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Abstract: This paper proposed an approach to mathematical modeling of the file system per-
formance in a hypervisor-based virtual environment, with special focus on the file system pair 
interactions. The main goal of this research is to conduct an in-depth analysis of the filesystem 
pair behavior with respect to the performance costs originating from the employed technologies, 
such as H-Trees, B-Trees and Copy-on-Write/Overwrite update method, and different application 
workload types. The modeling provides a collection of hypotheses about the expected behavior. 
The modeling and the hypotheses are validated based on the results obtained for a specific case 
study. Our study reports on a file system performance comparison in the context of KVM hyper-
visor-based full hardware virtualization, application-level benchmarking, and 64-bit Linux filesys-
tems Ext4, XFS, and Btrfs. The Filebench benchmark tool is applied for comprehensive testing 
of the filesystem performance under fair-play conditions. According to the obtained results, we 
provide a set of recommendations (i.e., a Knowledge Data Base) for optimal filesystem pair selec-
tion for the KVM hypervisor. Finally, it is important to note that the proposed modeling is also 
applicable to other hypervisor-based virtualizations.
Keywords: filesystems, operating systems, performance evaluation, platform virtualization, virtu-
al machine monitors.
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1. INTRODUCTION

Virtualization is a method for organizing computer resources within multiple operational 
environments, by means of hardware and software partitioning, time-sharing, partial or 
complete hardware emulation, paravirtualization, etc. [1–3]. Modern approaches to vir-
tualization include two fundamental methods: hypervisor-based virtualization and con-
tainer-based virtualization. Virtualization has gained popularity in many different areas, 
including cloud computing (CC), Internet of Things, cyber physical systems, and big data. 
It represents the core technology behind proper cloud computing functioning, which 
mainly depends on the sophistication of its design and implementation. 
Quality of Service (QoS) is another important aspect to consider. QoS represents guar-
anteed levels of performance and availability of a service provided to users [4–6]. A large 
number of factors affect QoS, but the three primary aspects are computing, storage, and 
network performance. In a hypervisor-based virtual environment, there are three funda-
mental components: a host operating system, a hypervisor, and guest operating systems. 
A host operating system represents the driver support and management layer for virtu-
alization, and a hypervisor is a software layer that serves as an intermediary between the 
host operating system and virtual machines, i.e., hypervisors behave as kernels for virtu-
alization. 
A hypervisor and a host operating system create a virtual environment for guest operat-
ing systems. This environment does not necessarily have the same characteristics as the 
physical environment. In the context of hypervisor-based virtualization, three types of 
virtualization are dominant: full hardware virtualization, paravirtualization, and operat-
ing system (OS) level virtualization. The full hardware virtualization represents complete 
hardware emulation so that the installation and execution of guest OSs require no addi-
tional adaptations. This type of virtualization is the most appropriate for employment, 
but it suffers from low performance level, which can be boosted by using Intel VT-x or 
AMD-V as special CPU features for virtualization. Paravirtualization requires significant 
modifications to the host and guest OSs but enables significantly better hypervisor-based 
performance of virtual machines. OS-level virtualization is based on applying the same 
kernel for several OS instances. 
There are two types of hypervisors. Type-1 hypervisors (i.e., so-called native hypervisors) 
execute directly on physical hardware, and their prominent instances include ESXi, Xen, 
KVM/Proxmox, and Hyper-V. Type-2 hypervisors execute as applications within a host 
OS, and their prominent instances include Oracle-Virtual Box and VMware Workstation. 
Normally, type-1 hypervisors have much better performance than type-2 hypervisors. Re-
lated to host OSs, type-1 hypervisors can be Linux-based (e.g., ESXi, Xen, KVM/Prox-
mox), and MS Windows-based (e.g., Hyper-V).
Hypervisor-based virtualization builds upon interactive pairs of OSs, i.e., interaction be-
tween a host OS and one or more potentially different guest OSs. Both the host and guest 
OSs support a number of filesystem (FS) types. The host OS stores VM image files into the 
underlying filesystems, whereas the guest OSs employ one or more of these filesystems. 
As hypervisor-based virtualization imposes an OS pair, it also establishes interactive FS 
pairs. There are many available combinations of OSs and underlying FSs, but the overall 
FS performance may significantly vary among different FS pairs depending on the charac-
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teristics of the workload (WL). Out of a relatively large number of factors that determine 
FS performance, we focus on the influence of the interactive FS pair. This paper evaluates 
the performance of different filesystem pairs in a virtualization environment, and the ob-
tained results are aimed at being applied in the context of CC.

2. RELATED WORK, OBJECTIVE AND MOTIVATION

The paper reports on a FS performance analysis of FS pairs for type-1 hypervisors. We 
emphasize that FS performance is a fundamental factor for achieving an adequate level of 
QoS in a CC environment. In related work, FS performance in Virtual Environment (VE) 
has been analyzed in different ways. The most common approach includes the FS perfor-
mance comparison of different hypervisors, such as KVM, VMWare, Xen, and Hyper-V. 
This approach relies on the use of filesystem benchmark applications such as HD Tune 
Pro, Bonnie++, Iozone, LMbench, LINPACK, etc. For details on certain performance 
comparisons, reader may cf. [7–12].
Some evaluation approaches include the analysis of I/O speed with respects to overall IO 
performances in a virtual environment for wide range of cloud applications [13–14].
In some papers, the experimental results relate to the impact of the estimated costs for the 
realization of cloud technologies [15]. Further work is dedicated to the question of virtual 
infrastructure management, showing cloud resources can be limited in order to respond 
to dynamic changes in a VE [16]. 
Finally, certain research efforts have been dedicated to performing comparative analysis 
of the modern hypervisors, which is in line with the approach applied in our paper [12], 
[17–23].
The main contribution of this study relates to comprehensive mathematical modeling of 
the FS performance in a VE employing type-1 hypervisors, with special focus on the in-
teractive FS pairs. The FS pair modeling includes many factors that can be explored as if 
being independent or mutually correlated. The model proposed in this paper is applicable 
to most of the type-1 VE. The basic idea underlying our approach is to provide a specific 
mathematical model, apply it to a particular case study, and then interpret and validate 
the experimental results. We also contribute by proposing a Knowledge Data Base (KDB) 
comprising the collection of optimal FS pairs, available to VE administrators.
Compared to related work, we believe that our study introduces more comprehensive 
modeling of the FS performance in VE. At the practical level, while most of the related 
approaches consider just a single case study [17–23], we consider three case studies. Com-
pared to related work, our main focus is FS pair modeling and KDB with the optimal FS 
pairs. Like most of the related studies, we show that there is no optimal FS pair that suits 
all possible use cases, but that the optimal FS pairs depend on WL and many other factors 
and change over time with the emergence of new FS versions and other VE factors.
Our paper presents the FS performance evaluation in fair-play conditions, i.e., it reports 
on the performances of the FS pairs formed from the selected FS types (Ext4, XFS, and 
Btrfs) applied with KVM as a representative of the type-1 hypervisors. The fair-play condi-
tions assume the use of identical hardware for all the evaluated elements, the same charac-



CFS. Journal of Computer and Forensic Sciences

CFS 2022, Vol. 1, Issue 1 

58

teristics of the generated virtual machines (VM) and the identical version of the guest OS. 
We select KVM with full hardware virtualization, whereas FS types for host and guest FS 
are Ext4, XFS, and Btrfs. In addition, we use Filebench, which is a modern multi-threaded 
based benchmark, easily configurable, and adequate for the simulation of real-world ap-
plications. Four different test workloads are selected to simulate realistic workload condi-
tions and applications: web server, e-mail server, fileserver, and random file access. The re-
search protocol can be briefly described as follows. We introduce the mathematical model 
for FS pairs, select FS pairs for the evaluation, define the hypotheses related to the expected 
behavior of FS pairs, and finally proceed with the benchmark measurements. The results 
are interpreted in the context of the introduced mathematical model and hypotheses. We 
perform an in-depth analysis of guest and host OS FS behavior with different workload 
types and believe that the reported results are insightful for system administrators dealing 
with virtualization and some QoS issues in small-scale CC environments.

3. SELECTED TYPE-1 HYPERVISORS AND FILESYSTEM PAIRS

The type-1 hypervisor-based virtualization representatives are the following: ESXi with 
the original VMware FHV (Full Hardware Virtualization); Xen with two virtualization 
types FHV (QEMU based) and PV (paravirtualization) which is suitable for open-source 
PV guests; KVM/Proxmox with the FHV (QEMU based) virtualization; and Hyper-V 
with two kind of virtualizations, FHV (Microsoft original) and PV (paravirtualization) for 
Microsoft Windows OS.
In a hypervisor-based virtualization architecture, there are three fundamental compo-
nents: the hypervisor as a kernel optimized for a particular VE, a host OS, and a guest OS. 
The host OS supplies drivers and supports management. It contains a host FS as a storage 
for host OS (hOS) and VM images. A VM contains a guest OS (gOS) and guest FSs which 
serve as storage for guest OS and guest applications. The hypervisor-based virtualization 
imposes interactive FS pairs (gFS-on-hFS). Each OS can support several modern FS types 
that undergo long-term development. Most of them are 64-bit, extent based, with acceler-
ating techniques for allocation and searching (H-Tree/B-Tree). The overwriting or Copy-
on-Write (CoW) techniques are adopted as write/update methods. The FS performance 
depends on the file caching, journaling, and different tunable parameters. 
For a VE, both the host and guest OSs can be Linux-based or Microsoft Windows-based. 
Similarly, hypervisors with an accompanying host OS can be a Linux-based (e.g., ESXi, 
Xen and KVM/Proxmox) or Windows-based (e.g., Hyper-V). Linux OSs support a num-
ber of FS types, whereas the Microsoft Windows OS family implements only two FS types: 
NTFS and FAT (the latter of which is unsuitable for this purpose). 
Thus, considering the number of available FS pairs (gFS on hFS) we can observe the fol-
lowing:
• Linux-based hypervisors and Linux VMs can include a very large number of FS pairs 
(gFS on hFS); 
• Microsoft Windows-based hypervisors and Linux VMs can still include a significant 
number of FS pairs (gFS on NTFS);
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• Microsoft Windows hypervisors and Windows VMs include only one FS pair (NTFS on 
NTFS).
Since the number of FS types is large, in the reported study we focused on the three pop-
ular 64-bit FSs: Ext4, XFS, and Btrfs. The main reason behind this decision is that all of 
them are modern, extent-based, and commonly used in Linux environments. Ext4 is ro-
bust and powerful in its performance, with relatively simple technologies (such as H-Tree, 
extent-Tree, pre-allocation, delayed allocation), and it is unlikely that any significant pro-
gress of its features will be made in the near future. XFS and Btrfs are two modern and 
promising FSs with data structures based on B+ Trees. The B+ Tree technology is con-
stantly being developed and improved. Btrfs relies on the CoW method, which is novel 
when compared with the traditionally applied overwrite methods. This study is particu-
larly focused on the case when virtualization is applied to both the host and guest Linux 
OSs. The performance of the chosen FSs in a VE pair is different from their performance 
in a real-life hardware environment. A very interesting comparison between the afore-
mentioned FSs is presented in this paper as a case study encompassing a combination of 
9 (3x3) FS pairs.
In the rest of this section, we briefly describe the three chosen Linux FSs. 
Ext4 is a native Linux FS developed to resolve the capability and scalability issues of its 
predecessor (ext3 FS) caused by double and triple indirect block mapping characteristics. 
Ext4 manages storage in extents (a range of continuous physical blocks that improve large 
file performance and reduce fragmentation). It employs a tree-based index to represent 
files and directories in the form of H-Trees [24–25]. A write-ahead journal is applied to 
ensure the operation atomicity, and the checksumming is performed on the journal, but 
not on the user data. Although it has many advantages over its predecessor (such as ex-
tents, persistent pre-allocation, delayed allocation, and improved timestamps), the back-
ward compatibility enforces some limitations (e.g., no support for snapshots).
XFS was originally developed as a native Silicon Graphics IRIX FS and ported to Linux 
in 2001. Nowadays, it is supported by most Linux distributions and some of them recom-
mend it as the default FS for home or boot partitions. XFS is a high-performance 64-bit 
FS that allocates space in extents with data stored in B+ Trees [26]. The efficient allocation 
of free extents is achieved by dual indexing (one tree is indexed by the size, and the other 
by the starting block of the free extent), whereas the delayed allocation prevents FS frag-
mentation. Although snapshots are not supported and the underlying volume manager 
is expected to support that operation, the meta-data journaling and write barriers ensure 
data consistency. Extreme scalability of I/O threads and FS bandwidth originate from the 
parallel execution of I/O operations. The issue of addressing slow meta-data operations, 
which result in poor performance when write operations are performed on a large num-
ber of small files, has been partially resolved with a delayed logging feature.
B-Tree FS (Btrfs) is a native CoW Linux FS designed to offer more efficient storage man-
agement and better data integrity features. It aims at solving scalability problems for larger 
and faster storage, such as lack of pooling, snapshots, checksums, integral multi-device 
spanning, and built-in RAID support. The FS layout is based on a forest of CoW friendly 
B-Trees [27–31]. The main idea behind the CoW friendly B-Trees is to use standard B+ 
Tree construction, employ top-down update procedure, remove leaf-chaining, and use 
lazy reference-counting for space management. Based on the CoW technique, the FS may 
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be self-healing in some configurations. Disk blocks are managed in extents, with check-
summing being performed for the purpose of integrity, and reference counting for the 
purpose of space reclamation. A vast variety of other useful features are implemented 
in Btrfs, including online defragmentation, online volume growth and shrinking, online 
block device addition and removal, online balancing, online data scrubbing, subvolumes, 
hierarchical per-subvolume quotas, and out-of-band data de-duplication. The B-Tree is a 
data structure that stores generic items organized by a key. Nodes contain only keys and 
pointers to the child node or leaf below, whereas leaves contain the actual variable sized 
data of the Tree. As they are tailored to systems reading and writing large blocks of data, 
B-Trees are suitable data structures for databases or FSs. Thus, FSs use B-Trees to search 
directories and extent descriptors, and for file allocation and file retrieval. Btrfs is particu-
larly organized as a forest of B-Trees.

4. MATERIALS AND METHODS

In general, the proposed mathematical modeling of FS pair performance includes a large 
number of factors, but in this research, special attention is dedicated to interactive FS 
pairs. The modeling encompasses the following characteristics: the Workload (WL), VMs 
(with the accompanying gOS and gOS FS), the hypervisors, and the gOS and hOS FS. For 
the purpose of FS performance evaluation, the benchmark or real-life applications can be 
used, where all kinds of test procedures generate specific FS WLs. For each workload, we 
consider the parameter TW representing the total processing time. Each workload con-
tains a mix of four cycle types: random reading (RR), random writing (RW), sequential 
reading (SR), and sequential writing (SW), whereas writing can be synchronous or asyn-
chronous, so writing performance depends significantly on the FS caching. 
In a given FS, each workload generates different kinds of operations related to directories, 
metadata, free lists, file blocks, journaling, and housekeeping (HK). 
In hypervisor-based virtualization, the analysis of the workload processing time is quite 
complex. The FS performance in VEs depends on a number of factors originating from 
the type of virtualization applied (FHV, PV), hOS and gOS. Additionally, considering the 
context of the hypervisor VE environment, the overall data path becomes quite complex 
and relies on six components: application (benchmark), gOS kernel, guest OS FS, hyper-
visor as hOS kernel, VM image file, and host OS FS.
Figure 1 depicts an overview of the overall data path of a workload. The path is created by 
four objects (benchmark, gOS FS, VMI, and hOS FS), and two kernels (gOS kernel and 
hypervisor as hOS kernel). 

text texttext
WL-
Gout

Benchmark 
tools Guest OS FSWL-Bin WL-HinVM Image WL-

HoutHost OS FSWL-Bout 
= WL-Gin

Figure 1. Data path in virtualized environment.
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The benchmark has its own definition at the beginning of the procedure, and it provides a 
framework for the generation of the workload at the input (WL-Bin), taking into account 
the following parameters: the total number of workload files, the mean tree depth, the 
average file size, the file read/write block size, and the mean size of the appending block.
The input files are benchmarked with a range of different file operations such as opening, 
creation, deletion, reading, writing, and file appending. The sequence of the applied oper-
ations represents the benchmark output workload (WL-Bout). WL-Bout is applied to the 
gOS FS through the gOS kernel. It generates the guest output workload, WL-Gout, that 
consists of file block, inode, extent, free list, and directory read/write operations in the 
guest FS. The caching of gOS FS has a strong impact on WL-Gout. The WL-Gout com-
ponent can be assumed to be a function of the benchmark request characteristics and the 
gOS FS processing procedures. This processing includes gOS FS features, gOS caching and 
virtual disk drivers.
The output workload from gOS FS is further redirected to the hypervisor, which maps it 
to a large VMI file. In other words, WL-Gout is mapped to a VMI file through the hyper-
visor, thus mapping all read/write operations onto VMI file operations. This mapping is 
marked as WL-Hin. WL-Hin is executed in the hostOS FS, resulting in a final sequence 
WL-Hout which comprises the following components: file block, inode, extent, freelist, 
and directory read/write operations in the host FS. Due to a large image file, the extent of 
read/write operations and the write method (overwrite or CoW) can have a great influ-
ence on the performance of WL-Hout. The final processing includes hOS FS features, hOS 
caching, and physical disk drivers.
The whole data path depends on various factors, including the characteristics of FS types 
on the guest and host sides, the file caching on the guest and host sides (i.e., a specific co-
operation of these two caches), a large VMI file, the hypervisor interconnection of virtual 
and physical disk drivers, the hypervisor-CPU scheduling, and other.

For parameter Tw in a given VE, we consider six components (cf. equation 1):

( )FSh,procHyp,procVH,FSg,nelkerg,AppfTw −−−−−=          (1)

1. Application (App) represents the interaction between WL-Bin as the benchmark inputs 
(definitions) and WL-Bout as the benchmark request for the guest OS FS. The selected 
application generates WL-Bout with random and sequential components. 
2. g-kernel represents the processing time of the gOS kernel which takes the WL-Bout 
requests and forwards them to gOS FS.
3. Guest OS FS processing, g-FS, is a component targeting the gFS processing, which in-
cludes the gOS FS features, gOS FS caching, and virtual disk drivers. This component is 
very similar to the 6th component, h-FS. For both of these components (i.e., the 3rd and 6th 
components), the time for the OS-FS processing is represented by the function of the FS 
processing and FS cache processing (cf. equation 2):

         (2)
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4. Virtual hardware processing, VH-proc, represents the processing time of the virtual disk 
hardware. VH-proc strongly depends on the type of virtualization. 
5. Hypervisor processing time, Hyp-proc, is the time necessary for the hypervisor to re-
ceive the requests from the VM (virtual disk driver) and forward them to the host VMI 
file. The FS requests from gFS (gOS-FS) are forwarded to hFS (hOS-FS) via the hypervisor 
and mapped through the VMI file, whereas many hypervisor parameters affect the FS 
performance. 
6. Host OS FS processing, h-FS, is a component targeting the host FS processing, which 
includes the hOS FS features, hOS FS caching, and physical disk drivers. It works with a 
large VMI file and is a function of the FS processing and cache processing (cf. equation 2). 
Some components of equation (1) are closely interrelated, especially the 3rd component 
and the 6th component. Virtual machines include a guest OS, which support several gOS 
FS types. Also, each hypervisor is related to its own hOS, which provides the virtual disk 
drivers and physical disk drivers. The hOS can support one or several hOS FS types.
In hypervisor-based VE, we must consider a FS pair, i.e., g-FS/h-FS, and consider the 
rather complex interaction between two FS caches. The interaction of FS pair is given in 
equation (3):

)HypFSparam,hFSc/gFSc,hFSt/gFSt(fTFSpair =           (3)

The first component in equation (3), i.e., gFSt/hFSt, relates to FS types in the underlying FS 
pair. We recall that FS types may have different characteristics, as discussed in Section III.
The second component of equation (3), i.e., gFSc/hFSc, represents a pair of FS caches. 
These caches can be cooperative with Write Back (WB) or Write-through (WT) semantics 
or exclusive (none mode) when the hypervisor excludes the hOS FS cache for VMs.
The third component of equation (3), i.e., HypFS param, is related to the hypervisor tun-
able parameters. Each hypervisor has a number of tunable parameters, and some of them 
are significant for FS performance, such as CPU scheduling. 
It is important to note that in this study we primarily focus on newer versions of FSs, gOSs 
and guest kernels, hypervisors with hOS, and CPU models with HW extensions. In a 
Linux-based VE, we consider three popular FSs, i.e., Ext4, XFS, and Btrfs, which allows for 
the generation of 9 FS pairs. We model the performance of these 64-bit Linux FS indexed 
by different techniques: B+ Trees, H-Trees, extent-Trees, linear lists, linked lists, etc. 
For a B-Tree of order d and with n records, the cost of all operation processing operations 
grows at logarithmic rate, as logd(n). For all four types of actions (insertion, retrieval, up-
dating, deleting), general equations for a B-Tree are:

))n((logO)mngmnt(T dTreeB ≈+               (4)
)etc,balancing,nodes,keys,indexes(f)mngmnt(T TreeB ≈+            (5)

For all writing operations, Btrfs employs the CoW method (cf. eq. 6), whereas XFS and 
Ext4 employ the update (overwrite) method (cf. eq. 7).
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𝑇𝑤𝑟𝑖𝑡𝑖𝑛𝑔=𝑓(𝐶𝑜𝑊) 								                     (6) 								   

)overwrite(fTwriting =                (7)

For directory operations, Btrfs and XFS employ B+ Trees, due to which Tdir exposes loga-
rithmic cost as in eqs. (4) and (5), whereas Ext4 employs H-Trees (cf. eq. 8).

)colision_hash,function_hash(f)mngmnt(TT HtreeDir ==            (8)

For metadata operations, Btrfs and XFS employ B+ Trees, due to which Tmeta exposes log-
arithmic cost as in eqs. (4) and (5), whereas Ext4 employs linear inode table (cf. eq. 9).

)mngmnt(TT tableinodelinearMeta −−=               (9)

For free list operations such as free inode, free block, and free extent lists, Btrfs and XFS 
employ B+ Trees, due to which TFL exposes logarithmic cost as in eqs. (4) and (5), where-
as Ext4 employs linear bitmap (cf. eq. 10).

)mngmnt(TT bitmaplinearFL −=              (10)
For FileBlock accesses, Btrfs and XFS employ B+ Trees, due to which Tfileblock exposes log-
arithmic cost as defined in eqs. (4) and (5), whereas Ext4 employs H-Trees in extent Tree 
structures (cf. eq. 11).

)mngmnt(TT tree_ExtentFileBlock =              (11)

For housekeeping, the most activities are performed by Btrfs (CRC for all operations), eq. 
(12), whereas XFS and Ext4 are much simpler (CRC for journaling), as given in eq. (13).

          (12)
             (13)

The performance costs of I/O operations are summarized in Table 1. We introduce labels 
Cx.y to denote performance costs of operation x performed on FS y. Every feature based 
on a B+ Tree has a logarithmic cost defined in eqs. (4) and (5). As Ext4 relies on the use of 
linear lists and H-Trees, Table 1 shows the cost values that are dependent on the hash op-
eration and those that are subordinated by the linear search operation. Although B+ Tree 
has its general principles of generation and file manipulation, there is a cost difference 
between the FSs that rely on a B+ Tree as they employ this data structure in different ways. 
This includes differences in the organization of the indexes, keys, nodes, search, balancing, 
and other techniques. A particular difference is related to the use of the B-Tree in Btrfs and 
XFS environments, as Btrfs applies the CoW method to the underlying B-Tree, whereas 
XFS applies the traditional overwrite method. Btrfs FS employs the CoW update method, 
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whereas XFS and Ext4 employ the overwrite update method for writing operations. The 
CoW method is expected to have a significantly higher cost.
When working with directories, Btrfs and XFS employ B+ Trees and operate with logarith-
mic cost properties (eqs. 4 and 5), where n is the number of objects in the directory. Ext4 
employs H-Trees, resulting in item searching being penalized by the hash performance, 
which depends on the hash function and the hash collision eq. (8).
The meta-data operations on Btrfs and XFS retain B+ Tree logarithmic cost properties 
dependent on the number of inodes in the filesystem, cf. eqs. (4) and (5). Ext4 manages a 
linear inode table and has linear cost properties, eq. (9).
Btrfs and XFS manage free lists (free inode list, free blocks list and free extents) with log-
arithmic cost properties, cf. eqs. (4) and (5), where n is number of objects in Free Lists 
(blocks, extents, inodes). Ext4 employs a linear bitmap for its free lists and has linear cost 
properties, cf. eq. (10).
Direct file block access consists of different time components: item retrieval, item read-
ing, item appending, item writing, and item deletion. Each file is made up of data extents, 
thus the direct file block manipulation is practically extent-Trees manipulation. Direct 
file block access is performed with a logarithmic cost, both for Btrfs and XFS cf. eqs. (4) 
and (5), where n is the number of file extents. Ext4 employs H-Trees for extents and thus 
suffers from H-Tree penalties, cf. eq. (11).
The housekeeping operations on Btrfs depend on data, meta-data, and journaling CRC, 
cf. eq. (12), which means that they are very intensive, especially in the case of a large num-
ber of write operations. The housekeeping operations on XFS and Ext4 depend only on 
the journaling CRC, cf. eq. (13). Thus, the housekeeping costs are small for Ext4 and XFS, 
but can be significant for Btrfs.

Table 1. Performance Costs.

Operation / FS Ext4 cost XFS Cost Btrfs cost
Update method 
 (writing) Overwrite C1.1 Overwrite C2.1 CoW C3.1

Directory  
operations H-Tree C1.2 B+ Tree C2.2 B+ Tree C3.2

Meta-data  
operations

Linear  
inode table

C1.3 B+ Tree C2.3 B+ Tree C3.3

Free lists  
operations

Linear  
bitmap C1.4 B+ Tree C2.4 B+ Tree C3.4

File block access H-Tree C1.5 B+ Tree C2.5 B+ Tree C3.5

House keeping Journaling 
CRC

C1.6 Journaling  
CRC

C2.6 Data, meta- 
data, and  
journaling CRC

C3.6

Small file  
embedding None C1.7 Moderate  

performance C2.7 Good
performance C3.7
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5. THE HYPOTHESES

This research employs Linux both as the guest and host OS. Different features of Ext4, XFS 
and Btrfs as host and guest OS underlying FSs are analyzed, and the following assump-
tions about the expected I/O performance are adopted.
B+ Trees boost data retrieval, cf. eqs. (4) and (5). Each B-Tree based FS has its own B-Tree 
organization, which has a direct impact on performance. This hypothesis applies to all B+ 
Tree-based FS reading operations, including directory, meta-data, and free-list operations 
as well as direct file-block access (Table 1, costs C2.2, C2.3, C2.4, C2.5, C3.2, C3.3, C3.4, 
and C3.5). Small file embedding is expected to have a major positive impact on random 
performance (Table 1, costs C1.7, C2.7, and C3.7).
CoW has a negative impact on write performances due to changed pages and CoW-ed 
extents (cached and written elsewhere) (cost C3.1) when compared to overwrite update 
method (costs C1.1 and C1.2). Garbage collection is also required for CoW.
CoW turns small, random updates into sequential cycles, thus providing the workload 
with more sequentially. The negative impact of CoW on sequential writing is expected to 
be more significant when compared to random writing operations (cost C3.1).
Housekeeping is expected to provide the largest negative impact on the Btrfs performance 
when compared to the Ext4 and XFS performance (costs C3.6 related to cost C1.6 and 
C2.6).
For the interpretation of the FS performance, we consider interactive FS pairs, and we 
think that each FS type in FS pair cannot be analyzed separately, but only as an interactive 
FS-pair. The gOS FS has a specific behavior in the FS-pair. It works similarly to physical 
conditions by generating a sequence of requests (files/directory operations) for the gOS 
FS, which operates based on the gOS FS features, gOS caching, and virtual disk drivers. 
For FHV, virtual disk drivers are identical to physical disk drivers, whereas virtual disk 
is represented as a large VMI file. Each gOS FS generates a specific WL-Gout which is 
mapped to a large VMI and then the WL-Hin is generated. For each gOS FS observed 
in the same benchmark, a quite different WL-Hin is generated. Each hOS FS works spe-
cifically, it gets a WL-Hin that does not look like any application, and it is the output of 
the whole FS with a benchmark as input. The hOS FS works in real physical conditions – 
processing a sequence request for one large file, VMI. The gOS FS operates based on the 
hOS FS features, hOS caching, physical disk drivers, and physical disks. In short, gOS FS 
generates WL-Gout, a complex sequence of requests for hOS FS, which hOS FS processes 
through a large VMI file. Complex interaction of two FS is the reason why both FSs must 
be viewed integrally as a pair.
Clear indications of the best/worst host and guest OS FS pairs are expected, where one or 
more of those pairs will provide the highest/weakest I/O performance.
The aforementioned assumptions are experimentally validated with a set of performance 
measurements (synthetic benchmarking), and the interpretation of the results is present-
ed in the next section of the paper.
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6. EXPERIMENTAL EVALUATION

We consider three different case studies of the KVM hypervisor-based VE. In each case 
study, we apply the same protocol but different hardware. We employ two different 
CPUs, two magnetic hard drives, and two kernel versions of the same Linux distribution. 
For the first case study (CS1), experiments were performed on the Intel Xeon E3110 @ 
3.00GHz, 8GB DDR3-RAM, with Seagate Barracuda 500GB SATA-3 hard disk (7200 
rpm, 6 GB/s). Centos 7.2 with Linux Kernel 3.10.0-327.36.3.el7.x86_64 is chosen as the 
native host for KVM hypervisors and the guest operating systems. For the second case 
study (CS2), experiments were performed on the Intel Xeon E3110 @ 3.00GHz, 8GB 
DDR3-RAM, with Toshiba DT01ACA050 500GB SATA-3 hard disk (7200 rpm, 6Gb/s). 
Centos 7.9 with Linux Kernel 3.10.0-1160.21.1.el7.x86_64 is chosen as the native host 
for KVM hypervisors and the guest OSs. For the third case study (CS3), experiments 
were performed on the dual core AMD Ryzen 5 3400G @ 3.7GHz, 8GB DDR4-RAM, 
with Toshiba DT01ACA050 500GB SATA-3 hard disk (7200 rpm, 6Gb/s). Centos 7.9 
with Linux Kernel 3.10.0-1160.21.1.el7.x86_64 is chosen as the native host for KVM 
hypervisors and the guest OSs.
Because of the relatively small amount of available RAM (8GB), each of the three VMs 
was assigned 2GB of RAM, thus allowing the host OS to operate with the remaining 
RAM. The experiment was performed on one, two, and three VMs simultaneously to ex-
amine the impact of the host OS caching on the KVM virtualization, proceeding with the 
experiments for the writeback (WB) cache mode. 
The hypervisor’s random and sequential performances are tested in the Filebench bench-
mark environment, setting four different application workloads. 
For practical reasons, the obtained experimental results are just partially presented in this 
paper, i.e., we discuss the third case study (CS3), in which we consider the performance 
for four WL, for native performance, and 1VM, (cf. Figs. 2–5).

7. DISCUSSION

Testing of each server workload is briefly discussed below. Measurements are performed 
for a Web-server, mail-server, and file-server workloads as well as for a random file access. 
One Virtual Machine is used for each test. Different pairs of the aforementioned filesys-
tems were considered during the test.
For each evaluated workload, starting with the WL-Bin, we have measured the character-
istics of the WL-Hout (Figure 1), taking into consideration the processing time and the 
overall throughput. For each workload, we use the following main criteria: the best and 
worst FS pair results (gOS FS on hOS FS) considering all pairs, and presence of FSs in the 
best and worst combination on the guest and host side. For FS names, we will use abbre-
viation, Btrfs as B, Ext4 as E, XFS as X. 
In the Web-WL, there are 100 threads, where each thread selects 10 of the 1000 files in 
directory-Tree, makes the 10 sequences of open-read-close operations and 11th sequence 
as log append operation. The web-workload is characterized by the dominant data and 
metadata random reads. There are small components of the data and metadata random 
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writes in log file, which are synchronous. The dominant random reads indicate a small 
influence of the WB cache mode on the guest/host side. Results for native and 1VM per-
formance for web WL are depicted in Fig. 2.

Figure 2. WebServer throughput [MB/s] for native and 1VM environment.

For all three case studies, we detected the best FS pairs for Web-WL: X/X, E/E, E/B, B/E, 
E/X, X/E, among which X/X, E/E, E/B stand out. In the best FS pairs, XFS and Ext4 domi-
nate as gFS and hFS.
Particularly bad FS pairs for Web-WL are: B/X, B/B, X/B. In the worst FS pairs, Btrfs 
dominates as gFS and hFS.
When considering the best/worst FS pairs, for Web-WL X/X or Ext4 should be selected 
with all hFS, and B/X and B/B should be avoided. XFS and Ext4 are good choices for 
making FS pairs, whereas Btrfs should be avoided, especially on the guest side.
For RR components, on both sides (guest/host), B-Trees have the best performance for 
data retrieval. B+Trees of XFS used for directories [C2.2], inodes [C2.3], extents [C.2.5], 
FreeList [C2.4] and FileBlock [C2.5] are crucial for good random read performances. 
Similar insights regarding random read performances hold for Btrfs [C3.2, C3.3, C3.4, 
and C3.5]. However, there is a small random write component, hence the write methods 
still have an important role. Because of the overwrite method applied instead of CoW, XFS 
outperforms Btrfs [C2.1 and C3.1] on the guest/host sides. 
We argue that the Btrfs CoW penalty is the main reason underlying the bad FS pairs such 
as B/X, X/B, B/B. Ext4 with its relatively simple but fast technologies (H-Tree, extent-Tree 
C1.1, C1.5), exhibits good characteristics in the best combinations (E/E and E/B) and be-
haves quite well on both the guest/host sides.
In the Mail-WL, there are 16 threads, each of which selects four of the 1000 files in a single 
directory. With these files, thread makes the following sequences of operations: delete, 
create-append-fsync-close, open-read-append-fsync-close, open-read-close. In the case 
of the varmail-workload, synchronous random writes are dominant for both data and 
metadata. A large amount of the random reads for both data files and metadata are notice-
able. Random writes are synchronous, so the data writing must reach the disk drive. Due 
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to the dominant RR/RW-synchronous cycles, there is a small impact of WB caching on the 
guest/host sides. Housekeeping is also important to consider as it generates many writes. 
The results for native and 1VM performance for mail WL are depicted in Fig. 3.

Figure 3. MailServer throughput [MB/s] for native and 1VM environment.

For all three case studies, we detected the best FS pairs for Mail-WL: X/E, E/X, E/E, B/E, 
B/X, among which B/E, E/X, E/E stand out. In the best FS pairs, Btrfs and Ext4 dominate 
as gFS, while Ext4 and then XFS dominate as hFS.
In addition, we detected the following bad FS pairs for Mail-WL: X/B, E/B, B/B, X/X, 
among which X/B stands out. In the worst FS pairs, XFS dominates as gFS, while Btrfs 
dominates as hFS.
When considering the best/worst FS pairs, for Mail-WL, B/E, E/X, E/E should be selected, 
and B/X, B/B should be avoided. Btrfs and Ext4 are good choices for gFS, and XFS should 
be avoided on the guest side. Btrfs should be avoided on the host side. Btrfs performs very 
well as gFS, and very bad as hFS, XFS is relatively bad as gFS, and Ext4 performs well in 
pairs on both sides.
For the RR component, the best are the B-Trees of XFS [C2.2, C2.3, C2.4, and C2.5] and 
Btrfs [C3.2, C3.3, C3.4, and C3.5]. However, for RW-synchronous cycles, XFS already 
has the well-known problem of low performance for random writes, whereas the Btrfs 
implements the CoW method. That is why Ext4 is the best selection for mail-WL. On the 
guest side, Btrfs and Ext4 perform quite well, while XFS generates an unfavorable WL-Gout 
sequence, which exhibits the worst behavior on the host side. In addition, on the host side, 
synchronous RW transfers pass through a large VMI file, so Ext4 performs as well as XFS, 
whereas Btrfs shows very bad performance.
Due to RW-synchronous accesses through a large image file, there is a growing influence 
of the extent_read [C1.5, C2.5, and C3.5] and extent_write operations [C1.5, C2.5, and 
C3.5] for the image file manipulation. XFS/Btrfs is at an advantage due to the B-Trees, and 
especially because of the use of the B-Trees for extents [C2.5 and C3.5], which are more 
efficient than the Ext4 extent-Trees [C1.5]. In addition, due to the dominant RW-synchro-
nous, the influence of the writing method costs [C1.1, C2.1, and C3.1] is crucial, while due 
to the dominant RW, there is a growing negative impact of CoW and enhanced HK. The-
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refore, the dominant random write component makes Btrfs the worst hostOS file system 
[C3.1]. 
In FS-WL, there are 50 threads, each of which selects 5 of the 10,000 files in the directory-
Tree, making the following sequences of operations: create-write-close, open-write-close, 
open-read-close, delete, and stat. In the case of fileserver-workload, all the throughput 
components are equally presented (random reads, sequential reads, random writes, 
sequential writes, create/delete/metadata operations). The impact of the WB cache mode 
is significant, as the sequential reads and writes are intensive. Writes are not synchronous, 
thus the impact of the cache can be exceptionally significant. The results for native and 
1VM performance for fileserver WL are depicted in Fig. 4.

Figure 4. FileServer throughput [MB/s] for native and 1VM environment.

For all three case studies, we detected that the best FS pairs for FS-WL are B/X, B/E, E/X, 
B/B, E/B, among which B/X and B/E stand out. In the best FS pairs, Btrfs and then Ext4 
dominate as gFS, while XFS slightly dominated as hFS, but all three FSs perform well. For 
all three case studies, we detected the following bad FS pairs for FS-WL: X/X, X/E, X/B. In 
the worst FS pairs, XFS dominates as gFS, while there is no dominance for hFS.
Considering the best/worst FS pairs for FS-WL, the best selection is either B/X or B/E, 
while it is recommendable to avoid XFS as a guest FS.
Each gFS (with its features) generates a unique WL-Gout, which passes through a large 
VMI file. For complex FS-WL the WL-Gout becomes also very complex. In FS-WL, 
WL-Gout with XFS performs the worst when processed through a large VMI file in hFS, 
whereas WL-Gout with Btrfs fits very well on all hosts hFS.
For sequences in which all the components are equally presented (random/sequential, 
reads/writes, file-data/metadata), the file block access components (Btrfs B-Trees [C3.5], 
XFS B-Trees [C2.5] and Ext4 extent-Trees [C1.5]) can have a significant impact on the 
performances. Also, due to a large number of files in a workload Tree, directory operations 
play a more important role (Btrfs B-Trees [C3.3], XFS B-Trees [C3.2] and Ext4 H-Trees 
[C3.1]). Due to the sequential SW components, the negative impact of CoW on Btrfs is 
reduced.
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The experiment shows that WL-Gout sequences for Btrfs are optimal for all hFS, whereas 
XFS generates unfavorable sequences for all evaluated hFS. For Btrfs as gFS, when such 
optimal WL-Gout sequences are performed on a large VMI, all three hFS perform well. It 
is only necessary to ensure an optimal FS pairing on the guest/host side.
In the RFA-WL, five threads are created, where each thread selects five of the 10,000 files 
in the directory-Tree, making the following sequence of operations: open, open, open, 
append-close, read-read, close, close. In the case of the RFA-workload, random reads and 
writes are dominant for both data and metadata. Random writes are non-synchronous, so 
the impact of WB cache mode is significant. The housekeeping operations abound with 
writes, which is important for consideration. The results for native and 1VM performance 
for RFA WL are depicted in Fig. 5.

Figure 5. RFA throughput [MB/s] for native and 1VM environment.

For all three case studies, we have detected that the best FS pairs for RFA-WL are X/X, 
E/X, E/E, E/B, among which X/X, E/X stand out. In the set of the best FS pairs, Ext4 domi-
nates as gFS, while XFS and Ext4 dominate for hFS. In addition, we detected inefficient FS 
pairs for the case of the RFA-WL: B/X, X/B, among which the pair B/X stands out. In the 
worst FS pairs, Btrfs dominates as gFS, while there is no dominance for hFS.
Considering the best/worst FS pairs for RFA-WL, the best selection is either X/X or E/X, 
whereas B/X should be avoided. Ext4 is very good as gFS, whereas FS pairs formed by both 
Btrfs and XFS should be avoided (B/X and X/B).
RFA-WL is dominated by RR and RW-asynchronous components. Due to RW-
asynchronous components, WB caching has a large positive impact on the guest/host 
sides. B+Trees of XFS [C2.2, C2.3, C2.4, and C2.5] and B+Trees of Btrfs [C3.2, C3.3, C3.4, 
and C3.5] are the most promising candidates for RR components. Ext4 is very good as 
gFS, and it generates the most favorable WL-Gout sequences, which perform best for all 
hFS. XFS generates WL-Gout sequences that can well perform with XFS and Ext4 as hOS, 
whereas Btrfs makes the least favorable WL-Gout. Although the WB cache absorbs most 
RW accesses, some RW still passes to disk drivers, and this will have the most negative 
effect on Btrfs. In general, for RFA-WL, the rather unfavorable WL-Gout (Btrfs) sequences 
perform worst on XFS hFS. Due to the WL-Gout sequences of XFS, as well as CoW and 
HK of Btrfs as hFS, the combination of XFS on Btrfs is also unfavorable.
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As the main results, we present the best and the worst FS pairs for individual workloads. 
The obtained results are given in Table 2, where the fundamental results are shown in 
columns 4 and 5. The column 2 contains the information on the best/worst guest FS 
detected in the corresponding best/worst FS pairs. The column 3 contains the information 
on the best/worst hFS detected in the corresponding best/worst FS pairs.

Table 2. Performance Results Summarized.

Workload gOS FS best/
worst

hOS FS best/ 
worst best pairs worst pairs

Web [E, X]/B [E, X]/B X/X, E/E, E/B,B/E, 
E/X, X/E

B/X, B/B, X/B

Mail [B, E]/X [E, X]/B X/E, E/X, E/E, B/E, X/B, E/B , B/B, X/X, B/X

File Server B/X X/no B/X, B/E, E/X, B/B, 
E/B

X/X, X/E, X/B

RFA E/B [X, E]/no X/X, E/X, E/E, E/B B/X, X/B, X/E

The analysis of the results presented in Table 2, without taking into account the workloads 
characteristics, can be summarized as follows: there is neither the best nor the worst option 
for the guest or host. Their performance depends on workload characteristics (i.e., each FS 
can perform either as the best or as the worst depending on the workload), and they are 
very sensitive to the guest/host FS pairs.
Based on the reported three case studies and four WLs for Centos gOS, we provide the 
following recommendations. For Web WL, we recommend the Ext4/XFS as gFS and Ext4/
XFS as hFS, while Btrfs as gFS and Btrfs as hFS should be avoided. For Mail WL, we 
recommend Btrfs/Ext4 as gFS and Ext4 as hFS, while XFS as gFS and Btrfs as hFS should 
be avoided. For FileServer WL, we recommend Btrfs as gFS, while XFS as gFS should be 
avoided. For RFA WL, we recommend Ext4 as gFS, while Btrfs as gFS should be avoided.
For individual FS, we recommend Btrfs for Mail as gFS and for FileServer as gFS, while 
Btrfs should be avoided for Web as gFS/hFS, for Mail as hFS, and for RFA as gFS. In addi-
tion, we recommend XFS for Web as gFS and for Web as hFS, while XFS should be avoided 
for Mail as gFS and for Fileserver as gFS. Finally, we recommend Ext4 for Web as gFS, for 
Web as hFS, for Mail as gFS, for Mail as hFS and for RFA as gFS. There is no recommen-
dation for avoiding Ext4.
Regarding solid-state drives, their examination will follow this research in the field on 
hypervisors case studies. Although the authors conducted some research on this topic, 
the results are not yet mathematically explainable. Certain studies regarding Microsoft 
Windows environment are available in [32]. More on this topic will be discussed in the 
research that follows.
Regarding real environments, not virtual ones, a reader may conclude that virtualization 
takes a toll on performance, i.e., dropping I/O throughput. However, typical small-to-
medium-sized service providers would apply virtual environments, such as providing 
a machine with sufficient processing power and storage devices to reduce electricity 
consumption, providing rack spaces for servers, etc.
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8. CONCLUSION

Virtualization techniques have a significant impact on operating system performance, and 
in this paper, we examine this impact on specific components, such as different FS pairs. 
When considering a hypervisor virtualization environment based on different filesystems 
on the host and guest sides, a number of FS pairs could be included in the analysis. We 
analyzed the behavior of three 64-bit Linux FS, both on the guest and on the host side, 
resulting in nine pairs for examination. We introduced the model for FS pairs and vali-
dated it for the KVM hypervisor, but our model is also applicable for most Linux-based 
hypervisors, such as Xen, ESXi, and Proxmox.
Our KVM-based case studies showed that FS pairing is quite sensitive and that there is no 
optimal FS pair. The choice of a suboptimal FS pair depends on WL, due to a complex VE 
with a large number of input variables, complex structures in FS itself, and the complex 
FS pair interaction. One of the important conclusions is that the FS performance in a VE 
can be interpreted by analyzing the FS pair as a whole instead of an individual FS analysis. 
The reported results are quite consistent with the best practices obtained in experiments 
related to environments with and without virtualization. The results also indicate that Btrfs 
is not a good solution if the workload is generating big amounts of random writes. Ext4 
is still good enough when compared to XFS and Btrfs, although it uses relatively simple 
technologies and does not have a sophisticated B+ Tree structure. Ext4 shows excellent 
performance. 
Our model and KVM results show that optimal pairing of FS types on the host and guest 
sides may be rather challenging. Thus, an additional contribution of this paper is that 
it provides insight into the performance of selected FS pairs for typical application WL, 
based on three case studies in a KVM hypervisor-based VE.
We think that the optimal pairing of FS types on the host and guest sides is particularly 
complex. Administrators of VE face a complex problem in determining the optimal VE 
for their applications of interest. First, for each type-1 hypervisor (except Hyper-V) that 
will be included in VE, a pool of hOS FS with different types should be created, on which 
they can place VMs and migrate if necessary. Secondly, administrators should determine 
the optimal FS pair for applications of interest. Our model can be used for hypotheses 
about expected behavior, whereas good benchmark or real-app testing can provide real 
validation. For VMs with gOS, possible application-based adjustment of gOS FS types 
should also be provided. 
Beside the model, another contribution of this paper is the beginning of Knowledge Data 
Base (KDB) creation that is related to FS performance of FS pairs in hypervisor-based 
VE. We consider the KDB to be another significant theoretical contribution of this paper. 
Based on three case studies in KVM VE, we get the knowledge about optimal and very 
bad FS pairs for typical application WL. For now, KDB includes three case studies for 
KVM VE, with 9 FS pairs, Centos 7 as gOS, Filebench as WL generator. KDB is open for 
extension with new case studies, which include another FS pairs (with NTFS, F2FS, JFS), 
other hypervisors (ESXi, Xen, Proxmox, Hyper-V), other hOS and gOS, other benchmarks 
or real applications, and new versions of all of these components. We consider that our 
KDB can serve administrators to create VE for specific system case.
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Future work on optimal FS pairing in VE may include the introduction of new FS types 
in the analysis, such as NTFS, F2FS, and JFS on the guest/host side, and evaluation of 
the case studies based on other hypervisors, such as ESXi, Xen, Proxmox, and Hyper-V. 
As a part of the future work, we may consider the application of artificial intelligence as 
the possibility for intelligent management of FS pairs, assuming that large hOS storage 
pools based on different FS (Btrfs, Ext4, XFS, etc.) exist. The proposed system would be 
trained with information about the best/worst FS pairs supplied from KDB. Based on the 
detected application WLs on VMs and training data, the system should migrate guest 
VMs to another hOS FS pool, and realize optimal FS pairs.
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