffic signals at intersections, the possible closure of some streets due to work or traffic accidents, and 
various other limitations of the network. 
After all that has been discussed, reducing the given problem to combinatorial optimization problems carries the risk 
of yielding results that are "precisely incorrect." In other words, the models may fail to accurately address the practical 
demands of field distribution. 
The idea of combining two problems into one, i.e., solving the vehicle routing problem when there are soft time 
windows and uncertain customer demands, as far as the author is aware, has not been considered with a neuro-
fuzzy approach. Due to the nature of the problem, a combination of fuzzy logic and neural networks has proven to 
be a reliable method for dealing with uncertainties and is well-suited for the problem stated in this paper. 

3 METHODOLOGY 

This section consists of two parts. The details about the neuro-fuzzy algorithm for the vehicle routing problem are 
explained in the first part. A model for vehicle routing is presented where the demand of the transportation network 
nodes (customers) is uncertain. Moreover, the exact time when the goods are to be delivered is not fixed, but it is 
also not entirely clear when this will happen. In the field, this case is most common, especially when it comes to the 
distribution of perishable food products, etc. In other words, customers have not precisely formulated the demands 
regarding the arrival time of the vehicle but have allowed certain deviations (for example, 7 h and 20 min or between 
7 h and 7 h and 15 min). Time windows defined in this way are called "soft" time windows, in contrast to classical 
time window routing problems where the distributor must pay a penalty for each deviation. In the second subsection, 
it is shown how outputs from the neuro-fuzzy system are used to come up with routes for delivery vehicles. 

3.1 Neuro-fuzzy algorithm for vehicle routing 

Since customer demands are stated to be uncertain (fuzzy) and it is not always possible to accurately determine the 
travel time of vehicles in the network, a fuzzy logic system for vehicle routing was developed. It is assumed that fuzzy 
logic is suitable for solving the vehicle routing problem posed in this way due to its ability to approximate highly 
nonlinear and complex quantities. 

3.1.1 Mathematical formulation of the input variables 

The demands expressed by customers are defined as fuzzy variables. For example, a customer may demand 14 to 
16 units of goods or about 22 units of goods. The delivery time is also not precisely defined. For example, the goods 
must arrive by about 8 a.m. In addition to these quantities, the travel time from the base (depot) to each customer is 
also defined for this model. As explained earlier, this time cannot be taken as an exact quantity. The available delivery 
time is the difference between the travel time from the depot to the customer and their desired delivery time. 
Within this model, it is understood that goods are distributed from one base. The base can be a distribution center, a 
depot, or a warehouse. The problem of vehicle routing with more than one base will not be considered. 
The estimated travel time from the depot to the customer can be obtained using the "Google" application "Google 
Maps-Live traffic". This application approximates the travel time from an origin to a destination based on historical 
data on traffic volumes and vehicle speeds retrieved from users' cell phones. In real-time, the "Google" application 
is also used to navigate vehicles through the network and offer them the route with the shortest travel time. 
For cities not covered by this application (or for which not all options of this application are available), it is also 
possible to obtain the approximate travel time on the street network links. The transportation network G consists of 
n links, and each link is denoted by (i,j), where i is the index of the upstream intersection and j is the index of the 
downstream intersection. Let tij denote the travel time of a vehicle along the link (i,j). The travel time tij is calculated 
using a well-known formula [33] (Equation 1): 
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where: 
tij0 - transport time on the link (i,j) as a function of free flow speed [s], 
lij - link length (i,j) (m), 
vij - free flow speed (m/s), 
qij - the flow of vehicles on the link (i,j) (veh/h), 
cij - link capacity (i,j) (veh/h). 
The values for the parameters were obtained empirically: α = 0.15 and β = 4. The link capacity and the vehicle 
demands on the link are known in advance. Vehicle demands are estimated based on historical data. 
Let us denote by gj the average delay at the j-th intersection. The delay can be calculated using a well-known formula 
[34]. To calculate the delay, it is necessary to have the signal plans of all intersections in the network. The calculation 
of delay is not described in detail here, as this would be a significant digression from the main problem. The structure 
and method of calculating delay are well-known in the literature and can be found in the HCM [34]. 
Denote by Nijk the set of links and by Njk the set of intersections that must be traversed to get from the base to the k-
th customer. Finally, the total estimated travel time from the base to the k-th customer (tk) is calculated as (Equation 3): 
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The problem of determining the set Nijk (and therefore set Njk) reduces the problem of determining the shortest 
distance from one to all other nodes. The only difference is that the network links are weighted by travel time instead 
of Euclidean link length. The most used algorithm for solving the shortest path through the transportation network 
problem is the well-known Dijkstra's algorithm [35]. 

3.1.2 Formation of a fuzzy logic system 

Input variables in the fuzzy logic system are customers’ demands (X1k) and available time for delivery to the 
customers (X2k). The output variable is the customer priority index (Yk). In other words, the fuzzy logic system 
evaluates the priority index for each customer based on their product demands and available delivery time. 
Gaussian curves were used as membership functions for input variables in the fuzzy logic system (FLS) (Figure 1). 
Gaussian curves were chosen because they are suitable for manipulation when tuning the FLS, as well as because 
they describe the input variables well and provide satisfactory system sensitivity. 
A Sugeno-type FLS is formed based on the input and output variables. The intervals in which the input and output 
variables can be found are given in Table 1. 

Table 1. Domain of functions X1, X2 and Y 

Function Domain [min, max] 

X1 (the units of goods) [2, 17] 

X2 (minutes) [4, 16] 

Y [1, 10] 

The function domains given in Table 1 may be determined in other ways, depending on the specific conditions and 
network on which the distribution is performed. The membership functions of the input variables are shown in Figure 1. 

http://www.engineeringscience.rs/


Journal of Applied Engineering Science 

Vol. 22, No. 1, 2024 
www.engineeringscience.rs 

 

 
publishing 

 
Dragan Radovanović et al. - Vehicle routing in the 
case of uncertain customer demands and soft time 
windows: A neuro-fuzzy logic approach 

 

203 

 
Fig. 1. Input variables of FLS with membership functions 

The parameters of the input variable X1 are very little gmf (1.593, 2); little gmf (1.593, 5.75); mean gmf (1.593, 9.5); 
large gmf (1.593, 13.5); very large gmf (1.593, 17). The parameters of the input variable X2 are very little gmf (1.381, 
3); little gmf (1.381, 6.25); mean gmf (1.381, 9.5); large gmf (1.381, 12.75); very large gmf (1.381, 16). Where gmf is 
the abbreviation for the Gaussian membership function. 
The output variable Y expresses the degree of priority of the customer served in the distribution. In other words, this 
variable expresses how much one of the customers has an advantage over another customer in the distribution. 
The Sugeno-type fuzzy logic system differs from the basic Mamdani type in that the output variables are specified as 
constant values. In the Mamdani type, the output variables are given in the same way as the input variables: by a 
fuzzy set. The reason for choosing the Sugeno type is that the neural network can change the membership functions 
of the fuzzy logic system, thus providing the basis for the application of a hybrid algorithm of neural networks and 
fuzzy logic. The number of output membership functions must precisely match the number of rules, which, in this 
case, is 25. The corresponding values of output membership functions are shown in Table 2. 
After determining the input variables of the FLS, it is necessary to create a rule base, which is given in Table 2. 
Depending on the values of the input variables, a fuzzy rules base was formed, so that greater importance is given 
to the customers who need more goods and for whom the availability of delivery time is lower compared to other 
customers. The approach of giving greater importance to the customers who demand more goods has an indirect 
effect on the profit of the distributor. 

Table 2. The fuzzy rules base 

Rule # 
IF (X1 and X2) THEN 

Rule # 
IF (X1 and X2) THEN 

Rule # 
IF (X1 and X2) THEN 

X1 X2 Y X1 X2 Y X1 X2 Y 

1. V. little V. little 5.5 10. Little V. large 9 19. Large Large 5.5 

2. V. little Little 7 11. Mean V. little 3 20. Large V. large 6 

3. V. little Mean 8 12. Mean Little 5 21. V. large V. little 1 

4. V. little Large 9 13. Mean Mean 6 22. V. large Little 2.5 

5. V. little V. large 10 14. Mean Large 7 23. V. large Mean 3.5 

6. Little V. little 5 15. Mean V. large 8 24. V. large Large 4.5 

7. Little Little 6 16. Large V. little 2 25. V. large V. large 5.5 

8. Little Mean 8 17. Large Little 3 The membership functions 
of output variables present 
the Y values in this table 9. Little Large 8.5 18. Large Mean 5 

Due to the extreme sensitivity and unpredictability of the system and the nature of the input variables, a neuro-fuzzy 
logic system was formed. Using 500 input-output data pairs, a neural network was trained to "fine-tune" the 
parameters of the membership functions of the input variables. The dataset utilized for training the ANFIS model is 
hypothetical. 
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3.1.3 Architecture of neuro-fuzzy logic system 

Due to all the above, FLS was upgraded to ANFIS (Figure 2). ANFIS (Adaptive neuro-fuzzy inference system) was 
used to further tune the FLS membership functions. This was achieved by training a neural network. In this work, the 
"backpropagation" algorithm was used for the training of ANFIS. This hybrid algorithm was proposed by [32]. 
Neuro-fuzzy logic attempts to take advantage of both systems of approximate reasoning and combine them into a 
powerful hybrid model. Fuzzy logic is a flexible and powerful tool for finding solutions to problems that involve vaguely 
defined variables, or those that are not exactly defined. This possibility of fuzzy logic is applicable in solving traffic 
problems, which includes the problem of vehicle routing. The role of the neural network is to "train" the fuzzy logic 
system with field data, contributing to its response to changes in input variables in the realistic system. Together, 
these two tools constitute a powerful hybrid algorithm for approximating various parameters and quantities 
characterized by pronounced nonlinearity and unpredictability, as shown by numerous examples in literature and 
engineering practice. 

 
Fig. 2. Neuro-fuzzy network architecture and output generation 

Figure 2 graphically shows the fuzzy inference mechanism for obtaining the output function f based on the input 
values [X1, X2]. The weighting coefficients ω1 and ω2 are obtained from the degree of membership in the premise, 
while the output function fyi is the weighted average of each of the THEN parts of the rule. Each network node in the 
same layer performs the same type of function. The outputs of the i-th node in the j-th layer are marked with Oi j.  
Layer 1. The nodes of the first layer represent verbal categories of input variables that are quantified by fuzzy sets. 
Each node of the first layer is an adaptive node and is described by a membership function ( ) 5,...1 , =ixixiµ . 
Membership functions are described in the form of Gaussian curves characterized by two parameters: function centre 
(c) and function width (σ), (Equation 4): 

      ( )
2

2
1

,,






 −

−
= σσ

cx

ecxGaussian           (4)  

Since fuzzy rules are expressed in the form: "If - condition, Then - consequence", categories of input variables 
quantified by fuzzy sets are displayed by adaptive nodes of the first layer. 
Layer 2. Each node of this layer calculates the minimum value of the two input values of the adaptive neural network. 
The output values of the nodes of the second layer represent the significance of the rules (Equation 5): 

 ( ) ( )21
2 xxO iBiAii µµω ⋅==       (5) 

Layer 3. Each i-th node (out of a total of n) in this layer calculates the total weight of the i-th rule from the rule base 
according to the expression (Equation 6): 
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Layer 4. The fourth layer has 25 adaptive nodes representing the output size Y (priority index for each customer). 
Each node of this layer is connected to a normalized neuron from the previous layer. Defuzzification of neurons is 
done as follows (Equation 7): 

 ( )iiiiiii rxqxpfO ++⋅=⋅= 21
4 ωω ,          i =1,2, …,n        (7) 

where n is the total number of rules in the fuzzy rule base, while pi, qi and ri are the parameters of the i-th rule's 
consequence. 
Layer 5. The only node of the fifth layer is a fixed node in which the output result of ANFIS is calculated. It is a fuzzy 
set with certain degrees of membership of the possible values of Y for a particular customer during the distribution. 
The final defuzzification is performed in the node of the fifth layer. The output value is a crisp number located in the 
interval [1, 10], (Equation 8): 
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3.1.4 Training of ANFIS 

The output function of ANFIS, shown by Equation 9, is linearly dependent on the parameters from the consequences 
of the fuzzy rule. 

 ( ) ( ) ( ) ( ) 2222121211112211 qxpxqxpxfff ⋅⋅+⋅⋅+⋅⋅+⋅⋅=⋅+⋅= ωωωωωω                           (9) 

Then, for the k-th pair of input-output data pairs, the output from the ANFIS network (Ek) can be calculated as 
(Equation 10): 

 ( )2
kkk OTE −=     (10) 

where Tk and Ok are the desired output and obtained output from ANFISA, respectively. Then, for the entire set of 
500 input-output training pairs, it is possible to calculate the average error E as (Equation 11): 
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1
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== k

kE
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During the backward pass, the error signal is propagated, and the previous parameters are "updated" according to 
the corresponding rule from the database [5]. 
The activation functions of neurons are required for the network to learn non-linear functions. Without nonlinearity, 
neurons would have no more capabilities than an ordinary perceptron network (consisting only of inputs and outputs). 
As an activation function in ANFIS models, the so-called "bell" function is most often used in the following form 
(Equation 12): 

 
1

1
−

















 −+=

t

r
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where: r, s, and t are control parameters that adjust the slope, center, and width of the “bell” function, respectively. 
The most commonly used Neural Network (NN) training algorithm is backpropagation [36]. Backpropagation learns 
schemes by comparing the output of the neural network to the desired output and calculating errors for each node in 
the network. The neural network adjusts the connection weights according to the error values assigned to each node. 
The calculation starts with the output layer, goes through the hidden layers and ends at the input layer. After modifying 
the parameters, new inputs are fed to the network. Training will not end until the network can produce outputs with 
satisfactory accuracy. During the training process, the fuzzy set membership functions are "fine-tuned" by numerical 
input-output data pairs. The resulting membership functions are shown in Figure 3. 
The parameters of the input variables X1 after training are very little gmf (0.46, 2.91); little gmf (1.32, 5.55); mean gmf 
(2.04, 8.85); large gmf (2.46, 12.84); v. large gmf (0.85, 17.16). The parameters of the input size X2 after training are 
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very little gmf (1.68, 2.51); little gmf (1.98, 6.43); mean gmf (1.5, 9.49); large gmf (1.02, 12.76); very large gmf (1.1, 
16.16). 

 
Fig. 3. Membership functions after NN training 

After training, the corresponding values of output membership functions undergo "fine-tuning." Figure 4 illustrates 
the changes in Y values (output membership functions, i.e. the consequence part of the rule base) before and after 
the tuning process. 

 
Fig. 4. Y values before and after tuning 

After 300 epochs (iterations), the error is reduced to an acceptable value. The process of error reduction through 
epochs (iterations) is given in Figure 5. 

 
Fig. 5. Error reduction through epochs 

Figure 6 shows the 3D dependence of input and output variables. In other words, the figure shows the sensitivity of 
the output variable (Y) concerning the input variables (X1 and X2) before and after the learning process. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Before tuning 5,5 7 8 9 10 5 6 8 8,5 9 3 5 6 7 8 2 3 5 5,5 6 1 2,5 3,5 4,5 5,5
After tuning 5,09 6,81 8,11 9,23 10,2 4,91 6,39 7,92 8,54 9,23 3,08 5,17 5,96 7,16 8,04 1,95 3,09 5,03 5,7 6,21 0,01 2,41 3,55 4,26 5,52
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Fig. 6. 3D dependence of FLS (left) and ANFIS (right) models 

Figure 6 shows the sensitivity of the output to the input values when evaluating customers` priorities during the 
distribution. This sensitivity is somewhat more pronounced for higher values of the input variables. After training the 
NN with real-like input-output data, a slightly more complex 3D structure of this dependency is seen compared to the 
FIS, which leads to a more accurate estimate of the output variable. 

3.2 Vehicle routing algorithm 

Once the priority indices for each customer are known, the formation of vehicle routes for distribution can begin. As 
a result, the algorithm provides the required number of vehicles for the distribution of goods and their routes. It is 
only necessary to know in advance the capacity of the vehicle, i.e., the number of units of goods it can transport. The 
flowchart of the vehicle routing algorithm is shown in Figure 7. 

 
Fig. 7. Flowchart of the vehicle routing algorithm 

The first three steps of the above algorithm have already been explained in detail in earlier sections. Let us denote 
by IPk the priority index of each of the k customers, and by IPij the performance index of each of the (i,j) links of the 
network. Let us assume that k-th customer is in the i-th node of the network and the k+1 customer is in the 
neighbouring j-th node of the network. The performance index of the (i,j)-th link of the network is determined as the 
sum of the priority indices of the k-th and k+1 customer. In other words, the performance index of a network link is 
equal to the sum of the priority indices of the customers connected by that link. 
A modified Clarke-Wright algorithm [37] for planning vehicle routes consists of the following steps: 
Step 1: Instead of calculating the savings, as in the classical version of the algorithm, sort the links of the network by 
their performance index, from the highest to the lowest value. 
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Step 2: Consider the sorted links one by one and include them in partial routes in such a way that the following 
constraints are not violated: 

a) None of the nodes of the link was included in any partial route, 
b) One of the nodes of the link is already included in the partial route, but only if it is an external node of the 

partial route, 
c) Both nodes of the link are already involved in two different partial routes, neither of them being external. 

In this case, the two partial routes are merged into a new partial route. 
Step 3. When all customers are included in the partial routes, finish with the algorithm.  
The number of partial routes will be equal to the number of vehicles required for the distribution of goods through the 
given transport network. 
When adopting a new partial route, it is mandatory to consider whether the capacity of the vehicle is affected. If the 
capacity of the v-th vehicle is denoted by Nv, the total demand of the k-th customer by dk, and the number of customers 
included in the r-th route by Kr, the following condition should be satisfied (Equation 13): 

 v

K

k
k Nd

r

≤∑
=1

    (13) 

If there are still unserved customers left after passing all the links from the list, one must merge them on one of the 
routes, not to exceed the capacity limit of the vehicle. If there are still unserved customers, create a new route that 
connects the unserved customers using the Clarke Wright algorithm described above. Weight links between 
customers with a performance index. Additionally, if there is no link between some pairs of customers, find the 
shortest route between these customers based on the travel time criterion and calculate the average value of the 
performance index of the links that make up this route. If there is no direct link between the base and the first customer 
on the route, reach it via the shortest route according to the criterion of travel time. The same applies to the route 
from the last served customer to the base. 
The algorithm does not allow sharing of shipments, which is one of the limitations of this approach. In other words, a 
customer cannot be served by two vehicles. Although this can lead to some savings, it is not a practical solution 
because it complicates the distribution process. The algorithm assumes that the number of vehicles per link and their 
capacity are known in advance. Based on these data, the travel time on a link is estimated as a significant input 
variable of the model. It is also assumed that the variations in vehicle volume and link capacity were recorded, which 
will be later used to generate data for training the neural network. 

4 NUMERICAL EXAMPLE 

In the distribution network, shown in Figure 8, the proposed algorithm for vehicle routing was tested. Figure 8 shows 
the travel times by links expressed in minutes. Let it be adopted that the distribution of goods begins at 7 a.m. 
The network in Figure 8 does not represent a street network but a network of calculated shortest paths among 
customers according to the criterion of travel time. In other words, the given distribution network is a sub-network of 
the street network. The shortest distances between customers on the street network can be found using the already 
mentioned Dijkstra algorithm. 

 
Fig. 8. The distribution network for testing 
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The base (depot) is located in node 1, and distribution is performed by vehicles with a capacity of Nv = 50 loading 
units. The unloading time per unit is constant and is tunl = 10 s. By applying Dijkstra's algorithm, travel times from the 
base to each k-th customer were obtained and presented in Table 3. Table 3 also contains data on the available time 
for each customer and their demands, expressed in units of goods. The available time for delivery indicates the 
number of minutes within which the operator must complete the delivery after the pre-defined earliest delivery time. 
All time-dependent data are in minutes. The last column of Table 3 shows the priority indices determined for each k-
th customer using the ANFIS algorithm. 

Table 3. Input data and customers priority index 

Customer 
(k) 

Travel time from the 
base (min) 

The earliest time 
of delivery Availability time (min) Demand for goods (per 

unit of goods ± 3) IP 

BASE 0 7:00 0 0 0 

2 13.2 7:20 7 8 6.2 

3 15.4 7:40 5 13 8.3 

4 26.8 7:55 3 8 7.3 

5 20.5 8:20 4 15 9 

6 29.6 8:35 5 12 8 

7 22.2 7:25 2 7 7 

8 35.6 7:45 9 5 4.1 

9 27.9 7:30 2 4 5.7 

10 26.5 8:30 3 4 5.6 

11 31.3 8:30 3 10 7.6 

12 39.6 8:40 5 7 6.4 

13 36.2 7:40 3 7 6.6 

14 40.5 7:50 10 13 6.7 

15 51.3 8:05 14 5 2.7 

16 44.2 7:55 11 4 3.1 

17 50.3 7:55 5 12 8.1 

18 43.8 8:00 16 10 3.8 

19 34.8 8:10 15 8 3.5 

20 43 8:10 7 10 6.6 

21 49.5 8:15 11 16 7.2 

22 53.1 8:15 7 5 5.1 

23 59.3 8:20 11 9 5.1 

Due to the relatively (fuzzy) expressed demands, a tolerance of ± 3 units of goods per route is allowed for the 
delivered goods. 
Based on the customer priority indexes, performance indices are determined for each network link. The values of 
links performance indices are sorted from the highest to the lowest value and listed in Table 4. 
The links leading from the base to the neighboring nodes have a lower IP value per link, but this does not affect the 
distribution because these are the links that vehicles must pass through to reach other customers. This is because 
node 1 (the base) has no demand for goods. 
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Table 4. Sorted performance indexes by network links 

Link IP Link IP Link IP 
5-6 17 20-21 13.8 15-17 10.8 

5-14 15.6 2-4 13.5 18-20 10.4 
3-4 15.6 13-14 13.3 22-23 10.2 
4-6 15.3 17-22 13.2 8-9 9.8 
3-7 15.3 10-11 13.2 13-16 9.8 
2-5 15.2 12-20 12.9 14-15 9.4 

4-11 14.9 7-9 12.7 9-19 9.2 
13-17 14.8 21-22 12.3 10-19 9.1 
6-13 14.7 21-23 12.2 1-3 8.3 
6-12 14.4 12-22 11.5 8-18 7.9 
11-20 14.2 9-10 11.3 18-19 7.3 
11-12 14 16-17 11.3 1-2 6.2 
3-10 13.9 7-8 11 15-16 5.8 

Finally, by applying the modified Clarke-Wright algorithm, the final vehicle routes are as follows: 
Route of the 1st (first) vehicle: B-9-7-3-4-11-20-B 
Route of the 2nd (second) vehicle: B-16-13-17-22-21-23-B 
Route of the 3rd (third) vehicle: B-15-14-5-6-12-B 
Route of the 4th (fourth) vehicle: B-2-8-18-19-10-B 
Some customers served by vehicles on routes 1, 2, and 3 receive one unit of the goods less than the average value 
they ordered. Example: Customer 9 has ordered about 4 units of goods, and 3 units of goods are delivered to him, 
the same is true for customer 15. To which customer less or more goods are delivered, the deliverer decides, and 
the algorithm offers it how many units of goods he can take away or add to the customers on the route. 
If the delay (or earlier arrival) of the vehicle at the k-th customer is marked with tdel, the values of this demand per 
customer are shown in Table 5.  
Negative values in Table 5 indicate that a vehicle arrives before the scheduled time, while positive numbers indicate 
that vehicles are late for customer delivery. Zeros indicate that a vehicle arrived within the defined time window for 
delivery. 

Table 5. Delays and early arrivals by customers (in minutes) 
k 2 3 4 5 6 7 8 9 10 11 12 

tdel -7 0 4 4 0 5 9 2 2 -10 0 
k 13 14 15 16 17 18 19 20 21 22 23 

tdel 10 6 -12 -11 8 0 0 15 2 0 4 

Based on Table 5, it can be concluded that the average deviation from the delivery time interval is 5.05 minutes. 
Again, it is at the discretion of the distributor how early (or later) to start distributing the goods. This depends on a 
case-by-case basis (customer habits and demand, available workforce, etc.).  
Figure 9. shows the actual arrival time of the delivery vehicle for each customer that creates the distribution network. 
Additionally, it illustrates the earliest and latest arrival times per customer, facilitating the identification of deviations 
in vehicle arrival from the pre-defined "soft" time window.  
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.  
Fig. 9. The deviation of arrival time from customers' time windows 

From Figure 9, it is evident that 3 customers are served within the time window, while the remaining customers arrive 
either earlier or later. The average early arrival time is 8.4 minutes, while the average late arrival time is 4.06 minutes. 
Those times can be considered acceptable within the distribution network in this example. 
The considered example represents a complex network with complex requirements when distributing goods. The 
proposed algorithm has shown that it can propose solutions in such an environment and what are the consequences 
of the given solutions. Moreover, it is left to the distributor to make decisions about some details (when to start 
distribution and to which customer to deliver a little less or a little more goods) that depend on the specific conditions 
associated with the knowledge of the behavior and demands of the customers to whom to deliver. The algorithm 
proposed in this paper serves as a decision support tool for dispatchers. 
The problem of vehicle routing is a complex task with various nuances and challenges. It is difficult to account for all 
the factors that a distribution system might encounter. From this perspective, the proposed approach in this paper 
has the following limitations: 

1. The algorithm assumes that goods are distributed from a single base, such as a distribution center, depot, 
or warehouse. This limitation may not be applicable in scenarios where there are multiple bases involved 
in the distribution network, such as in large-scale logistics operations covering multiple regions or cities; 

2. Handling dynamic changes in demands and time windows poses a significant challenge. While your 
algorithm integrates fuzzy logic and ANFIS to manage uncertain demands and soft time windows, there 
may still be limitations in accurately modelling and predicting customer demands and delivery time 
variability. Factors such as sudden changes in demand patterns or unforeseen delivery delays may not 
be fully addressed by the current methodology; 

3. The effectiveness of the neuro-fuzzy logic approach relies heavily on the availability and quality of 
historical data for learning and prediction. In scenarios where historical data is limited or unreliable, the 
performance of the algorithm may be compromised, leading to suboptimal routing strategies; 

4. The performance of the ANFIS model may be sensitive to the selection of parameters and tuning of the 
fuzzy inference system. In practice, finding optimal parameter settings may require extensive 
experimentation and fine-tuning, which can be time-consuming and resource-intensive. 

Addressing these limitations and providing insights into potential areas for improvement could strengthen the 
robustness and practical applicability of your proposed algorithm for solving the vehicle routing problem with uncertain 
demands and soft time windows. 

5 CONCLUSIONS 

This paper addresses the problem of vehicle routing in scenarios involving uncertain demands and soft time windows. 
The problem is tackled using a neuro-fuzzy logic approach, demonstrating its effectiveness in approximating 
customer performance indices. The model, based on the Clarke-Wright algorithm, used customer performance 
indices as inputs to generate delivery routes. 
The proposed algorithm, serving as a decision-support tool, offers actionable insights into routing strategies. This 
allows operators to adapt to variable demand patterns and real delivery conditions. By streamlining delivery 
operations and improving service quality, organizations can gain a competitive edge in the marketplace, attracting 
and retaining customers while maximizing profitability. Furthermore, this research offers valuable insights that can 
benefit diverse stakeholders, from small-scale enterprises to multinational corporations. 
The results of the numerical example suggest practical possibilities of neuro-fuzzy logic for the problem of vehicle 
routing when demand and travel time to customers are uncertain. The average deviation from the delivery time 
interval is 5.05 minutes over the 80-minute delivery service period. The approach to this problem shows the flexibility 
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in this type of routing problem and fits the nature of the problem where there is no strict time constraint for the delivery 
of goods (as some of the most commonly used products in grocery stores). Further experiments are needed to prove 
all the advantages of the practical application of the approach proposed in this paper. 
These findings may open new avenues of inquiry, such as the possibility of using the ideas in this paper to reroute 
delivery vehicles when some customers cancel orders, or some vehicles fail. Furthermore, the ecological factor could 
take its place as an input in the customer performance index. Because of the growing interest in ecological problems, 
this approach could be important in the future. Other lines of research may provide solutions to address the limitations 
of this paper, such as managing larger distribution networks with multiple depots. Additionally, considering the 
application of fuzzy linear programming for an optimization approach to the problem at hand could be beneficial. 
Finally, metaheuristic algorithms can be employed to fine-tune the membership function of the fuzzy logic system, 
potentially improving its performance. 
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7 APPENDIX 

The dataset for training ANFIS (200 out of 500 data) 
# X1 X2 IP # X1 X2 IP # X1 X2 IP # X1 X2 IP 
1 11.4 5 3 51 10.3 3 3 101 14.6 8 4 151 9 7 5 
2 16.5 8 3 52 12.7 14 6 102 13.2 5 3 152 15.7 13 5 
3 7.1 13 8 53 16.9 12 4 103 16.3 12 4 153 15.5 9 4 
4 10.1 3 3 54 3.2 4 6 104 3.8 3 5 154 9.8 9 5 
5 11.2 16 7 55 14.2 12 5 105 13.4 13 6 155 10 6 4 
6 12.2 11 5 56 8.7 11 6 106 8.3 6 5 156 14.9 8 4 
7 2.6 12 9 57 10.3 15 7 107 6.5 15 9 157 3.2 8 7 
8 2.5 12 9 58 4.1 5 6 108 10.8 11 6 158 5.6 3 5 
9 16.5 3 1 59 5.9 9 7 109 4.8 14 9 159 12.9 13 6 

10 9.4 5 4 60 11 11 6 110 15.8 7 3 160 4.7 14 9 
11 11.5 11 5 61 7.7 9 6 111 10.5 9 5 161 3.9 12 8 
12 2.6 11 8 62 8.8 9 6 112 12.8 12 5 162 2.5 11 8 
13 8.6 11 6 63 3.3 10 8 113 9.8 16 7 163 16.6 16 6 
14 16.2 14 5 64 9.6 8 5 114 8.2 13 7 164 11.5 7 4 
15 14.2 7 3 65 12.6 8 4 115 5.5 3 5 165 10 6 4 
16 3.3 3 5 66 3.2 16 10 116 10.4 5 4 166 12 9 5 
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# X1 X2 IP # X1 X2 IP # X1 X2 IP # X1 X2 IP 
17 16.9 9 3 67 15.6 7 3 117 4.7 8 7 167 7.2 9 6 
18 8.6 16 8 68 4.5 7 6 118 5.5 15 9 168 13.8 16 6 
19 3.9 7 7 69 17 11 4 119 15.8 3 1 169 5.4 6 6 
20 13.5 3 2 70 7.1 15 8 120 4.4 8 7 170 7.2 13 8 
21 13.6 4 2 71 6.2 13 8 121 5.1 11 8 171 10.3 6 4 
22 5.4 11 7 72 3.7 15 9 122 7.6 16 8 172 14.9 11 5 
23 14.2 13 5 73 2 4 6 123 8.6 4 4 173 11 13 6 
24 8 7 5 74 10.7 13 6 124 5.6 13 8 174 15.1 16 6 
25 12.9 5 3 75 13.2 10 5 125 6.9 6 6 175 16.8 5 2 
26 8.6 12 7 76 3.1 12 9 126 12.8 10 5 176 10.8 5 4 
27 2 7 7 77 9.8 13 7 127 10 8 5 177 8.6 12 7 
28 2.4 11 8 78 6.7 5 5 128 10.6 9 5 178 13 16 6 
29 5 9 7 79 10.6 5 4 129 8.6 13 7 179 3.9 11 8 
30 12 4 3 80 11.4 13 6 130 7.1 7 6 180 9.7 3 3 
31 16.2 13 5 81 9.1 9 6 131 7.6 5 5 181 11.2 7 4 
32 7.8 3 4 82 8.7 11 6 132 2.1 15 10 182 12.7 5 3 
33 12 12 6 83 11 16 7 133 7.5 16 8 183 16.7 6 2 
34 3.3 16 10 84 4 8 7 134 4 5 6 184 13.6 7 4 
35 15.6 14 5 85 7.3 16 8 135 10.2 8 5 185 14.4 6 3 
36 14.4 7 3 86 10.6 15 7 136 3 9 8 186 11.1 11 6 
37 13.6 14 6 87 2 11 8 137 8.8 8 5 187 2.8 10 8 
38 15.5 7 3 88 7.9 15 8 138 16.6 9 3 188 12.3 13 6 
39 6.6 9 7 89 4.4 15 9 139 7.3 16 8 189 13.4 6 3 
40 7.3 11 7 90 15.2 8 4 140 9 16 8 190 4.6 13 8 
41 10.9 16 7 91 3.2 12 9 141 6.6 11 7 191 8.9 14 7 
42 9.1 16 8 92 11.2 10 5 142 10 13 6 192 3.9 16 9 
43 16.1 15 5 93 12.8 6 3 143 3.9 13 9 193 11.5 13 6 
44 16.9 8 3 94 9.4 13 7 144 16.8 8 3 194 16.1 8 3 
45 10.8 4 3 95 8 14 7 145 6.6 12 8 195 3.7 7 7 
46 9.2 13 7 96 16.8 3 1 146 13.3 6 3 196 4.4 13 8 
47 2.4 16 10 97 8.4 12 7 147 10.4 16 7 197 5.2 8 7 
48 15.4 8 3 98 14.7 9 4 148 3.7 11 8 198 10.1 12 6 
49 17 10 4 99 16.2 13 5 149 15.1 15 6 199 14.6 13 5 
50 10.3 8 5 100 10 5 4 150 9.2 13 7 200 5.4 6 6 
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