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Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications.Optimizing 
electrospinning parameters is crucial for producing nanofibers with desirable attributes, such as uniform diameter 
and bead-free morphology.Conventional trial-and-error strategies are frequently protracted and may not necessarily 
result in optimal outcomes. This investigation delineates the formulation of an artificial neural network (ANN) model 
specifically designed to systematically optimize electrospinning parameters. Crucial input variables, such as applied 
voltage, feed rate, and polymer concentration, were utilized to train the ANN model, which was constructed with 
multiple hidden layers to effectively encapsulate the intricate relationships between input parameters and the 
resultant nanofiber properties. In this research, an ANN was devised with a 4-3-1 architecture that was trained on a 
dataset extrapolated from experimental data documented in prior literature and employed the Levenberg-Marquardt 
algorithm to ascertain robust performance. Upon validation, the model proficiently predicted optimal parameters 
conducive to the production of smooth, bead-free nanofibers. The model achieved a root mean square error (RMSE) 
of 7.77%, which is lower than previous models for predicting electrospun Kefiran nanofiber diameter.The results 
indicate that the ANN-based methodology substantially augments the efficiency and precision of electrospinning 
parameter optimization, thereby providing a significant resource for researchers and engineers engaged in the 
domain of nanomaterials. Future investigations could delve into the application of this model to various polymer 
systems and further refine the ANN architecture to accommodate more intricate electrospinning configurations. 
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1 INTRODUCTION 

Nanofibers have attracted considerable scholarly interest among researchers owing to their unique characteristics 
and the multitude of advantages they offer across diverse disciplines. Also, Electrospun nanofibers offer advantages 
such as high surface area to volume ratio, customizable porosity, and functionalization capabilities, making them 
useful in healthcare applications like tissue engineering, regenerative medicine, wound treatments, and drug delivery 
solutions. Nanofiber structure is influenced by both external factors (voltage, tip-to-collector distance, feed rate) and 
internal factors (solution properties, such as conductivity, viscosity and concentration). Notwithstanding the 
advantageous traits of electrospun nanofibers, several challenges persist particularly the necessity of optimizing the 
aforementioned parameters to achieve a morphology devoid of beads. The comprehension of the concurrent 
influence of each parameter on the diameter of the nanofibers becomes increasingly complex during experimental 
investigations. Both experimental methods and computational approaches, such as artificial neural networks (ANN), 
can be employed to analyze the influence of various parameters on electrospinning. 
ANNs, modeled after the human brain’s neural architecture, are trained on experimental data to predict outputs based 
on input variables diameters [1]. In this study, ANN was applied to optimize electrospinning parameters for predicting 
nanofiber The ANN framework was constructed to examine the impact of four variables, including the concentrations 
of PEO and acetic acid, the applied voltage, and the temperature of the prepared solution, on the mean diameter of 
the fibers produced. The findings corroborated the robustness of the ANN model in elucidating the correlation 
between the average fiber diameter and the specified parameters [2]. The efficacy of the ANN model, alongside k-
fold cross-validation, was evaluated for its predictive capability regarding the diameter of electrospun PEO 
nanofibers[3].Samadian et al. (2016) employed ANN methodologies to optimize the conductivity of carbon nanofibers 
by considering factors such as the concentration of simulated body fluid (SBF), immersion duration, and the diameter 
of the carbon nanofibers [4]. 
Various ANN configurations have been devised to ascertain the optimal diameter of synthesized nanofibers. The 
input parameters were refined utilizing a genetic algorithm that incorporated four hidden layers, each comprising 20 
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neural nodes. The learning rate was established at 0.1, with the optimal fitting achieved at 1500 iterations [5]. The 
research conducted by Karimi et al. in 2015 involved the development of an artificial neural network characterized by 
four input parameters: the ratio of CS/PVA concentration, temperature, applied voltage, and the distance between 
the nozzle tip and the collector. This model was characterized by three hidden layers containing 8, 16, and 5 nodes 
in each respective layer [6]. An ANN predicated on a multilayer perceptron (MLP) architecture was formulated to 
forecast the average fiber diameter (AFD) of electrospun gelatin/bioactive glass (Gt/BG) scaffolds. The input 
parameters included one solution variable (BG content) along with two processing variables, namely, the distance 
from the tip to the collector and the feed rate. The aforementioned ANN architecture comprised two hidden layers, 
each comprising five neurons, and one output layer corresponding to the diameter[7].Numerous investigations assert 
that ANN methodologies have surpassed traditional techniques. Research shows that ANN is notably more adept 
and exact in estimating the diameter of electrospun PLGA nanofibers as opposed to the conventional Response 
Surface Methodology (RSM). An ANN model featuring four input layers, 14 hidden layers, and one output layer 
purportedly resulted in an absolute relative error of 2.24 percent, which is superior to the error produced by RSM [8]. 
A three-stage feed-forward ANN architecture was established and put into practice for predicting the diameter of 
electrospun PMMA nanofibers[9]. Collectively, the research underscores the effectiveness of ANNs as a promising 
instrument for predicting nanofiber diameter, particularly owing to their capacity to encapsulate intricate interactions 
among multiple input variables [10]. Kefiran is noted for being a natural, eco-friendly, water-dissolvable, and harmless 
heteropolysaccharide sourced from the vegetation found in kefir grains [11]. Investigative studies surrounding 
monosaccharides suggest that kefiran includes glucose (Glc) and galactose (Gal) in a molar ratio roughly calculated 
as 1.0:1.1 [12]. Recognized for its beneficial attributes, Kefiran aids in the battle against bacteria, fungi, and tumors, 
contributing positively to numerous healthcare applications, including the delivery of medications and the treatment 
of wounds, among others. In the current research investigation, we aim to develop an artificial neural network 
employing a Neural Networks Tool provided in MATLAB to predict the diameter of the electrospun Kefiran nanofibers. 

2  MATERIALS AND METHODS 

Kefiran nanofibers were synthesized employing the technique of electrospinning, and the dataset was subsequently 
constructed based on the data compiled from the previous literature [1]. The current analysis highlights the creation 
of an Artificial Neural Network (ANN) crafted to evaluate the diameter of electrospun nanofibers. 

2.1 ANN model design 

The artificial neural network (ANN) constructed facilitated the prediction of the nanofiber diameter based on the 
parameters, which include applied voltage, feed rate, distance from tip to collector, and polymer concentration. The 
architecture of the ANN, illustrated in Figure 1, was configured as 4-3-1, comprising four neural nodes within each of 
the hidden layers. The Neural Network Toolbox alongside the Parallel Computing Toolbox was employed in MATLAB 
version 2023 B to enhance the accuracy of the results. The hidden layers utilized the hyperbolic tangent sigmoid 
function while the output layer utilized the pure linear function as their default activation function.  

 
Fig. 1. The architecture of the ANN layout 

In the beginning, the values were calibrated to lie within the limits of 0 and 1. Following the normalization process, 
the design of the ANN commenced. A primary consideration was that the relatively small size of the dataset rendered 
k-fold cross-validation an appropriate technique to implement. Even though k-fold cross-validation demonstrated 
pleasing performance, alternative techniques for splitting data were considered, resulting in superior outcomes. Thus, 
a suitable neural network function was applied with the information split into three unique categories: training (70%), 
validation (15%), and testing (15%). Furthermore, the optimization process for identifying the most effective training 
parameters was conducted utilizing the Parallel Computing Toolbox. The fixed parameters for this optimization 
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comprised the ratios delineated previously and the structural configuration of the hidden layer, which consisted of a 
single hidden layer with a variable number of neurons. 
The learning rate underwent modifications within a spectrum of 0.01 to 0.4, and the neuron count in the hidden layer 
was changed from 1 to 20. The optimization methodology is built upon a dual-loop architecture, whereby each 
iteration requires allocating two separate values to the learning rate and the neuron count, in that sequence. Training 
takes place for every distinct combination, and we assess the Root Mean Square Error (RMSE) for both the training 
group and validation group throughout each cycle. The optimal combination is determined based on the RMSE 
criterion; a lower RMSE indicates a more precise model. The final model and its optimized parameters are delineated 
in Table (1). 

Table 1. Optimized ANN model parameters 

Training Algorithm Levenberg-Marquardt 

Hidden Layers’ Structure [4,4,4] 

Learning Rate 0.07 

Number of Epochs 500 

3 RESULTS AND DISCUSSION 

3.1 ANN performance 

Upon the acquisition of the optimized training parameters, the model underwent multiple training iterations utilizing 
the Parallel Computing toolbox. This particular toolbox was essential as the training was conducted until the 
cumulative Root Mean Square Errors (RMSEs) reached or fell below a predetermined threshold. To lessen the 
likelihood of an infinite loop occurring, the training setup was arranged to conclude after a certain number of cycles, 
fixed at 250 in this scenario when the desired RMSE was not fulfilled. Following a series of experimental trials, the 
model ultimately demonstrated commendable performance. The optimal outcomes of the model have been 
systematically presented in the subsequent Table 2. 

Table 2. ANN model performance results. 

Training RMSE 2.08 
Validation RMSE 4.46 

Test RMSE 18.43 
Test set r 0.997 

RMSE for the Entire Dataset 7.77 
Entire Dataset r 0.995 

Moreover, it is widely acknowledged that graphical representations facilitate comprehension and interpretation; thus, 
several graphs were additionally constructed. Figure 2a indicates that a predominant number of predictions 
generated by the Artificial Neural Network (ANN) show minimal error, signifying that the network is proficient in 
maintaining a high accuracy level in relating inputs to outputs across the bulk of the dataset. More pronounced errors 
observed in a segment of the histogram may signify the presence of a systematic error in that specific region in the 
context of an ANN, potentially leading to either underdosing or overdosing with equal likelihood. 

 
Fig. 2. The ANN model's: a) Error Distribution Histogram and b) Regression Analysis Plot 
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Figure 2b illustrates a regression plot. The evaluation of the regression diagram demonstrates that the actual and 
anticipated diameters have a strong positive relationship, with data points residing near the line that represents an 
exact fit. This suggests that the ANN performs effectively in predicting diameter. The alignment is nearly perfect, with 
the least-squares line closely adhering to the ideal fit line. Nonetheless, certain points reveal small discrepancies 
from the established line of best fit. These instances may indicate less optimal predictions by the ANN, possibly 
attributable to the presence of noisy data or restrictions in the model's capacity to generalize effectively. Table 3 
illustrates a thorough assessment of the performance of our model in projecting the diameter of the electrospun 
Kefiran nanofibers, suggesting that our model has achieved superior results compared to the ANN model mentioned 
in earlier research. 

Table 3. Training Data for ANN Modelling 

Concentration 
(w/v (%)) 

Feed Rate 
(ml/h) 

Voltage 
(kV) 

TCD 
(cm) 

Observed 
diameter 

(nm) 

Predicted 
diameter 

(nm) 

Predicted diameter from 
past literature (1) 

(nm) 
6 1.7 10 14 175 176 185 
6 1.7 10 20 192 192 188 
6 2.3 10 14 217 210 221 
6 2.3 10 20 213 214 192 
6 2 15 17 194 199 297 
6 1.7 20 14 174 172 177 
6 1.7 20 20 201 199 358 
6 2.3 20 14 218 222 248 
6 2.3 20 20 245 245 221 
8 2 10 17 259 259 246 
8 1.7 15 17 313 313 261 
8 2 15 14 296 292 314 
8 2 15 17 295 299 298 
8 2 15 17 273 299 275 
8 2 15 20 294 306 297 
8 2.3 15 17 303 297 135 
8 2 20 17 272 274 248 

10 1.7 10 14 330 331 264 
10 1.7 10 20 365 366 304 
10 2.3 10 14 378 376 358 
10 2.3 10 20 414 413 372 
10 2 15 17 414 436 382 
10 1.7 20 14 298 297 314 
10 1.7 20 20 359 356 377 
10 2.3 20 14 347 346 376 

3.2 3D plots for parameter interpretation 

Three-dimensional surface representations aid in fully comprehending the detailed interactions that occur between 
electrospinning settings and the size of the resulting nanofibers. Consequently, several plots were generated to 
elucidate the relationship between two parameters while maintaining the other two at a constant and intermediate 
value. 
Initially, the TCD and the feed rate were maintained at constant values of 17 cm and 2 mL/h, respectively, as depicted 
in Figure 3a. The surface plot presented therein exhibits considerable variability and complexity. It can be deduced 
from this evaluation that a higher voltage application is probably correlated with a widening of the nanofiber diameter. 
Nevertheless, this correlation ceases to be true when the concentration is either significantly low or significantly high. 
The diameter is minimized at medium voltage levels. In contrast, boosting concentration doesn't always lead to an 
equivalent enlargement of the nanofibers' diameter. The maximum diameter attainable is generated at an 
intermediate polymer concentration coupled with a high applied voltage.   
Figure 3b illustrates the scenario where the polymer concentration and the feed rate are held constant at 8 w/v(%) 
and 2 mL/h, respectively. The figure distinctly indicates a nonlinear relationship between the parameters and the 
diameter. Additionally, it can be inferred that an increase in the applied voltage invariably leads to an increase in 
diameter. However, the TCD does not exhibit a similar trend as the voltage, as the diameter tends to diminish when 
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the TCD is maintained at an intermediate value. In addition, the constants illustrated in this Figure 3c comprised the 
applied voltage, which was standardized at 15 kV, and the TCD, which was designated at 17 cm. The diameter 
exhibits a relatively direct proportionality to the feed rate. In contrast, the relationship pertaining to concentration is 
markedly more intricate. For diminished feed rates, the diameter tends to augment concomitantly with an increase in 
concentration. However, under conditions of elevated applied voltage, the diameter will initially expand, attain a 
maximum threshold, and subsequently experience a reduction. 
For Figure 3d, both the feed rate and the applied voltage were maintained at constant values of 2 mL/h for the feed 
rate and 15 kV for the applied voltage. It is evident that for any specified value of the TCD, the diameter enlarges as 
the concentration increases. Conversely, the TCD does not consistently escalate for fixed values of concentration. 
Initially, the diameter experiences a slight increase with the rise of the TCD; however, it subsequently declines. 
Following this, for a specific TCD value, the diameter increases substantially, after which it remains unchanged. The 
maximal diameter achievable is produced from a solution characterized by high concentration in conjunction with the 
collector far from the tip. 
To generate Figure 3e, the concentration and TCD were maintained at constant levels of 8 w/v (%) and 17 cm, 
respectively. It is discerned that the diameter expands with an escalation in applied voltage for any designated value 
of the feed rate. Nevertheless, regarding the feed rate, the correlation diverges. At elevated applied voltages, 
variations in feed rate exert negligible influence on the nanofiber diameter. As the applied voltage decreases, a 
minimum diameter is observed for an intermediate feed rate.  Lastly, Figure 3f was constructed utilizing previously 
unutilized constants, specifically the applied voltage and the polymer concentration. Each parameter was fixed at 
values of 15 kV and 8 w/v (%), respectively. The figure permits the inference that regardless of the feed rate value, 
an increase in the TCD will precipitate an increase in the diameter. The interrelationship can be characterized as 
quadratic, given the graph's consistent pattern. For lower TCDs, the increment is pronounced; however, this increase 
tends to moderate for larger TCDs. Conversely, as the feed rate escalates, the diameter correspondingly increases. 

 
Fig. 3. Three-dimensional representations of the diameters of nanofibers, as forecasted by Artificial Neural 

Networks (ANN), were established at the specified parameters (a-f) 
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4 CONCLUSIONS 

To encapsulate the findings, the model demonstrated commendable efficacy with an architecture comprising three 
hidden layers, each containing four neurons, and a learning rate established at 0.04. These specific parameters 
emerged as the most effective when evaluated against the entire spectrum of alternatives. Subsequently, the model 
underwent extensive training until it reached optimal performance utilizing the parameters derived through the 
optimization process. This culminates in a highly optimized artificial neural network (ANN) model.  The Pearson 
correlation coefficient, which evaluates the correlation between the recorded and predicted diameters of nanofibers, 
was computed to be 0.995, as opposed to a coefficient of 0.671 cited in another research study. Moreover, the R-
squared measurement for the testing dataset was determined, producing a value of 0.994. In summation, the model 
articulated and developed in this manuscript demonstrates enhanced performance when compared to the model 
from which the data was initially sourced. 
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