
Comparative Performance Evaluation of Suboptimal Binary Search Trees1

Svetlana Štrbac-Savić1, Milo Tomašević2, Nemanja Maček3*, Zlatogor Minchev4

1 Academy of Technical and Art Applied Studies, School of Electrical and Computer
Engineering, Belgrade, Serbia; svetlana.strbac@viser.edu.rs
2 School of Electrical Engineering, University of Belgrade, Belgrade, Serbia;
mvt@etf.bg.ac.rs
3 Academy of Technical and Art Applied Studies, School of Electrical and Computer
Engineering, Belgrade, Serbia & University Business Academy in Novi Sad, Serbia &
SECIT Security Consulting, Serbia; macek.nemanja@gmail.com
4 Joint Training Simulation and Analysis Center, Institute of ICT, Institute of
Mathematics and Informatics, Bulgarian Academy of Sciences, zlatogor@bas.bg
* Corresponding author: macek.nemanja@gmail.com
Received: 2022-11-07 • Accepted: 2022-12-05 • Published: 2022-12-30

1 This paper in an extension of [1].

CFS 2022, Vol. 1, Issue 1, pp. 29–45
https://doi.org/10.5937/1-42709

Original research paper

Citation: S. Štrbac-Savić, M. Tomašević, N. Maček, and Z. Minchev, “Comparative
Performance Evaluation of Suboptimal Binary Search Trees,” Journal of Computer
and Forensic Sciences, 1(1), https://doi.org/10.5937/1-42709. Copyright: © 2022
by the University of Criminal Investigation and Police Studies in Belgrade. All
rights reserved.

Abstract: Three relevant types of suboptimal binary search trees are comparatively evaluated in
this paper: two well-known representatives of height-balanced approaches (the AVL and red-black
trees) and a popular self-adjusting splay tree. After a brief theoretical background, an evaluation
method was described that employs a suitable synthetic workload method capable of producing
diverse desired workload characteristics (different distributions and ranges of key values, varying
input sequence lengths, etc.). Evaluation analysis was conducted for search, insert, and delete
operations separately for each particular type and in appropriate combinations. Experimental
results for an average operation cost as well as for tree maintenance cost are comparatively
presented and carefully discussed. Finally, the suggested favorable conditions for application of
each tree type are summarized.
Keywords: binary search trees; AVL trees; red-black trees; splay-trees; self-adjusting trees.

1. INTRODUCTION

Binary search tree (BST) is a basic data structure that combines two benefits. It allows for
fast binary searching of a sorted structure and also, like each dynamic structure, ensures
efficient maintenance during the insertion and deletion of keys. It provides the O(log n)
complexity of search, insert, and delete operations in the best and average cases, but for
degenerated topologies in the worst case the performance of operations can be deteriorated
to O(n). In order to prevent such cases, the tree topology should be kept balanced.
However, keeping the optimal balance after each insert or delete operation can impose a

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

30

significant maintenance overhead (up to O(n) sometimes). A compromise is often found
in suboptimal BSTs by somewhat relaxing optimal balancing criteria. This approach can
significantly reduce the maintenance cost while still guaranteeing the O(log n) complexity
of search even in the worst case with some small constant degradation factor compared to
an optimally balanced tree. Different suboptimal strategies have been proposed, but height
balancing is the most popular one. The main representatives are AVL trees and red-black
trees, which are based on some local sub-tree balancing criteria rather than global ones. In
both types of BST (but in different ways), the difference in heights of the leaves is practically
restricted within a small constant factor, preventing the linear worst case.
The aforementioned balancing techniques are efficient if the keys in the tree are searched for
with nearly uniform probabilities. However, the search probabilities for different keys are
often non-uniform, especially when the level of temporal locality is increased. According
to that, self-adjusting binary search trees have been proposed that are reorganized even
after a search operation. A prominent representative of such an approach is the splay tree,
where the successfully found key is moved up to the root in order to exploit the benefits
of temporal locality. Since splay trees do not have some explicit balance criteria, the worst
case can even go up to O(n), which is acceptable only if it occurs vary rarely. However, the
amortized analysis, which gives the time complexity of operations in a series, guarantees
O(log n) complexity in the average case.
The main goal of this paper is to conduct a comparative performance evaluation of AVL,
red-black, and splay trees as prominent representatives of suboptimal binary search trees.
In order to analyze the performance of these trees under a wide spectrum of different
conditions, an appropriate synthetic workload generator is used, which is capable of pro-
ducing diverse desired workload characteristics. The performance indicators were chosen
to be platform- and implementation-independent. The evaluation results should indicate
the optimal suggested condition for the employment of these types of trees.

2. MATERIALS AND METHODS

This section provides a brief theoretical background on the AVL, RB, and splay trees,
respectively, with their definitions and considerations on the time complexity of the
operations.

2.1. AVL Trees

The AVL trees proposed by Adelson-Velski and Landis are height-balanced trees [2]. Let
us define the balance of a node as the difference between the heights of its left and right
sub-trees. Then, the AVL tree is defined as a binary search tree in which the absolute value
of the balance for each node is one at most. The height of an empty tree is defined as 0.
In this way, the balance criterion is considerably relaxed. While the leaves in an optimally
balanced tree can be deployed only in two lowest levels, in an extreme case the leaves of
the AVL tree can span the range between levels h and 2h. The worst topology of the AVL
tree with maximum height for a given number of nodes is referred to as the Fibonacci tree.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

31

In the AVL trees, the node balance can only be 1, 0, and -1. A node with a balance of 1
leans left, while a node with a balance of -1 leans right. Some insert or delete operations
can disturb the balances of the node ancestors on their path to the root, but, as long as
they are in the allowed range, there is no need to reorganize the tree. However, when at
least one ancestor balance becomes 2 or -2, the specific tree adjusting operations (called
single or double rotations) are carried out in order to return the balance of all nodes to the
allowed range. The rotations are relatively inexpensive and infrequent, so the overhead of
maintaining the AVL tree is quite acceptable [3].
In spite of the fact that the AVL tree is only “nearly” balanced, it was demonstrated in [4]
that for an AVL tree with n nodes, its height h satisfies the condition

()1.4405 log 2 0.3272h n< + − (1)

Since the number of comparisons on the search path is determined by the tree height, its
finding guarantees that the time complexity of the search is O(log n), where n denotes
the number of nodes in the tree. Along with the same time complexity as in an optimally
balanced tree, the degradation factor of the worst case search path is also quite acceptable
(less than 45%). Since the eventual rotations in insert and delete operations impose some
practically constant additional overhead, the length of the search path is also dominant
factor which determines their O(log n) complexity.

2.2. Red-black Trees

Another nearly balanced topology principally based on height balancing is the
red-black tree. While the AVL tree directly restricts the local dis-balance for each node, the
red-black tree indirectly controls the length of the search paths by defining the color of
each node. It uses an extra bit that denotes a node as red or black and imposes some
coloring rules as follows.
The binary search tree is a red-black tree if it satisfies the following conditions [5]:
1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.
4. If a node is red, then both his sons are black.
5. Every path from a given node to any of its descendant leaves contains the same number
of black nodes.
In the rest of the paper, these trees will be referred to as RB trees.
The RB trees also represent an implementation of the 2-3-4 trees in a form of binary tree
[6]. The 2-3-4 trees have optimally balanced topology since all leaves are at the same level.
Besides the usual 2-nodes as in the binary trees, these trees may also have 3-nodes with
two keys and three sub-trees, as well as 4-nodes with three keys and four sub-trees. The
implementation of the 2-3-4 trees requires more memory, and insert and delete operations
are more complex since, when necessary, one type of node is transformed into another.
Therefore, it is very important that the 2-3-4 trees are B-trees of degree 4, being isomorphic

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

32

with the RB tree, which means that for each 2-3-4 tree there exists at least one RB tree as
its binary representation [7].
If the tree structure is modified by some insert or delete operation that impairs the requ-
irements of the definition, rotations are performed in order to re-establish the correct
structure and coloring. The basic operations of the RB trees have been described in [4, 7]
and [8]. It is demonstrated in [5] that the height of the RB tree is bounded by

()2 log 1h n< +
. (2)

Therefore, just like in the AVL trees, the logarithmic performance of all operations if the
RB trees is also guaranteed in the average and worst case.

2.3. Splay Trees

Splay trees were proposed by Sleator and Trajan [9]. Although they do not rely on some
explicit balancing strategy, unlike AVL and RB trees, the splay trees are reorganized on
each access, including even non-invasive search operations, by means of rotations. Each
accessed or inserted key is moved to the root, as well as the predecessor/successor of a
deleted or unsuccessfully searched key. The rationale behind this is to exploit temporal
locality with increased probabilities of accessing recently used keys or range of values.
Two techniques can be employed for tree reorganization: top-down splaying and bottom-
up splaying. In bottom-up splaying, the tree is searched for the key in the first step, saving
some parent information in nodes on the search path, and then the node is lifted up to
the root by consecutive zig, zig-zag, and zag-zag rotations, as described in [10]. In [9], the
authors favor top-down playing since it performs in one step without need for an extra
storage. Because of that, top-down splaying was used in this evaluation study.
Although splay trees do not guarantee O(log n) complexity in the worst case, it is demon-
strated in [11] that the complexity of performing a series of m operations in splay tree with
n keys is

()()1 log logO m n n n+ +
. (3)

Consequently, the amortized cost of operations in splay trees is also logarithmic.

3. RELATED WORK

The comparison of different kinds of binary search trees was a goal of many studies. The
study from [12] follows a similar approach to our study. Six types of binary search trees
were compared: random BST, AVL tree, and four types of self-adjusting binary search
trees (splay trees with top-down splaying and bottom-up splaying, and self-adjusting trees
with MTR and Exchange techniques described in [13]). It was concluded that AVL trees
are the most efficient ones when searching is the most frequent operation, while, among

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

33

the self-adjusting structures, the splay trees with top-down splaying technique perform
the best in a highly dynamic environment.
In [14], four types of binary search trees were compared: unbalanced BST, AVL tree, RB
tree, and splay tree. For each of them, five different node representations were considered:
plain, with parent pointers, threaded, right-threaded, and with an in-order linked list. In
total, 20 BST variants were compared using three experiments in real-world scenarios
with real and artificial workloads. The measured parameters were execution time and the
number of comparisons. The results indicate that RB trees are preferred when random
input with occasional runs in sorted order is expected. When insertions in sorted order
are prevalent, the AVL trees outperform the others for later random access, whereas splay
trees perform the best for later sequential or clustered access.
In [15], performance of height-balanced trees (HB[k]) is evaluated. Both analytical and
experimental results that show the cost of maintaining HB[k] trees as a function of k are
discussed. The AVL tree is treated as a special case for k = 1. For the AVL trees, it was
concluded that only the search time is a function of the tree size, and in a general case,
the maintenance does not depend on the tree size. In general, for HB trees for k > 1, the
execution times of the procedures for maintaining the HB[k] trees are independent of the
tree size, except for the average number of nodes revisited on a delete operation in order
to restore the HB[k] property on its trace back. Also, the cost of maintaining HB[k] trees
drops significantly as the allowed imbalance (k) increases.
Bear and Schwab in [16] empirically compare the height-balanced trees with the
weight-balanced trees by means of simulation with a synthetic workload. In the conclusi-
on, they give preference to the AVL trees.
In [17], a novel limit-splaying heuristic called periodic-rotation is described. It performs
splaying after n insertions or accesses in order to reduce the maintenance cost while
preserving the performance. They experimentally compared seven data structures:
the simple BST, the RB trees, splay trees both with top-down and bottom-up splaying
techniques, randomized trees, and their heuristic splay tree. It was presented that such
heuristic splay tree where splaying is done periodically rather than on each access is
around 27% faster on average than efficient bottom-up splaying. Over five separate text
collections that were chosen for workload, several somewhat unexpected conclusions
were highlighted: first, top-down splaying is slower than bottom-up splaying in practice;
second, bottom-up splaying is about as fast as a self-adjusting randomized tree, but in
general is around 25% slower than a BST; and, finally, the most efficient heuristic splaying
scheme is only 3% faster than a BST, which performed even better than RB trees.
The study in [18] provides a comparative analysis of a number of different binary search
trees: un-optimized BST, AVL tree, several types of the weight-balanced trees (described
in [19]), the trees where the searched node moves by one level towards the root [13], as
well as the tree with appropriate combinations of some algorithms. The evaluation is based
on measured execution times for different types of input sequences. The operations con-
sidered were insertion and searching. Although the basic search operation in an ordinary
binary tree is quite efficient in many cases, it was concluded that the tree that combines the
principles of the AVL tree and an ordinary BST is the most efficient generally.
Although the studies from [12] and [14] are similar to the topic of our study in terms
of analyzed trees, the comparisons are carried out from different perspectives. While

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

34

some previous studies (e.g., [14]) observed a specific environment in which the trees were
applied, our study presents a more general performance study independent of the imple-
mentation of the algorithm, operating system, the specific applications, and the machine
on which the tests are conducted.

4. EVALUATION METHOD

Although the real workloads are preferred in many studies focused on a specific
area of applications, they are unable to reflect a wide spectrum of different workload
characteristics. Since an appropriate synthetic workload generator is very convenient
for producing diverse desired workload characteristics, our comparative performance
evaluation employs the simulation method with specific synthetic workload described in
[20]. The main parameters of the workload are: the number of keys, the range of the key
values, the distribution of the key values, time locality, the relative frequency of search,
insert, and delete operations, the probability of successful and unsuccessful search,
etc. The performance indicators have been chosen to be independent of the algorithm
implementation and platform on which the measurements are performed (tree height,
number of rotations, etc.).
The various key sequences were generated in order to obtain a more complete insight
into the chosen trees performance. The intervals from which the key values are taken, the
number of elements in the sequence, and the frequency of the key values were varied. A
special care was taken to simulate the time locality of the keys in some cases.
The lengths of the key sequences are chosen to be between 10 and 1,000,000 elements in
multiples of 10. The number of elements in the sequences was varied in order to establish
how the performance depends on the tree size.
The values in the same key sequence may be repeated. They are taken from intervals whose
lower bounds are set to zero and whose upper bounds vary from case to case. Four groups
of the key sequences used in this evaluation differ according to the way of key generation.
The sequences without key repetitions are used for building an initial tree.
The first group of key sequences is sorted in increasing order. They contain unique key
values without repeating.
The second group of key sequences is similar to the first, but the order of the key values is
random. All values appear exactly once in the sequence, and the length of the key sequence
corresponds to the interval upper bound.
In the third group, the keys are also generated randomly. However, the elements are
chosen out of a certain interval, whose upper bound also varies, as well as the sequence
length. The consequence of such a key choice is that some values from the interval can be
repeated, while other values do not appear in the sequences.
The fourth group has the key values that can also be repeated in a sequence, while the
sequence lengths and the interval upper bounds are varied like in the third group. Howe-
ver, instead of using random, uniformly distributed key values, the goal was to obtain the
key sequences with a non-uniform distribution and to enforce the temporal locality of
chosen values, which is sometimes quite pronounced in tree accesses. The function

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

35

1

1

x
y

ax

−
=

+
(4)

was used to enforce different levels of temporal locality in the following way. First, an
initial sequence with n keys without repeated values is formed (let it denote by array key).
Then, x is randomly chosen from the interval []0,1x∈ . With such an x, y is calculated
according to equation (3). Since []0,1y ∈ for a > 0, index i is then calculated as i n y= ⋅
. Finally, element of the key sequence with index i(key[i]) is entered into the resulted key
sequence. This procedure is repeated until the resulting sequence of the required length is
generated.
By varying the parameter a, the shape of the curve can be adjusted, as shown in Figure
1. Values 1, 10, 50, and 100 were taken for parameter a, and the results for a=100 were
analyzed. For higher values of a, a uniform distribution of x, values of y are lower. Con-
sequently, lower indices of the key array are much more probable, which increases the
time locality in the resulting sequence of key values closer to the start of the array.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 a=1
 a=10
 a=50
 a=100

f (
x)

x

Figure 1. Function (4) in the interval x ∈ [0, 1] for the different values of parameter a.

Search, insertion, and deletion operations are evaluated both independently in separate
series and jointly in mixed series. In a mixed series, percentages of particular operations
are varied, and operations appear randomly according to the adopted frequency.
The following performance indicators were collected during experiments:

• Average height during search operation – average height where the element was found
during a successful search or the height of the node where the search was finished in
the case of unsuccessful search. It indicates the number of comparisons on the search
path.

• Tree height – this parameter refers to the maximum height of the initial tree on which
the search series was performed.

• Average number of rotations per operation. It indicates the maintenance cost.
• Tree height at the end of a series of insert operations.
• Average height of the splay tree in an entire series of operations.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

36

5. RESULTS

The experimental results collected from running the series of insert, search, and delete
operations are presented and discussed in the first three subsections, respectively. In the
last subsection, the results from a series of appropriate combinations of all three operations
are shown and analyzed.

5.1. Insert Operation

Since only different values can be inserted in a binary search tree, only the sequences with
unique keys are applicable for evaluation of insert operation. The insertions were started
with initially empty trees.

Table 1. Series of insert operations for input key sequences
with sorted values in increasing order.

Number of inserted
keys (sorted)

Average height per operation
Average number

of rotations
per insert operation

Height of
 resulted

tree
AVL RB Splay AVL RB AVL RB

100 5.730 8.090 0.990000 0.93000 0.89000 6 10
1,000 8.977 14.481 0.999000 0.99000 0.98300 9 16

10,000 12.362 21.138 0.999900 0.99860 0.99760 13 23
100,000 15.689 27.723 0.999990 0.99983 0.99969 16 30

1,000,000 18.951 34.379 0.999999 0.99998 0.99996 19 36

The results for sorted input key sequences of variable lengths are shown in Table 1. Since
the current inserted key is always the highest one, splay trees need no rotations, but after
the series of insert operations, the resulting tree has degenerated topology and is far from
optimal for most operations that can follow in practice. The AVL trees have a considerably
lower average height of the current inserted node, but the RB trees have slightly less
average rotations per operation. As a comparison and a rotation are the operations with
similar cost, so the AVL tree is more efficient at inserting a sorting sequence. In addition,
its final tree height in case of the RB tree is almost twice as tall. Their efficiency is greater
considering the final height after the series of insert operations. Since this tree can be
the initial tree for some other operations, it can have a serious impact on the cost of the
operations that follow.
The results for inserting key sequences generated randomly are given in Table 2. The
heights of resulted tree are shown for the AVL and RB tress only since it is very relevant
for subsequent search operations, while for splay trees it changes with each operation.
Splay trees perform the worst by far in this case, as expected. As for both height indicators,
the AVL and RB trees show similar results, while the RB trees have fewer rotations per
operation.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

37

Table 2. Series of insert operations for input key sequences with random values.

Number of
inserted keys

(random)

Average height per
operation

Average number
of rotations

per insert operation

Height of
resulted tree

AVL RB Splay AVL RB Splay AVL RB
100 5.390 5.410 7.390 0.680 0.550 2.450 7 7

1,000 8.699 8.777 13.929 0.646 0.555 4.954 11 11
10,000 12.056 12.074 20.442 0.645 0.536 7.219 15 15

100,000 15.450 15.523 27.112 0.644 0.534 9.574 19 20
1,000,000 18.815 18.829 33.769 0.640 0.530 11.927 23 23

The results from both Tables 1 and 2 for the same type of tree indicate that the average
number of rotations per operation is practically constant over all varied tree sizes for both
random and sorted key sequences, except for inserting keys from random sequence in
case of splay trees, where this indicator steadily increases with tree size. In the case of
most unfavorable sorted input, both AVL and RB trees experience practically a rotation
on every insert, while for random input the more efficient RB tree requires a rotation
in almost every other insertion. The situation for splay trees is quite opposite, since the
maintenance cost for random input is much higher than for a sorted one. Although splay
trees most efficiently handle insertion of sorted key sequence, the final tree height has
degenerated topology equivalent to a linked list inappropriate for later searching. The fact
that the AVL trees have a more restrictive balance criterion contributes to more efficient
handling in inserting keys of a sorted sequence, reflected in a considerably smaller average
height per operation and final tree height than in the case of the RB trees.

5.2. Delete Operation

A series of delete operations are conducted on initial trees generated with a series of insert
operations of random key values in order to be large enough. The heights of the initial
trees were 23 for both the AVL and RB trees and 69 for the splay tree. As in the case of
insert operations, key sequences with no repeated values were chosen in order to avoid
unsuccessful delete operations.
The results presented in Table 3 confirm that splay trees perform the best in cases of
deletions of keys from sorted sequences. Each delete operation raises the right subtree in
which the next key in sequence is found, making its subsequent deletion more efficient. In
the case of splay trees, as the number of operations in a series increases, both the average
height of the deleted node and the average number of rotations decrease. Except for a very
small percentage of nodes deleted from the initial tree, the RB trees perform better than
AVL trees but are still much worse than splay trees.
For the deletion of keys in random order (Table 4), the AVL and RB trees perform very
similarly, and their performance indicators only slightly change with the varying number
of deleted keys. On the other side, splay trees are again noticeably less efficient, and their
performance deteriorates with an increasing number of deleted keys in random order.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

38

Table 3. Series of delete operations on key sequences
with sorted values in increasing order.

Number of deleted
keys (sorted)

Average height of deleted node
per operation

Average number of rotations
per delete operation

AVL RB Splay AVL RB Splay
100 15.520 15.980 2.210 0.600 0.700 0.890

1,000 14.710 15.793 1.500 0.572 0.680 0.546
10,000 14.730 14.717 1.392 0.578 0.662 0.497

100,000 14.150 14.083 1.361 0.578 0.659 0.482
1,000,000 13.708 12.534 1.347 0.575 0.658 0.475

Comparing the results for the sorted and random order of deleted keys in splay trees, two
opposite trends can be noticed. Longer sorted key sequences during deletions are favorable,
while longer random ones are unfavorable for both the average height of the deleted node
and the average number of rotations. The AVL and RB trees have a larger average height
and a smaller average number of rotations for the same number of delete operations in the
case of a random key sequence. Also, unlike splay trees, these performance indicators for
AVL and RB trees are relatively insensitive to the number of deleted keys.

Table 4. Series of delete operations on key sequences in random order.

Number of deleted keys
(random)

Average height of deleted
node per operation

Average number of rotations
 per delete operation

AVL RB Splay AVL RB Splay
100 15.060 16.000 8.550 0.330 0.320 3.160

1,000 15.835 16.321 14.648 0.384 0.357 5.458
10,000 15.402 16.541 21.745 0.351 0.359 8.166

100,000 16.703 16.865 28.671 0.357 0.361 10.747
1,000,000 16.465 16.437 35.687 0.378 0.387 13.359

5.3. Search Operation

The search operation is especially important because it is usually the most frequent
operation and also because it is the first part of insert and delete operations. This is the
reason why the performance of this operation is analyzed in more detail.
Search operations in the AVL and RB trees do not modify the tree topology, and no ro-
tations are required. Therefore, the average length of the search path is the only relevant
performance indicator. However, in splay trees, every search operation is followed by an
adjustment of the topology, and the average number of rotations is meaningful as well. All
the results presented in Table 5 are obtained by searching for a sorted sequence of keys in
increasing order. The heights of the initial trees were 15 for the AVL and RB trees and 43
for the splay tree. In the first three cases (up to 10,000 keys searched), all searches were
successful, while in the other two cases, there were 90% and 99% unsuccessful searches.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

39

Table 5. Series of search operations on key sequences with sorted values in increasing order.

Number of searched keys
(sorted)

Average search path length
per operation Average number of

rotations (splay tree) AVL RB Splay
100 12.260 11.160 2.790 0.670

1,000 11.697 11.472 2.460 0.515
10,000 11.578 11.564 2.348 0.473

100,000 14.656 12.858 1.135 0.047
1,000,000 14.966 12.986 1.013 0.048

Again, the splay trees are obviously the most efficient ones when the key sequence is sorted.
With longer search sequences, their performance is steadily improving. After the first
operation in a series radically rearranges the tree topology, each subsequent search slightly
adjusts it to make the subsequent operation more efficient. Finally, when unsuccessful search
operations for key values higher than the maximum key in the tree prevail, they execute
very fast since no further tree adjustments are needed. However, the average cost of search
operations in the AVL and RB trees depends greatly on the initial tree size since there are no
adjustments during the series of search operations. Unlike splay trees, in case of AVL and RB
trees performance is deteriorated when the number of keys in the sorting sequence grows
due to prevailing number of unsuccessful search operations (their search paths are ended in
leaves of the tree). The performance of the AVL tree is especially affected in this case.

Table 6. Series of 100,000 search operations on key sequences with random distribution.

Range of searched key values
(random)

Average search path
length per operation

Average number of
rotations (splay tree)

AVL RB Splay
0..99 13.741 14.682 6.254 2.059

0..999 13.299 14.256 10.868 3.574
0..9,999 13.756 14.813 15.662 5.111

0..999,999 16.743 15.853 3.421 0.884

Table 6 presents the results for sequences of 100,000 search operations with random
distribution of key values performed on initial trees which were built with series of insert
operations of random keys values between 0 and 99,999. Table 7 shows the results obtained
under the same conditions but with a non-uniform distribution and enforced temporal
locality of the searched key values. The heights of the initial trees were 19 for the AVL tree,
20 for the RB tree, and 56 for the splay tree. In cases when range of key values searched was
0..999,999, there were approximately 90% unsuccessful search operations, while in other
sequences all searches were successful.
Splay trees clearly outperform the others when non-uniform sequences of key values
are searched since they can take advantage of increased temporal locality (much better
indicators for splay trees in Table 7 compared to those in Table 6) by proper adjustment
of the topology, while the AVL and RB trees are insensitive to this phenomenon. Their
performance rather depends on a set of key values and their place in the initial tree. For
both distributions, the average cost of a successful search operation in the AVL trees is
slightly better than in the RB tree. The large percentage of unsuccessful operations affected
the performance of the analyzed trees in the same manner as in the previous case.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

40

Table 7. Series of 100,000 search operations on key sequences
with non-uniform distribution.

Range of searched key values
(non-uniform)

Average search path
length per operation

Average number of
rotations (splay tree)

AVL RB Splay
0..99 14.043 13.283 1.916 0.593

0..999 13.307 14.183 5.829 1.919
0..9,999 13.290 14.374 10.296 3.406

0..999,999 16.712 15.820 2.763 0.666

Figure 2 depicts how the distribution of key values in the search sequences affects the
average length of the search path. It more explicitly demonstrates much better handling of
increased temporal locality of search sequences in splay trees than in the AVL and RB trees.

Figure 2. Average lengths of search path for series of search operations
 for random and non-uniform key sequences.

In previous experiments, unsuccessful search operations for key values in the interval
100,000..999,999 traversed the right-most search part, which is not quite typical. Therefore,
a more realistic situation with unsuccessful searches dispersed across an entire tree
should be simulated. To this end, about 20,000 randomly chosen key values were deleted
from an initial tree randomly built with 100,000 keys. The obtained tree was used for
the evaluation of search sequences of 100,000 keys. Four ranges of key values (0..29,999,
0..49,999, 0..79,999, 0..99,999) and two distributions (random and non-uniform) are
varied to produce six new sequences.
The results from such input sequences are given in Table 8 for random distribution and
in Table 9 for non-uniform distribution. The efficiency of search operations in the AVL
and RB trees practically does not depend on the range of search keys or type of distri-
bution. A number of unsuccessful search operations increases their average search path
to some extent. The AVL tree is again slightly better than the RB tree, but both types of
trees outperform the splay tree, especially for randomly distributed searched key values.
Although enforced temporal locality in non-uniform distribution evidently improves the
performance of search operations and the maintenance cost of the splay tree, it is not
sufficient to make it better than the AVL and RB trees in conditions when unsuccessful
search operations are spread over a larger range of key values.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

41

Table 8. Series of 100,000 search operations in different ranges
of searched key values (random distribution).

Range of searched
key values
(random)

Average search path length
per operation

Average number of
rotations

 (splay tree)AVL RB Splay
0..99,999 14.991 15.062 22.208 7.188
0..79,999 14.903 15.224 20.503 6.672
0..49,999 14.810 15.573 19.569 6.370
0..29,999 14.557 15.566 18.249 5.940

Table 9. Series of 100,000 search operations in different ranges
of searched key values (non-uniform distribution).

Range of searched
key values

(non-uniform)

Average search path length
per operation

Average number
of rotations
 (splay tree)AVL RB Splay

0..99,999 14.448 14.426 16.829 5.502
0..79,999 15.152 15.479 16.172 5.290
0..49,999 15.365 16.075 16.536 5.406
0..29,999 14.675 15.656 15.797 5.027

5. DISCUSSION

Finally, after insert, delete, and search operations are analyzed separately, a more realistic
situation when different operations are interspersed is in place. Different workload
characteristics are also simulated by varying the relative frequencies of these three types
in a sequence. Two different series of operations are analyzed. It was assumed that the
search operation is the most frequent one, while delete and insert operations are equally
represented in this evaluation. The initial tree was built from the values in the interval [0,
99999] inserted in random order. The cost of building the initial tree is not accounted for
in the evaluation of the mixed series, which has 100,000 operations.

Table 10. Series of 80% search, 10% insert, and 10% delete operations
with random distribution of key values.

Range of key values
(random)

Average height per operation Average number of rotations per
operation

AVL RB Splay AVL RB Splay
0..9 14,189 15,897 1,290 0,021 0,015 0,143

0..99 13,325 15,813 2,157 0,023 0,018 0,463
0..999 11,623 13,209 7,120 0,023 0,020 2,319

0..9,999 14,356 15,359 16,556 0,029 0,028 5,499
0..99,999 14,711 14,782 21,957 0,033 0,030 7,309

0..999,999 17,925 18,017 19,020 0,066 0,055 6,275

The results for the first mixed series made of 80% search, 10% insert, and 10% delete
operations with the key values from different ranges in random order are presented in

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

42

Table 10. Splay trees are mostly sensitive to the range of key values. For smaller ranges,
they have a smaller average height per operation than both AVL and RB trees at the
expense of rotations constantly used to adjust the tree. However, as the growing range of
values decreases, the temporal locality and its average performance become significantly
worse. When compared to the RB trees, the AVL trees, as a more restrictive topology,
require slightly more rotations, but it pays off in a smaller average height per operation
due to the prevalent number of search operations. For smaller ranges of key values, both
the AVL and RB trees are less sensitive to this parameter. However, a very large range of
key values impairs their performance because of the increased incidence of unsuccessful
search operations ending in the leaves.
Table 11 shows the experimental results for the same frequencies of operations as before,
but the key values in mixed sequences follow the non-uniform distribution. It is evident
again that splay trees perform noticeably better for key values with a non-uniform distri-
bution of exploiting enforced temporal locality. On the other side, there is no consistent
effect on the performance of the height-balanced representatives for this distribution. The
AVL trees are still slightly better.

Table 11. Series of 80% search, 10% insert, and 10% delete
operations with non-uniform distribution of key values.

Range of key values
(non-uniform)

Average height per
operation

Average number of rotations per
operation

AVL RB Splay AVL RB Splay
0..9 15,057 15,127 0,987 0,023 0,019 0,031

0..99 15,025 15,176 2,809 0,018 0,010 0,630
0..999 14,841 15,899 8,336 0,009 0,006 2,775

0..9,999 15,395 16,447 13,440 0,014 0,013 4,482
0..99,999 15,265 15,292 18,195 0,023 0,021 6,071

0..999,999 16,961 17,168 17,345 0,060 0,050 5,748

Table 12. Series of 50% search, 25% insert, and 25% delete operations
with random distribution of key values.

Range of key values
(random)

Average height per
operation

Average number of rotations per
operation

AVL RB Splay AVL RB Splay
0..9 14,459 15,729 1,724 0,052 0,040 0,357

0..99 14,231 15,594 4,058 0,056 0,046 0,120
0..999 12,716 13,618 7,402 0,058 0,048 2,395

0..9,999 14,174 15,168 16,869 0,066 0,059 5,694
0..99,999 14,795 14,864 23,330 0,083 0,073 7,970

0..999,999 17,101 17,660 21,158 0,165 0,136 7,071

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

43

Table 13. Series of 50% search, 25% insert, and 25% delete
operations with non-uniform distribution of key values.

Range of key values
(non-uniform)

Average height per
operation

Average number of rotations
per operation

AVL RB Splay AVL RB Splay
0..9 15,139 15,289 0,948 0,058 0,047 0,065

0..99 14,682 15,046 2,924 0,042 0,035 0,779
0..999 14,686 15,794 8,193 0,018 0,014 2,773

0..9,999 15,323 16,432 13,526 0,031 0,028 4,584
0..99,999 15,382 15,409 18,881 0,042 0,037 6,423

0..999,999 16,416 16,836 18,810 0,130 0,109 6,353

After that, the relative frequencies for the second mixed series were set to 50% for search,
25% for insert, and 25% for delete operations to see how a higher percentage of input and
delete operations affected the average cost per operation. The results for sequences with
key values from different ranges are presented in Table 12 for random distributions and
in Table 13 for non-uniform distribution. In case of the AVL and RB trees, the average
number of rotations is growing almost linearly with the increased percentage of insert and
delete operations. The cost of tree maintenance in splay trees is not much affected since
they adjust the tree topology on each access. It seems that different relative frequencies of
three operations different do not have significant impact on an average height per operation
in all trees for both random and non-uniform distributions. Suitability of non-uniform
distribution and smaller ranges of key values for splay trees is evidenced once again.

6. CONCLUSIONS

It can be concluded that the AVL and red-black trees perform quite similarly. However,
in a number of cases, the AVL trees are slightly more efficient than their red-black
counterparts in terms of average height per operation, especially in sequences of search
operations and in sequences of mixed operations, as a consequence of their more stringent
topology requirements. It comes at the expense of somewhat increased maintenance
costs expressed in an average number of rotations. The red-black trees are more efficient
when the key values in sequences are unique and random. Both types of trees are rather
insensitive to the order of key values and temporal locality. On the other hand, the splay
trees prefer situations where key values come in sorted order. They especially outperform
the others when the temporal locality of accesses is increased and when searching for
a rather narrow range of the key values. In these cases, the high cost of constant tree
maintenance is amortized; otherwise, it can be intolerable. This conclusion indicates that
a modified splay tree could be proposed that dynamically tracks the temporal locality of
key values (e.g., access counters) and adjusts the tree topology only when it is justified.
For more information on AVL trees, readers may consult [15]. Details on the AVL-based
settlement algorithm and reservation system for smart parking systems in IoT-based
smart cities are presented in [16]. More details on red-black trees can be found in [17].
To read more on splay trees, readers may cf. [18]. To learn more about augmented binary
search trees, cf. [19].

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

44

FUNDING:

This research received no external funding.

CONFLICTS OF INTEREST:

The authors declare no conflict of interest.

REFERENCES

[1] S. Štrbac-Savić and M. Tomašević, “Comparative performance evaluation of the
AVL and red-black trees,” In Proceedings of the Fifth Balkan Conference in Informatics,
September (BCI ’12), 2012, pp. 14–19.

[2] G. M. Adelson-Velskii and E. M. Landis, “An Algorithm for the Organization of Infor-
mation,” Soviet Mathematics Doklady, vol. 3, pp. 1259–1263, 1962.

[3] M. Tomašević, Algorithms and Data Structures. Belgrade, Serbia: Academic Mind, (in
Serbian), 2011.

[4] D.Е. Knuth, Тhe Art of Computer Programming, Volume 3: Sorting and Searching,
Reading, Massachusetts: Addison-Wesley, 1998.

[5] T. Cormen, Ch. Leiserson, and R. Rivest, Introduction to Algorithms. The MIT Press,
McGraw-Hill, 2009.

[6] A. Aho, J. Hopcroft, and J. Ullman, Data Structures and Algorithms. Addison-Wesley,
1983.

[7] B. Flaming, Practical Data Structures in C++. New York: John Wiley and Sons, 1993.

[8] C. Okasaki, “Red-black trees in a functional setting,” Journal of Functional Pro-
gramming, Vol. 9, No. 4, pp. 471–477, 1999.

[9] D. Sleator and R. E. Trajan, “Self-Adjusting Binary Search Trees,” Journal of the Asso-
ciation for Computing Machinery, Vol. 32, No. 3, pp. 652–686, 1985.

[10] M. A. Weiss, Data Structures and Algorithm Analysis in C. Reading, MA: Addison-
Wesley, 1997.

[11] R. Cole, “On the Dynamic Finger Conjecture for Splay Trees, Part II: The Proof,”
SIAM Journal on Computing, Vol. 30, pp. 44–85, 2000.

[12] J. Bell and G. Gupta, “An Evaluation of Self-Adjusting Binary Search Tree Techniques,”
Software – Practice and Experience, Vol. 23, pp. 369–382, 1993.

[13] B. Allen and I. Munro, “Self-Organising Binary Search Trees,” JACM, Vol. 25, pp.
526–535, 1978.

[14] B. Pfaff, “Performance Analysis of BSTs in System Software,” ACM SIGMETRICS, Vol.
32, Issue 1, pp. 410–411, 2004.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

45

[15] R. Wiener, “AVL Trees,” In Generic Data Structures and Algorithms in Go, Berkeley,
CA: Apress, 2022, pp. 315–347.

[16] H. Canli and S. Toklu, “AVL Based Settlement Algorithm and Reservation System
for Smart Parking Systems in IoT-based Smart Cities,” The International Arab Journal of
Information Technology, Vol. 19, No. 5, pp. 793–801, 2022.

[17] R. Wiener, “Red-Black Trees,” In Generic Data Structures and Algorithms in Go,
Berkeley, CA: Apress, 2022, pp. 363–385.

[18] B. A. Berendsohn and L. Kozma, “Splay trees on trees,” In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2022, pp. 1875–1900.

[19] T. Luo, “Learning Augmented Binary Search Trees,” Doctoral thesis, Carnegie Mellon
University, Pittsburgh, PA, 2022.

