
Performance Modeling of File System Pairs in Hypervisor-Based Virtual
Environment Applied on KVM Hypervisor Case Study

Borislav Đorđević1, Valentina Timčenko2, Nemanja Maček3*, Mitko Bogdanoski4
1 Mihajlo Pupin Institute, University of Belgrade, Serbia & Academy of Technical and Art
Applied Studies, School of Electrical Engineering, Belgrade, Serbia;
borislav.djordjevic@pupin.rs
2 Mihajlo Pupin Institute, University of Belgrade, Belgrade, Serbia;
valentina.timcenko@pupin.rs
3 Academy of Technical and Art Applied Studies, School of Electrical and Computer
Engineering, Belgrade, Serbia & University Business Academy in Novi Sad, Serbia &
SECIT Security Consulting, Serbia; macek.nemanja@gmail.com
4 Military Academy General Mihailo Apostolski, Skopje, RN Macedonia,
mitko.bogdanoski@ugd.edu.mk
* Corresponding author: macek.nemanja@gmail.com
Received: 2022-10-08 • Accepted: 2022-12-05 • Published: 2022-12-30

CFS 2022, Vol. 1, Issue 1, pp. 55–75
https://doi.org/10.5937/1-42712

Original research paper

Citation: B. Đorđević, V. Timčenko, N. Maček, and M. Bogdanoski, “Performance
Modeling of File System Pairs in Hypervisor-Based Virtual Environment Applied
on KVM Hypervisor Case Study,” Journal of Computer and Forensic Sciences, 1(1),
https://doi.org/10.5937/1-42712. Copyright: © 2022 by the University of Criminal
Investigation and Police Studies in Belgrade. All rights reserved.

Abstract: This paper proposed an approach to mathematical modeling of the file system per-
formance in a hypervisor-based virtual environment, with special focus on the file system pair
interactions. The main goal of this research is to conduct an in-depth analysis of the filesystem
pair behavior with respect to the performance costs originating from the employed technologies,
such as H-Trees, B-Trees and Copy-on-Write/Overwrite update method, and different application
workload types. The modeling provides a collection of hypotheses about the expected behavior.
The modeling and the hypotheses are validated based on the results obtained for a specific case
study. Our study reports on a file system performance comparison in the context of KVM hyper-
visor-based full hardware virtualization, application-level benchmarking, and 64-bit Linux filesys-
tems Ext4, XFS, and Btrfs. The Filebench benchmark tool is applied for comprehensive testing
of the filesystem performance under fair-play conditions. According to the obtained results, we
provide a set of recommendations (i.e., a Knowledge Data Base) for optimal filesystem pair selec-
tion for the KVM hypervisor. Finally, it is important to note that the proposed modeling is also
applicable to other hypervisor-based virtualizations.
Keywords: filesystems, operating systems, performance evaluation, platform virtualization, virtu-
al machine monitors.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

56

1. INTRODUCTION

Virtualization is a method for organizing computer resources within multiple operational
environments, by means of hardware and software partitioning, time-sharing, partial or
complete hardware emulation, paravirtualization, etc. [1–3]. Modern approaches to vir-
tualization include two fundamental methods: hypervisor-based virtualization and con-
tainer-based virtualization. Virtualization has gained popularity in many different areas,
including cloud computing (CC), Internet of Things, cyber physical systems, and big data.
It represents the core technology behind proper cloud computing functioning, which
mainly depends on the sophistication of its design and implementation.
Quality of Service (QoS) is another important aspect to consider. QoS represents guar-
anteed levels of performance and availability of a service provided to users [4–6]. A large
number of factors affect QoS, but the three primary aspects are computing, storage, and
network performance. In a hypervisor-based virtual environment, there are three funda-
mental components: a host operating system, a hypervisor, and guest operating systems.
A host operating system represents the driver support and management layer for virtu-
alization, and a hypervisor is a software layer that serves as an intermediary between the
host operating system and virtual machines, i.e., hypervisors behave as kernels for virtu-
alization.
A hypervisor and a host operating system create a virtual environment for guest operat-
ing systems. This environment does not necessarily have the same characteristics as the
physical environment. In the context of hypervisor-based virtualization, three types of
virtualization are dominant: full hardware virtualization, paravirtualization, and operat-
ing system (OS) level virtualization. The full hardware virtualization represents complete
hardware emulation so that the installation and execution of guest OSs require no addi-
tional adaptations. This type of virtualization is the most appropriate for employment,
but it suffers from low performance level, which can be boosted by using Intel VT-x or
AMD-V as special CPU features for virtualization. Paravirtualization requires significant
modifications to the host and guest OSs but enables significantly better hypervisor-based
performance of virtual machines. OS-level virtualization is based on applying the same
kernel for several OS instances.
There are two types of hypervisors. Type-1 hypervisors (i.e., so-called native hypervisors)
execute directly on physical hardware, and their prominent instances include ESXi, Xen,
KVM/Proxmox, and Hyper-V. Type-2 hypervisors execute as applications within a host
OS, and their prominent instances include Oracle-Virtual Box and VMware Workstation.
Normally, type-1 hypervisors have much better performance than type-2 hypervisors. Re-
lated to host OSs, type-1 hypervisors can be Linux-based (e.g., ESXi, Xen, KVM/Prox-
mox), and MS Windows-based (e.g., Hyper-V).
Hypervisor-based virtualization builds upon interactive pairs of OSs, i.e., interaction be-
tween a host OS and one or more potentially different guest OSs. Both the host and guest
OSs support a number of filesystem (FS) types. The host OS stores VM image files into the
underlying filesystems, whereas the guest OSs employ one or more of these filesystems.
As hypervisor-based virtualization imposes an OS pair, it also establishes interactive FS
pairs. There are many available combinations of OSs and underlying FSs, but the overall
FS performance may significantly vary among different FS pairs depending on the charac-

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

57

teristics of the workload (WL). Out of a relatively large number of factors that determine
FS performance, we focus on the influence of the interactive FS pair. This paper evaluates
the performance of different filesystem pairs in a virtualization environment, and the ob-
tained results are aimed at being applied in the context of CC.

2. RELATED WORK, OBJECTIVE AND MOTIVATION

The paper reports on a FS performance analysis of FS pairs for type-1 hypervisors. We
emphasize that FS performance is a fundamental factor for achieving an adequate level of
QoS in a CC environment. In related work, FS performance in Virtual Environment (VE)
has been analyzed in different ways. The most common approach includes the FS perfor-
mance comparison of different hypervisors, such as KVM, VMWare, Xen, and Hyper-V.
This approach relies on the use of filesystem benchmark applications such as HD Tune
Pro, Bonnie++, Iozone, LMbench, LINPACK, etc. For details on certain performance
comparisons, reader may cf. [7–12].
Some evaluation approaches include the analysis of I/O speed with respects to overall IO
performances in a virtual environment for wide range of cloud applications [13–14].
In some papers, the experimental results relate to the impact of the estimated costs for the
realization of cloud technologies [15]. Further work is dedicated to the question of virtual
infrastructure management, showing cloud resources can be limited in order to respond
to dynamic changes in a VE [16].
Finally, certain research efforts have been dedicated to performing comparative analysis
of the modern hypervisors, which is in line with the approach applied in our paper [12],
[17–23].
The main contribution of this study relates to comprehensive mathematical modeling of
the FS performance in a VE employing type-1 hypervisors, with special focus on the in-
teractive FS pairs. The FS pair modeling includes many factors that can be explored as if
being independent or mutually correlated. The model proposed in this paper is applicable
to most of the type-1 VE. The basic idea underlying our approach is to provide a specific
mathematical model, apply it to a particular case study, and then interpret and validate
the experimental results. We also contribute by proposing a Knowledge Data Base (KDB)
comprising the collection of optimal FS pairs, available to VE administrators.
Compared to related work, we believe that our study introduces more comprehensive
modeling of the FS performance in VE. At the practical level, while most of the related
approaches consider just a single case study [17–23], we consider three case studies. Com-
pared to related work, our main focus is FS pair modeling and KDB with the optimal FS
pairs. Like most of the related studies, we show that there is no optimal FS pair that suits
all possible use cases, but that the optimal FS pairs depend on WL and many other factors
and change over time with the emergence of new FS versions and other VE factors.
Our paper presents the FS performance evaluation in fair-play conditions, i.e., it reports
on the performances of the FS pairs formed from the selected FS types (Ext4, XFS, and
Btrfs) applied with KVM as a representative of the type-1 hypervisors. The fair-play condi-
tions assume the use of identical hardware for all the evaluated elements, the same charac-

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

58

teristics of the generated virtual machines (VM) and the identical version of the guest OS.
We select KVM with full hardware virtualization, whereas FS types for host and guest FS
are Ext4, XFS, and Btrfs. In addition, we use Filebench, which is a modern multi-threaded
based benchmark, easily configurable, and adequate for the simulation of real-world ap-
plications. Four different test workloads are selected to simulate realistic workload condi-
tions and applications: web server, e-mail server, fileserver, and random file access. The re-
search protocol can be briefly described as follows. We introduce the mathematical model
for FS pairs, select FS pairs for the evaluation, define the hypotheses related to the expected
behavior of FS pairs, and finally proceed with the benchmark measurements. The results
are interpreted in the context of the introduced mathematical model and hypotheses. We
perform an in-depth analysis of guest and host OS FS behavior with different workload
types and believe that the reported results are insightful for system administrators dealing
with virtualization and some QoS issues in small-scale CC environments.

3. SELECTED TYPE-1 HYPERVISORS AND FILESYSTEM PAIRS

The type-1 hypervisor-based virtualization representatives are the following: ESXi with
the original VMware FHV (Full Hardware Virtualization); Xen with two virtualization
types FHV (QEMU based) and PV (paravirtualization) which is suitable for open-source
PV guests; KVM/Proxmox with the FHV (QEMU based) virtualization; and Hyper-V
with two kind of virtualizations, FHV (Microsoft original) and PV (paravirtualization) for
Microsoft Windows OS.
In a hypervisor-based virtualization architecture, there are three fundamental compo-
nents: the hypervisor as a kernel optimized for a particular VE, a host OS, and a guest OS.
The host OS supplies drivers and supports management. It contains a host FS as a storage
for host OS (hOS) and VM images. A VM contains a guest OS (gOS) and guest FSs which
serve as storage for guest OS and guest applications. The hypervisor-based virtualization
imposes interactive FS pairs (gFS-on-hFS). Each OS can support several modern FS types
that undergo long-term development. Most of them are 64-bit, extent based, with acceler-
ating techniques for allocation and searching (H-Tree/B-Tree). The overwriting or Copy-
on-Write (CoW) techniques are adopted as write/update methods. The FS performance
depends on the file caching, journaling, and different tunable parameters.
For a VE, both the host and guest OSs can be Linux-based or Microsoft Windows-based.
Similarly, hypervisors with an accompanying host OS can be a Linux-based (e.g., ESXi,
Xen and KVM/Proxmox) or Windows-based (e.g., Hyper-V). Linux OSs support a num-
ber of FS types, whereas the Microsoft Windows OS family implements only two FS types:
NTFS and FAT (the latter of which is unsuitable for this purpose).
Thus, considering the number of available FS pairs (gFS on hFS) we can observe the fol-
lowing:
• Linux-based hypervisors and Linux VMs can include a very large number of FS pairs
(gFS on hFS);
• Microsoft Windows-based hypervisors and Linux VMs can still include a significant
number of FS pairs (gFS on NTFS);

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

59

• Microsoft Windows hypervisors and Windows VMs include only one FS pair (NTFS on
NTFS).
Since the number of FS types is large, in the reported study we focused on the three pop-
ular 64-bit FSs: Ext4, XFS, and Btrfs. The main reason behind this decision is that all of
them are modern, extent-based, and commonly used in Linux environments. Ext4 is ro-
bust and powerful in its performance, with relatively simple technologies (such as H-Tree,
extent-Tree, pre-allocation, delayed allocation), and it is unlikely that any significant pro-
gress of its features will be made in the near future. XFS and Btrfs are two modern and
promising FSs with data structures based on B+ Trees. The B+ Tree technology is con-
stantly being developed and improved. Btrfs relies on the CoW method, which is novel
when compared with the traditionally applied overwrite methods. This study is particu-
larly focused on the case when virtualization is applied to both the host and guest Linux
OSs. The performance of the chosen FSs in a VE pair is different from their performance
in a real-life hardware environment. A very interesting comparison between the afore-
mentioned FSs is presented in this paper as a case study encompassing a combination of
9 (3x3) FS pairs.
In the rest of this section, we briefly describe the three chosen Linux FSs.
Ext4 is a native Linux FS developed to resolve the capability and scalability issues of its
predecessor (ext3 FS) caused by double and triple indirect block mapping characteristics.
Ext4 manages storage in extents (a range of continuous physical blocks that improve large
file performance and reduce fragmentation). It employs a tree-based index to represent
files and directories in the form of H-Trees [24–25]. A write-ahead journal is applied to
ensure the operation atomicity, and the checksumming is performed on the journal, but
not on the user data. Although it has many advantages over its predecessor (such as ex-
tents, persistent pre-allocation, delayed allocation, and improved timestamps), the back-
ward compatibility enforces some limitations (e.g., no support for snapshots).
XFS was originally developed as a native Silicon Graphics IRIX FS and ported to Linux
in 2001. Nowadays, it is supported by most Linux distributions and some of them recom-
mend it as the default FS for home or boot partitions. XFS is a high-performance 64-bit
FS that allocates space in extents with data stored in B+ Trees [26]. The efficient allocation
of free extents is achieved by dual indexing (one tree is indexed by the size, and the other
by the starting block of the free extent), whereas the delayed allocation prevents FS frag-
mentation. Although snapshots are not supported and the underlying volume manager
is expected to support that operation, the meta-data journaling and write barriers ensure
data consistency. Extreme scalability of I/O threads and FS bandwidth originate from the
parallel execution of I/O operations. The issue of addressing slow meta-data operations,
which result in poor performance when write operations are performed on a large num-
ber of small files, has been partially resolved with a delayed logging feature.
B-Tree FS (Btrfs) is a native CoW Linux FS designed to offer more efficient storage man-
agement and better data integrity features. It aims at solving scalability problems for larger
and faster storage, such as lack of pooling, snapshots, checksums, integral multi-device
spanning, and built-in RAID support. The FS layout is based on a forest of CoW friendly
B-Trees [27–31]. The main idea behind the CoW friendly B-Trees is to use standard B+
Tree construction, employ top-down update procedure, remove leaf-chaining, and use
lazy reference-counting for space management. Based on the CoW technique, the FS may

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

60

be self-healing in some configurations. Disk blocks are managed in extents, with check-
summing being performed for the purpose of integrity, and reference counting for the
purpose of space reclamation. A vast variety of other useful features are implemented
in Btrfs, including online defragmentation, online volume growth and shrinking, online
block device addition and removal, online balancing, online data scrubbing, subvolumes,
hierarchical per-subvolume quotas, and out-of-band data de-duplication. The B-Tree is a
data structure that stores generic items organized by a key. Nodes contain only keys and
pointers to the child node or leaf below, whereas leaves contain the actual variable sized
data of the Tree. As they are tailored to systems reading and writing large blocks of data,
B-Trees are suitable data structures for databases or FSs. Thus, FSs use B-Trees to search
directories and extent descriptors, and for file allocation and file retrieval. Btrfs is particu-
larly organized as a forest of B-Trees.

4. MATERIALS AND METHODS

In general, the proposed mathematical modeling of FS pair performance includes a large
number of factors, but in this research, special attention is dedicated to interactive FS
pairs. The modeling encompasses the following characteristics: the Workload (WL), VMs
(with the accompanying gOS and gOS FS), the hypervisors, and the gOS and hOS FS. For
the purpose of FS performance evaluation, the benchmark or real-life applications can be
used, where all kinds of test procedures generate specific FS WLs. For each workload, we
consider the parameter TW representing the total processing time. Each workload con-
tains a mix of four cycle types: random reading (RR), random writing (RW), sequential
reading (SR), and sequential writing (SW), whereas writing can be synchronous or asyn-
chronous, so writing performance depends significantly on the FS caching.
In a given FS, each workload generates different kinds of operations related to directories,
metadata, free lists, file blocks, journaling, and housekeeping (HK).
In hypervisor-based virtualization, the analysis of the workload processing time is quite
complex. The FS performance in VEs depends on a number of factors originating from
the type of virtualization applied (FHV, PV), hOS and gOS. Additionally, considering the
context of the hypervisor VE environment, the overall data path becomes quite complex
and relies on six components: application (benchmark), gOS kernel, guest OS FS, hyper-
visor as hOS kernel, VM image file, and host OS FS.
Figure 1 depicts an overview of the overall data path of a workload. The path is created by
four objects (benchmark, gOS FS, VMI, and hOS FS), and two kernels (gOS kernel and
hypervisor as hOS kernel).

text texttext
WL-
Gout

Benchmark
tools Guest OS FSWL-Bin WL-HinVM Image WL-

HoutHost OS FSWL-Bout
= WL-Gin

Figure 1. Data path in virtualized environment.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

61

The benchmark has its own definition at the beginning of the procedure, and it provides a
framework for the generation of the workload at the input (WL-Bin), taking into account
the following parameters: the total number of workload files, the mean tree depth, the
average file size, the file read/write block size, and the mean size of the appending block.
The input files are benchmarked with a range of different file operations such as opening,
creation, deletion, reading, writing, and file appending. The sequence of the applied oper-
ations represents the benchmark output workload (WL-Bout). WL-Bout is applied to the
gOS FS through the gOS kernel. It generates the guest output workload, WL-Gout, that
consists of file block, inode, extent, free list, and directory read/write operations in the
guest FS. The caching of gOS FS has a strong impact on WL-Gout. The WL-Gout com-
ponent can be assumed to be a function of the benchmark request characteristics and the
gOS FS processing procedures. This processing includes gOS FS features, gOS caching and
virtual disk drivers.
The output workload from gOS FS is further redirected to the hypervisor, which maps it
to a large VMI file. In other words, WL-Gout is mapped to a VMI file through the hyper-
visor, thus mapping all read/write operations onto VMI file operations. This mapping is
marked as WL-Hin. WL-Hin is executed in the hostOS FS, resulting in a final sequence
WL-Hout which comprises the following components: file block, inode, extent, freelist,
and directory read/write operations in the host FS. Due to a large image file, the extent of
read/write operations and the write method (overwrite or CoW) can have a great influ-
ence on the performance of WL-Hout. The final processing includes hOS FS features, hOS
caching, and physical disk drivers.
The whole data path depends on various factors, including the characteristics of FS types
on the guest and host sides, the file caching on the guest and host sides (i.e., a specific co-
operation of these two caches), a large VMI file, the hypervisor interconnection of virtual
and physical disk drivers, the hypervisor-CPU scheduling, and other.

For parameter Tw in a given VE, we consider six components (cf. equation 1):

()FSh,procHyp,procVH,FSg,nelkerg,AppfTw −−−−−= (1)

1. Application (App) represents the interaction between WL-Bin as the benchmark inputs
(definitions) and WL-Bout as the benchmark request for the guest OS FS. The selected
application generates WL-Bout with random and sequential components.
2. g-kernel represents the processing time of the gOS kernel which takes the WL-Bout
requests and forwards them to gOS FS.
3. Guest OS FS processing, g-FS, is a component targeting the gFS processing, which in-
cludes the gOS FS features, gOS FS caching, and virtual disk drivers. This component is
very similar to the 6th component, h-FS. For both of these components (i.e., the 3rd and 6th
components), the time for the OS-FS processing is represented by the function of the FS
processing and FS cache processing (cf. equation 2):

 (2)

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

62

4. Virtual hardware processing, VH-proc, represents the processing time of the virtual disk
hardware. VH-proc strongly depends on the type of virtualization.
5. Hypervisor processing time, Hyp-proc, is the time necessary for the hypervisor to re-
ceive the requests from the VM (virtual disk driver) and forward them to the host VMI
file. The FS requests from gFS (gOS-FS) are forwarded to hFS (hOS-FS) via the hypervisor
and mapped through the VMI file, whereas many hypervisor parameters affect the FS
performance.
6. Host OS FS processing, h-FS, is a component targeting the host FS processing, which
includes the hOS FS features, hOS FS caching, and physical disk drivers. It works with a
large VMI file and is a function of the FS processing and cache processing (cf. equation 2).
Some components of equation (1) are closely interrelated, especially the 3rd component
and the 6th component. Virtual machines include a guest OS, which support several gOS
FS types. Also, each hypervisor is related to its own hOS, which provides the virtual disk
drivers and physical disk drivers. The hOS can support one or several hOS FS types.
In hypervisor-based VE, we must consider a FS pair, i.e., g-FS/h-FS, and consider the
rather complex interaction between two FS caches. The interaction of FS pair is given in
equation (3):

)HypFSparam,hFSc/gFSc,hFSt/gFSt(fTFSpair = (3)

The first component in equation (3), i.e., gFSt/hFSt, relates to FS types in the underlying FS
pair. We recall that FS types may have different characteristics, as discussed in Section III.
The second component of equation (3), i.e., gFSc/hFSc, represents a pair of FS caches.
These caches can be cooperative with Write Back (WB) or Write-through (WT) semantics
or exclusive (none mode) when the hypervisor excludes the hOS FS cache for VMs.
The third component of equation (3), i.e., HypFS param, is related to the hypervisor tun-
able parameters. Each hypervisor has a number of tunable parameters, and some of them
are significant for FS performance, such as CPU scheduling.
It is important to note that in this study we primarily focus on newer versions of FSs, gOSs
and guest kernels, hypervisors with hOS, and CPU models with HW extensions. In a
Linux-based VE, we consider three popular FSs, i.e., Ext4, XFS, and Btrfs, which allows for
the generation of 9 FS pairs. We model the performance of these 64-bit Linux FS indexed
by different techniques: B+ Trees, H-Trees, extent-Trees, linear lists, linked lists, etc.
For a B-Tree of order d and with n records, the cost of all operation processing operations
grows at logarithmic rate, as logd(n). For all four types of actions (insertion, retrieval, up-
dating, deleting), general equations for a B-Tree are:

))n((logO)mngmnt(T dTreeB ≈+ (4)
)etc,balancing,nodes,keys,indexes(f)mngmnt(T TreeB ≈+ (5)

For all writing operations, Btrfs employs the CoW method (cf. eq. 6), whereas XFS and
Ext4 employ the update (overwrite) method (cf. eq. 7).

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

63

𝑇𝑤𝑟𝑖𝑡𝑖𝑛𝑔=𝑓(𝐶𝑜𝑊) 								 (6) 								

)overwrite(fTwriting = (7)

For directory operations, Btrfs and XFS employ B+ Trees, due to which Tdir exposes loga-
rithmic cost as in eqs. (4) and (5), whereas Ext4 employs H-Trees (cf. eq. 8).

)colision_hash,function_hash(f)mngmnt(TT HtreeDir == (8)

For metadata operations, Btrfs and XFS employ B+ Trees, due to which Tmeta exposes log-
arithmic cost as in eqs. (4) and (5), whereas Ext4 employs linear inode table (cf. eq. 9).

)mngmnt(TT tableinodelinearMeta −−= (9)

For free list operations such as free inode, free block, and free extent lists, Btrfs and XFS
employ B+ Trees, due to which TFL exposes logarithmic cost as in eqs. (4) and (5), where-
as Ext4 employs linear bitmap (cf. eq. 10).

)mngmnt(TT bitmaplinearFL −= (10)
For FileBlock accesses, Btrfs and XFS employ B+ Trees, due to which Tfileblock exposes log-
arithmic cost as defined in eqs. (4) and (5), whereas Ext4 employs H-Trees in extent Tree
structures (cf. eq. 11).

)mngmnt(TT tree_ExtentFileBlock = (11)

For housekeeping, the most activities are performed by Btrfs (CRC for all operations), eq.
(12), whereas XFS and Ext4 are much simpler (CRC for journaling), as given in eq. (13).

 (12)
 (13)

The performance costs of I/O operations are summarized in Table 1. We introduce labels
Cx.y to denote performance costs of operation x performed on FS y. Every feature based
on a B+ Tree has a logarithmic cost defined in eqs. (4) and (5). As Ext4 relies on the use of
linear lists and H-Trees, Table 1 shows the cost values that are dependent on the hash op-
eration and those that are subordinated by the linear search operation. Although B+ Tree
has its general principles of generation and file manipulation, there is a cost difference
between the FSs that rely on a B+ Tree as they employ this data structure in different ways.
This includes differences in the organization of the indexes, keys, nodes, search, balancing,
and other techniques. A particular difference is related to the use of the B-Tree in Btrfs and
XFS environments, as Btrfs applies the CoW method to the underlying B-Tree, whereas
XFS applies the traditional overwrite method. Btrfs FS employs the CoW update method,

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

64

whereas XFS and Ext4 employ the overwrite update method for writing operations. The
CoW method is expected to have a significantly higher cost.
When working with directories, Btrfs and XFS employ B+ Trees and operate with logarith-
mic cost properties (eqs. 4 and 5), where n is the number of objects in the directory. Ext4
employs H-Trees, resulting in item searching being penalized by the hash performance,
which depends on the hash function and the hash collision eq. (8).
The meta-data operations on Btrfs and XFS retain B+ Tree logarithmic cost properties
dependent on the number of inodes in the filesystem, cf. eqs. (4) and (5). Ext4 manages a
linear inode table and has linear cost properties, eq. (9).
Btrfs and XFS manage free lists (free inode list, free blocks list and free extents) with log-
arithmic cost properties, cf. eqs. (4) and (5), where n is number of objects in Free Lists
(blocks, extents, inodes). Ext4 employs a linear bitmap for its free lists and has linear cost
properties, cf. eq. (10).
Direct file block access consists of different time components: item retrieval, item read-
ing, item appending, item writing, and item deletion. Each file is made up of data extents,
thus the direct file block manipulation is practically extent-Trees manipulation. Direct
file block access is performed with a logarithmic cost, both for Btrfs and XFS cf. eqs. (4)
and (5), where n is the number of file extents. Ext4 employs H-Trees for extents and thus
suffers from H-Tree penalties, cf. eq. (11).
The housekeeping operations on Btrfs depend on data, meta-data, and journaling CRC,
cf. eq. (12), which means that they are very intensive, especially in the case of a large num-
ber of write operations. The housekeeping operations on XFS and Ext4 depend only on
the journaling CRC, cf. eq. (13). Thus, the housekeeping costs are small for Ext4 and XFS,
but can be significant for Btrfs.

Table 1. Performance Costs.

Operation / FS Ext4 cost XFS Cost Btrfs cost
Update method
 (writing) Overwrite C1.1 Overwrite C2.1 CoW C3.1

Directory
operations H-Tree C1.2 B+ Tree C2.2 B+ Tree C3.2

Meta-data
operations

Linear
inode table

C1.3 B+ Tree C2.3 B+ Tree C3.3

Free lists
operations

Linear
bitmap C1.4 B+ Tree C2.4 B+ Tree C3.4

File block access H-Tree C1.5 B+ Tree C2.5 B+ Tree C3.5

House keeping Journaling
CRC

C1.6 Journaling
CRC

C2.6 Data, meta-
data, and
journaling CRC

C3.6

Small file
embedding None C1.7 Moderate

performance C2.7 Good
performance C3.7

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

65

5. THE HYPOTHESES

This research employs Linux both as the guest and host OS. Different features of Ext4, XFS
and Btrfs as host and guest OS underlying FSs are analyzed, and the following assump-
tions about the expected I/O performance are adopted.
B+ Trees boost data retrieval, cf. eqs. (4) and (5). Each B-Tree based FS has its own B-Tree
organization, which has a direct impact on performance. This hypothesis applies to all B+
Tree-based FS reading operations, including directory, meta-data, and free-list operations
as well as direct file-block access (Table 1, costs C2.2, C2.3, C2.4, C2.5, C3.2, C3.3, C3.4,
and C3.5). Small file embedding is expected to have a major positive impact on random
performance (Table 1, costs C1.7, C2.7, and C3.7).
CoW has a negative impact on write performances due to changed pages and CoW-ed
extents (cached and written elsewhere) (cost C3.1) when compared to overwrite update
method (costs C1.1 and C1.2). Garbage collection is also required for CoW.
CoW turns small, random updates into sequential cycles, thus providing the workload
with more sequentially. The negative impact of CoW on sequential writing is expected to
be more significant when compared to random writing operations (cost C3.1).
Housekeeping is expected to provide the largest negative impact on the Btrfs performance
when compared to the Ext4 and XFS performance (costs C3.6 related to cost C1.6 and
C2.6).
For the interpretation of the FS performance, we consider interactive FS pairs, and we
think that each FS type in FS pair cannot be analyzed separately, but only as an interactive
FS-pair. The gOS FS has a specific behavior in the FS-pair. It works similarly to physical
conditions by generating a sequence of requests (files/directory operations) for the gOS
FS, which operates based on the gOS FS features, gOS caching, and virtual disk drivers.
For FHV, virtual disk drivers are identical to physical disk drivers, whereas virtual disk
is represented as a large VMI file. Each gOS FS generates a specific WL-Gout which is
mapped to a large VMI and then the WL-Hin is generated. For each gOS FS observed
in the same benchmark, a quite different WL-Hin is generated. Each hOS FS works spe-
cifically, it gets a WL-Hin that does not look like any application, and it is the output of
the whole FS with a benchmark as input. The hOS FS works in real physical conditions –
processing a sequence request for one large file, VMI. The gOS FS operates based on the
hOS FS features, hOS caching, physical disk drivers, and physical disks. In short, gOS FS
generates WL-Gout, a complex sequence of requests for hOS FS, which hOS FS processes
through a large VMI file. Complex interaction of two FS is the reason why both FSs must
be viewed integrally as a pair.
Clear indications of the best/worst host and guest OS FS pairs are expected, where one or
more of those pairs will provide the highest/weakest I/O performance.
The aforementioned assumptions are experimentally validated with a set of performance
measurements (synthetic benchmarking), and the interpretation of the results is present-
ed in the next section of the paper.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

66

6. EXPERIMENTAL EVALUATION

We consider three different case studies of the KVM hypervisor-based VE. In each case
study, we apply the same protocol but different hardware. We employ two different
CPUs, two magnetic hard drives, and two kernel versions of the same Linux distribution.
For the first case study (CS1), experiments were performed on the Intel Xeon E3110 @
3.00GHz, 8GB DDR3-RAM, with Seagate Barracuda 500GB SATA-3 hard disk (7200
rpm, 6 GB/s). Centos 7.2 with Linux Kernel 3.10.0-327.36.3.el7.x86_64 is chosen as the
native host for KVM hypervisors and the guest operating systems. For the second case
study (CS2), experiments were performed on the Intel Xeon E3110 @ 3.00GHz, 8GB
DDR3-RAM, with Toshiba DT01ACA050 500GB SATA-3 hard disk (7200 rpm, 6Gb/s).
Centos 7.9 with Linux Kernel 3.10.0-1160.21.1.el7.x86_64 is chosen as the native host
for KVM hypervisors and the guest OSs. For the third case study (CS3), experiments
were performed on the dual core AMD Ryzen 5 3400G @ 3.7GHz, 8GB DDR4-RAM,
with Toshiba DT01ACA050 500GB SATA-3 hard disk (7200 rpm, 6Gb/s). Centos 7.9
with Linux Kernel 3.10.0-1160.21.1.el7.x86_64 is chosen as the native host for KVM
hypervisors and the guest OSs.
Because of the relatively small amount of available RAM (8GB), each of the three VMs
was assigned 2GB of RAM, thus allowing the host OS to operate with the remaining
RAM. The experiment was performed on one, two, and three VMs simultaneously to ex-
amine the impact of the host OS caching on the KVM virtualization, proceeding with the
experiments for the writeback (WB) cache mode.
The hypervisor’s random and sequential performances are tested in the Filebench bench-
mark environment, setting four different application workloads.
For practical reasons, the obtained experimental results are just partially presented in this
paper, i.e., we discuss the third case study (CS3), in which we consider the performance
for four WL, for native performance, and 1VM, (cf. Figs. 2–5).

7. DISCUSSION

Testing of each server workload is briefly discussed below. Measurements are performed
for a Web-server, mail-server, and file-server workloads as well as for a random file access.
One Virtual Machine is used for each test. Different pairs of the aforementioned filesys-
tems were considered during the test.
For each evaluated workload, starting with the WL-Bin, we have measured the character-
istics of the WL-Hout (Figure 1), taking into consideration the processing time and the
overall throughput. For each workload, we use the following main criteria: the best and
worst FS pair results (gOS FS on hOS FS) considering all pairs, and presence of FSs in the
best and worst combination on the guest and host side. For FS names, we will use abbre-
viation, Btrfs as B, Ext4 as E, XFS as X.
In the Web-WL, there are 100 threads, where each thread selects 10 of the 1000 files in
directory-Tree, makes the 10 sequences of open-read-close operations and 11th sequence
as log append operation. The web-workload is characterized by the dominant data and
metadata random reads. There are small components of the data and metadata random

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

67

writes in log file, which are synchronous. The dominant random reads indicate a small
influence of the WB cache mode on the guest/host side. Results for native and 1VM per-
formance for web WL are depicted in Fig. 2.

Figure 2. WebServer throughput [MB/s] for native and 1VM environment.

For all three case studies, we detected the best FS pairs for Web-WL: X/X, E/E, E/B, B/E,
E/X, X/E, among which X/X, E/E, E/B stand out. In the best FS pairs, XFS and Ext4 domi-
nate as gFS and hFS.
Particularly bad FS pairs for Web-WL are: B/X, B/B, X/B. In the worst FS pairs, Btrfs
dominates as gFS and hFS.
When considering the best/worst FS pairs, for Web-WL X/X or Ext4 should be selected
with all hFS, and B/X and B/B should be avoided. XFS and Ext4 are good choices for
making FS pairs, whereas Btrfs should be avoided, especially on the guest side.
For RR components, on both sides (guest/host), B-Trees have the best performance for
data retrieval. B+Trees of XFS used for directories [C2.2], inodes [C2.3], extents [C.2.5],
FreeList [C2.4] and FileBlock [C2.5] are crucial for good random read performances.
Similar insights regarding random read performances hold for Btrfs [C3.2, C3.3, C3.4,
and C3.5]. However, there is a small random write component, hence the write methods
still have an important role. Because of the overwrite method applied instead of CoW, XFS
outperforms Btrfs [C2.1 and C3.1] on the guest/host sides.
We argue that the Btrfs CoW penalty is the main reason underlying the bad FS pairs such
as B/X, X/B, B/B. Ext4 with its relatively simple but fast technologies (H-Tree, extent-Tree
C1.1, C1.5), exhibits good characteristics in the best combinations (E/E and E/B) and be-
haves quite well on both the guest/host sides.
In the Mail-WL, there are 16 threads, each of which selects four of the 1000 files in a single
directory. With these files, thread makes the following sequences of operations: delete,
create-append-fsync-close, open-read-append-fsync-close, open-read-close. In the case
of the varmail-workload, synchronous random writes are dominant for both data and
metadata. A large amount of the random reads for both data files and metadata are notice-
able. Random writes are synchronous, so the data writing must reach the disk drive. Due

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

68

to the dominant RR/RW-synchronous cycles, there is a small impact of WB caching on the
guest/host sides. Housekeeping is also important to consider as it generates many writes.
The results for native and 1VM performance for mail WL are depicted in Fig. 3.

Figure 3. MailServer throughput [MB/s] for native and 1VM environment.

For all three case studies, we detected the best FS pairs for Mail-WL: X/E, E/X, E/E, B/E,
B/X, among which B/E, E/X, E/E stand out. In the best FS pairs, Btrfs and Ext4 dominate
as gFS, while Ext4 and then XFS dominate as hFS.
In addition, we detected the following bad FS pairs for Mail-WL: X/B, E/B, B/B, X/X,
among which X/B stands out. In the worst FS pairs, XFS dominates as gFS, while Btrfs
dominates as hFS.
When considering the best/worst FS pairs, for Mail-WL, B/E, E/X, E/E should be selected,
and B/X, B/B should be avoided. Btrfs and Ext4 are good choices for gFS, and XFS should
be avoided on the guest side. Btrfs should be avoided on the host side. Btrfs performs very
well as gFS, and very bad as hFS, XFS is relatively bad as gFS, and Ext4 performs well in
pairs on both sides.
For the RR component, the best are the B-Trees of XFS [C2.2, C2.3, C2.4, and C2.5] and
Btrfs [C3.2, C3.3, C3.4, and C3.5]. However, for RW-synchronous cycles, XFS already
has the well-known problem of low performance for random writes, whereas the Btrfs
implements the CoW method. That is why Ext4 is the best selection for mail-WL. On the
guest side, Btrfs and Ext4 perform quite well, while XFS generates an unfavorable WL-Gout
sequence, which exhibits the worst behavior on the host side. In addition, on the host side,
synchronous RW transfers pass through a large VMI file, so Ext4 performs as well as XFS,
whereas Btrfs shows very bad performance.
Due to RW-synchronous accesses through a large image file, there is a growing influence
of the extent_read [C1.5, C2.5, and C3.5] and extent_write operations [C1.5, C2.5, and
C3.5] for the image file manipulation. XFS/Btrfs is at an advantage due to the B-Trees, and
especially because of the use of the B-Trees for extents [C2.5 and C3.5], which are more
efficient than the Ext4 extent-Trees [C1.5]. In addition, due to the dominant RW-synchro-
nous, the influence of the writing method costs [C1.1, C2.1, and C3.1] is crucial, while due
to the dominant RW, there is a growing negative impact of CoW and enhanced HK. The-

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

69

refore, the dominant random write component makes Btrfs the worst hostOS file system
[C3.1].
In FS-WL, there are 50 threads, each of which selects 5 of the 10,000 files in the directory-
Tree, making the following sequences of operations: create-write-close, open-write-close,
open-read-close, delete, and stat. In the case of fileserver-workload, all the throughput
components are equally presented (random reads, sequential reads, random writes,
sequential writes, create/delete/metadata operations). The impact of the WB cache mode
is significant, as the sequential reads and writes are intensive. Writes are not synchronous,
thus the impact of the cache can be exceptionally significant. The results for native and
1VM performance for fileserver WL are depicted in Fig. 4.

Figure 4. FileServer throughput [MB/s] for native and 1VM environment.

For all three case studies, we detected that the best FS pairs for FS-WL are B/X, B/E, E/X,
B/B, E/B, among which B/X and B/E stand out. In the best FS pairs, Btrfs and then Ext4
dominate as gFS, while XFS slightly dominated as hFS, but all three FSs perform well. For
all three case studies, we detected the following bad FS pairs for FS-WL: X/X, X/E, X/B. In
the worst FS pairs, XFS dominates as gFS, while there is no dominance for hFS.
Considering the best/worst FS pairs for FS-WL, the best selection is either B/X or B/E,
while it is recommendable to avoid XFS as a guest FS.
Each gFS (with its features) generates a unique WL-Gout, which passes through a large
VMI file. For complex FS-WL the WL-Gout becomes also very complex. In FS-WL,
WL-Gout with XFS performs the worst when processed through a large VMI file in hFS,
whereas WL-Gout with Btrfs fits very well on all hosts hFS.
For sequences in which all the components are equally presented (random/sequential,
reads/writes, file-data/metadata), the file block access components (Btrfs B-Trees [C3.5],
XFS B-Trees [C2.5] and Ext4 extent-Trees [C1.5]) can have a significant impact on the
performances. Also, due to a large number of files in a workload Tree, directory operations
play a more important role (Btrfs B-Trees [C3.3], XFS B-Trees [C3.2] and Ext4 H-Trees
[C3.1]). Due to the sequential SW components, the negative impact of CoW on Btrfs is
reduced.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

70

The experiment shows that WL-Gout sequences for Btrfs are optimal for all hFS, whereas
XFS generates unfavorable sequences for all evaluated hFS. For Btrfs as gFS, when such
optimal WL-Gout sequences are performed on a large VMI, all three hFS perform well. It
is only necessary to ensure an optimal FS pairing on the guest/host side.
In the RFA-WL, five threads are created, where each thread selects five of the 10,000 files
in the directory-Tree, making the following sequence of operations: open, open, open,
append-close, read-read, close, close. In the case of the RFA-workload, random reads and
writes are dominant for both data and metadata. Random writes are non-synchronous, so
the impact of WB cache mode is significant. The housekeeping operations abound with
writes, which is important for consideration. The results for native and 1VM performance
for RFA WL are depicted in Fig. 5.

Figure 5. RFA throughput [MB/s] for native and 1VM environment.

For all three case studies, we have detected that the best FS pairs for RFA-WL are X/X,
E/X, E/E, E/B, among which X/X, E/X stand out. In the set of the best FS pairs, Ext4 domi-
nates as gFS, while XFS and Ext4 dominate for hFS. In addition, we detected inefficient FS
pairs for the case of the RFA-WL: B/X, X/B, among which the pair B/X stands out. In the
worst FS pairs, Btrfs dominates as gFS, while there is no dominance for hFS.
Considering the best/worst FS pairs for RFA-WL, the best selection is either X/X or E/X,
whereas B/X should be avoided. Ext4 is very good as gFS, whereas FS pairs formed by both
Btrfs and XFS should be avoided (B/X and X/B).
RFA-WL is dominated by RR and RW-asynchronous components. Due to RW-
asynchronous components, WB caching has a large positive impact on the guest/host
sides. B+Trees of XFS [C2.2, C2.3, C2.4, and C2.5] and B+Trees of Btrfs [C3.2, C3.3, C3.4,
and C3.5] are the most promising candidates for RR components. Ext4 is very good as
gFS, and it generates the most favorable WL-Gout sequences, which perform best for all
hFS. XFS generates WL-Gout sequences that can well perform with XFS and Ext4 as hOS,
whereas Btrfs makes the least favorable WL-Gout. Although the WB cache absorbs most
RW accesses, some RW still passes to disk drivers, and this will have the most negative
effect on Btrfs. In general, for RFA-WL, the rather unfavorable WL-Gout (Btrfs) sequences
perform worst on XFS hFS. Due to the WL-Gout sequences of XFS, as well as CoW and
HK of Btrfs as hFS, the combination of XFS on Btrfs is also unfavorable.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

71

As the main results, we present the best and the worst FS pairs for individual workloads.
The obtained results are given in Table 2, where the fundamental results are shown in
columns 4 and 5. The column 2 contains the information on the best/worst guest FS
detected in the corresponding best/worst FS pairs. The column 3 contains the information
on the best/worst hFS detected in the corresponding best/worst FS pairs.

Table 2. Performance Results Summarized.

Workload gOS FS best/
worst

hOS FS best/
worst best pairs worst pairs

Web [E, X]/B [E, X]/B X/X, E/E, E/B,B/E,
E/X, X/E

B/X, B/B, X/B

Mail [B, E]/X [E, X]/B X/E, E/X, E/E, B/E, X/B, E/B , B/B, X/X, B/X

File Server B/X X/no B/X, B/E, E/X, B/B,
E/B

X/X, X/E, X/B

RFA E/B [X, E]/no X/X, E/X, E/E, E/B B/X, X/B, X/E

The analysis of the results presented in Table 2, without taking into account the workloads
characteristics, can be summarized as follows: there is neither the best nor the worst option
for the guest or host. Their performance depends on workload characteristics (i.e., each FS
can perform either as the best or as the worst depending on the workload), and they are
very sensitive to the guest/host FS pairs.
Based on the reported three case studies and four WLs for Centos gOS, we provide the
following recommendations. For Web WL, we recommend the Ext4/XFS as gFS and Ext4/
XFS as hFS, while Btrfs as gFS and Btrfs as hFS should be avoided. For Mail WL, we
recommend Btrfs/Ext4 as gFS and Ext4 as hFS, while XFS as gFS and Btrfs as hFS should
be avoided. For FileServer WL, we recommend Btrfs as gFS, while XFS as gFS should be
avoided. For RFA WL, we recommend Ext4 as gFS, while Btrfs as gFS should be avoided.
For individual FS, we recommend Btrfs for Mail as gFS and for FileServer as gFS, while
Btrfs should be avoided for Web as gFS/hFS, for Mail as hFS, and for RFA as gFS. In addi-
tion, we recommend XFS for Web as gFS and for Web as hFS, while XFS should be avoided
for Mail as gFS and for Fileserver as gFS. Finally, we recommend Ext4 for Web as gFS, for
Web as hFS, for Mail as gFS, for Mail as hFS and for RFA as gFS. There is no recommen-
dation for avoiding Ext4.
Regarding solid-state drives, their examination will follow this research in the field on
hypervisors case studies. Although the authors conducted some research on this topic,
the results are not yet mathematically explainable. Certain studies regarding Microsoft
Windows environment are available in [32]. More on this topic will be discussed in the
research that follows.
Regarding real environments, not virtual ones, a reader may conclude that virtualization
takes a toll on performance, i.e., dropping I/O throughput. However, typical small-to-
medium-sized service providers would apply virtual environments, such as providing
a machine with sufficient processing power and storage devices to reduce electricity
consumption, providing rack spaces for servers, etc.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

72

8. CONCLUSION

Virtualization techniques have a significant impact on operating system performance, and
in this paper, we examine this impact on specific components, such as different FS pairs.
When considering a hypervisor virtualization environment based on different filesystems
on the host and guest sides, a number of FS pairs could be included in the analysis. We
analyzed the behavior of three 64-bit Linux FS, both on the guest and on the host side,
resulting in nine pairs for examination. We introduced the model for FS pairs and vali-
dated it for the KVM hypervisor, but our model is also applicable for most Linux-based
hypervisors, such as Xen, ESXi, and Proxmox.
Our KVM-based case studies showed that FS pairing is quite sensitive and that there is no
optimal FS pair. The choice of a suboptimal FS pair depends on WL, due to a complex VE
with a large number of input variables, complex structures in FS itself, and the complex
FS pair interaction. One of the important conclusions is that the FS performance in a VE
can be interpreted by analyzing the FS pair as a whole instead of an individual FS analysis.
The reported results are quite consistent with the best practices obtained in experiments
related to environments with and without virtualization. The results also indicate that Btrfs
is not a good solution if the workload is generating big amounts of random writes. Ext4
is still good enough when compared to XFS and Btrfs, although it uses relatively simple
technologies and does not have a sophisticated B+ Tree structure. Ext4 shows excellent
performance.
Our model and KVM results show that optimal pairing of FS types on the host and guest
sides may be rather challenging. Thus, an additional contribution of this paper is that
it provides insight into the performance of selected FS pairs for typical application WL,
based on three case studies in a KVM hypervisor-based VE.
We think that the optimal pairing of FS types on the host and guest sides is particularly
complex. Administrators of VE face a complex problem in determining the optimal VE
for their applications of interest. First, for each type-1 hypervisor (except Hyper-V) that
will be included in VE, a pool of hOS FS with different types should be created, on which
they can place VMs and migrate if necessary. Secondly, administrators should determine
the optimal FS pair for applications of interest. Our model can be used for hypotheses
about expected behavior, whereas good benchmark or real-app testing can provide real
validation. For VMs with gOS, possible application-based adjustment of gOS FS types
should also be provided.
Beside the model, another contribution of this paper is the beginning of Knowledge Data
Base (KDB) creation that is related to FS performance of FS pairs in hypervisor-based
VE. We consider the KDB to be another significant theoretical contribution of this paper.
Based on three case studies in KVM VE, we get the knowledge about optimal and very
bad FS pairs for typical application WL. For now, KDB includes three case studies for
KVM VE, with 9 FS pairs, Centos 7 as gOS, Filebench as WL generator. KDB is open for
extension with new case studies, which include another FS pairs (with NTFS, F2FS, JFS),
other hypervisors (ESXi, Xen, Proxmox, Hyper-V), other hOS and gOS, other benchmarks
or real applications, and new versions of all of these components. We consider that our
KDB can serve administrators to create VE for specific system case.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

73

Future work on optimal FS pairing in VE may include the introduction of new FS types
in the analysis, such as NTFS, F2FS, and JFS on the guest/host side, and evaluation of
the case studies based on other hypervisors, such as ESXi, Xen, Proxmox, and Hyper-V.
As a part of the future work, we may consider the application of artificial intelligence as
the possibility for intelligent management of FS pairs, assuming that large hOS storage
pools based on different FS (Btrfs, Ext4, XFS, etc.) exist. The proposed system would be
trained with information about the best/worst FS pairs supplied from KDB. Based on the
detected application WLs on VMs and training data, the system should migrate guest
VMs to another hOS FS pool, and realize optimal FS pairs.

FUNDING:

This research received no external funding.

INSTITUTIONAL REVIEW BOARD STATEMENT:

Not applicable.

INFORMED CONSENT STATEMENT:

Not applicable.

CONFLICTS OF INTEREST:

The authors declare no conflict of interest.

REFERENCES

[1] R. Y. Ameen, A. Y. Hamo, “Survey of server virtualization,” International Journal of
Computer Science and Information Security (IJCSIS), Vol. 11, No. 3, 2013. arXiv preprint
arXiv:1304.3557

[2] E. Correia, “Hypervisor-based server virtualization,” In Encyclopedia of Information,
Science and Technology, 3rd Edition, IGI Global, pp. 1182–1187, 2015. DOI 10.4018/978-
1-4666-5888-2.ch112

[3]A. Varasteh, M. Goudarz, “Server consolidation techniques in virtualized data centers,”
IEEE System Journal, Vol. 2, No. 11, pp. 772–783, 2017. DOI 10.1109/JSYST.2015.2458273

[4] T. Imada, M. Sato, and R. Kimura, “Power and QoS Performance Characteristics of
Virtualized Servers,” In Proceeding of the 10th IEEE/ACM International Conference on
Grid Computing (GRID), 2009, pp. 232–240. DOI 10.1109/GRID.2009.5353054.

[5] J. Liu, Y. Zhang, Y. Zhou, D. Zhang, and H. Liu, “Aggressive Resource Provisioning for
Ensuring QoS in Virtualized Environments,” IEEE Transactions on Cloud Computing, Vol.
3, No. 2, 2015, pp. 119–131.

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

74

[6] J. W. Lin, C. H. Chen, and C. Y. Lin, “Integrating QoS awareness with virtualization in
cloud computing systems for delay-sensitive applications,” Future Generation Computer
Systems, Vol. 37, pp. 478–487, 2014. DOI https://doi.org/10.1016/j.future.2013.12.034.

[7] C. D. Graziano, “A performance analysis of Xen and KVM hypervisors for hosting the
Xen worlds project,” M. A. thesis, Iowa State University, Ames, IA, 2011. DOI 10.31274/
etd-180810-2322

[8] S. Pawar and S. Singh, “Performance comparison of VMWare and Xen hypervisor on
guest OS,” IJICSE, Vol. 2, No. 3, pp. 56–60, 2015. ISSN 2393-8528. https://ijicse.in/index.
php/ijicse/article/view/43/41

[9] A. Kumar and S. Shiwani, “Guest operating system based performance comparison of
VMWare & Xen hypervisor,” International Journal of Science, Engineering and Technology,
Vol. 2, No. 5, pp. 286–297, 2014. ISSN 2348-4098. Available: http://ijset.in/wp-content/
uploads/2014/06/IJSET.0620140075.1011.1906_Ankit_Kumar_286-2971.pdf

[10] A. Bhatia and G. Bhattal, “A comparative study of various hypervisors performance,”
International Journal of Scientific and Engineering Research, Vol. 7, No. 12, pp. 65–71, 2016.

[11] V. P. Singh, “Analysis of system performance using VMWare ESXi server virtual ma-
chines,” M. Sc. thesis, Thapar University, Patiala, India, 2012. Available: http://hdl.handle.
net/10266/1809

[12] H. Kazan, L. Perneel, and M. Timmermann, “Benchmarking the performance of Mi-
crosoft Hyper-V server, VMWare ESXi and Xen hypervisors,” Journal of Emerging Trends
in Computing and Information Sciences, Vol. 4, No. 12, pp. 922–933, 2013. ISSN 2079-8407

[13] M. Polenov, V. Guzik, and V. Lukyanov, “Hypervisors comparison and their perfor-
mance,” In Computer Science On-line Conference, 2018, pp. 148–157. DOI 10.1007/978-
3-319-91186-1_16

[14] P. Kedia, R. Nagpal, “Performance evaluation of virtual environment with respect to
physical environment,” International Journal of Computer Applications (0975 – 8887), Vol.
89, No. 11, pp. 17–22, 2014. DOI 10.5120/15676-4425

[15] P. Vijaya V. Reddy, L. Rajamani, “Evaluation of different hypervisors performance in
the private cloud with SIGAR framework,” International Journal of Advanced Computer
Science and Applications (IJACSA), Vol. 5, No. 2, pp. 60–66, 2014. DOI 10.14569/IJAC-
SA.2014.050210

[16] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. Lightweight Virtualization:
A Performance Comparison,” In 2015 IEEE International Conference on Cloud Engineer-
ing, 2015, pp. 386–393.

[17] J. Hwang, S. Zeng, F. Wu, and T. Wood, “A component-based performance com-
parison of four hypervisors,” In 13th IFIP/IEEE Int. Symposium on Integrated Network
Management (IM) Technical Session, 2013, pp. 269–276. ISBN 978-3-901882-50-0 978-1-
4673-5229-1, 978-3-901882-51-7

[18] A. Elsayed and N. Abdelbaki, “Performance evaluation and comparison of the top
market virtualization hypervisors,” IEEE International Conference on Computer Engi-
neering and Systems, 2013, pp. 45–50. DOI 10.1109/ICCES.2013.6707169

CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1

75

[19] W. Graniszewski and A. Arciszewski, “Performance analysis of selected hypervisors
(Virtual Machine Monitors-VMMs),” International Journal of Electronics and Telecommu-
nications, Vol. 62, No. 3, pp. 231–236, 2016. DOI 10.1515/eletel-2016-0031

[20] S. A. Algarni, M. R. Ikbal, R. Alroobaea, A. S. Ghiduk, and F. Nadeem, “Performance
evaluation of Xen, KVM, and Proxmox hypervisors”, International Journal of Open Source
Software and Processes, Vol. 9, No. 2, pp. 39–54, 2018. DOI 10.4018/IJOSSP.2018040103

[21] B. Djordjevic, N. Macek, and V. Timcenko, “Performance issues in cloud computing:
KVM hypervisor’s cache modes evaluation,” Acta Polytechnica Hungarica, Vol. 12, No. 4,
pp. 147–165, 2015. DOI 10.12700/APH.12.4.2015.4.9

[22] V. K. Manik and D. Arora, “Performance comparison of commercial VMM: ESXi,
XEN, HYPER-V & KVM,” In 3rd International Conference on Computing for Sustainable
Global Development, 2016. ISBN Electronic ISBN 978-9-3805-4421-2, DVD ISBN 978-9-
3805-4420-5, Print on Demand (PoD) ISBN 978-1-4673-9417-8

[23] D. Vujičić, D. Marković, B. Đorđević, and S. Randić, “Benchmarking Performance
of Ext4, XFS, and Btrfs as Guest File Systems under Linux Environment,” In Proceedings
of 3rd International Conference on Electrical, Electronic and Computing Engineering
IcETRAN 2016, Zlatibor, Serbia, June 13–16, 2016, pp. RTI1.3.1-5.

[24] K. V. Kumar, A. M. Cao, J. R. Santos, and A. Dilger, “Ext4 block and inode allocator
improvements,” In Proceedings of the Linux Symposium, Vol. 1, 2008, pp. 263–273.

[25] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Thomas, and L. Vivier, “The new
Ext4 filesystem: current status and future plans,” In Proceedings of the Linux Symposium,
Vol. 2, 2007, pp. 21–33.

[26] M. Holton and R. Das, “XFS: a next generation journalled 64-Bit filesystem with
guaranteed rate I/O,” SGI Corp, Internet White Paper, 1995.

[27] O. Rodeh, “B-Trees, shadowing, and clones,” ACM Transactions on Storage (TOS),
Vol. 3, No. 4, Article No. 2, pp. 1–27, 2008.

[28] O. Rodeh, “Deferred Reference Counters for Copy-On-Write B-Trees,” IBM Corpo-
ration, Technical Report rj10464, 2010.

[29] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree filesystem,” ACM Trans-
actions on Storage (TOS), Vol. 9, No. 3, Article No. 9, pp. 1–32, 2013.

[30] H. Powell, “ZFS and Btrfs: a quick introduction to modern filesystems,” Linux Jour-
nal, Vol. 2012, No. 218, Article No.: 5, 2012.

[31] Silicon Graphics Inc. XFS Filesystem Structure, Documentation of the XFS filesystem
on-disk structures, 2006.

[32] B. Đorđević, V. Timčenko, and N. Maček, “NTFS fajl sistem u MS Windows i Linux
okruženju,” Zbornik radova XIII međunarodnog naučno-stručnog Simpozijuma INFOTEH
2014, 2014, pp. 805–808. ISBN 978-99955-763-3-2

