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Abstract: The state-of-the-art results of single-channel speech enhancement were recently 
obtained by applying the unpaired dataset CycleGAN network approach, which is com-
parable to the paired dataset neural network approach. As only a relatively small amount 
of noisy speech data is usually available in applications, an augmented, semi-supervised 
CycleGAN is proposed. Recently, the feature map regularized CycleGAN approach was 
proposed and applied to the image transfer task, obtaining significant improvements on 
several standard image domain transfer databases. In this paper, we use a feature map 
regularized CycleGAN and combine it with the augmented semi-supervised approach in 
order to further improve CycleGAN Speech enhancement. Significant improvements in 
the speech enhancement task by means of several standard measures are obtained by us-
ing the proposed approach in comparison to baseline CycleGAN as well as the augmented 
CycleGAN approach.
Keywords: feature map regularization; data augmentation; CycleGAN; speech enhance-
ment. 

1. INTRODUCTION

Speech enhancement (SE) of the perturbed speech is a very important front-end pre-pro-
cessing stage component, as it is used as a preprocessing component for the main speech 
processing systems, such as Speaker Recognition/Verification [1, 2] or Automatic Speech 
Recognition (ASR) systems [3–7] deployed in noisy conditions. Recently, the Deep Neural 
Network (DNN) approach showed significant improvement in the task of single channel 
SE. One of the first improvements in that direction was reported in [8] and expended in [9, 
10], where deep neural networks are used to estimate a mask in the Mel frequency domain 
by using a set of time-frequency unit level features. A supervised learning approach is 
reported and developed as a regression task in various papers (see [8–18]), but it requires 
a large amount of data in order to avoid over-fitting, i.e., the network does not generalize 
well to the unseen data. In order to overcome the mentioned problems, an unsupervised 
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approach in the form of cycle-consistent adversarial networks CycleGAN is proposed in 
[19]. The main idea was to use the unsupervised Generative Adversarial Network GAN ar-
chitecture, proposed in [20], but in both directions (mapping from noisy to clean domain, 
which is the appreciated result, but also mapping from clean to noisy domain in order to 
regularize direct mapping, where one tends to make direct mapping “close” to bijective), 
where the algorithm is learned on two pools of unlabeled, i.e., unpaired images. It gained 
great success in the area of image translation (see [19, 24–26]). It has also been applied 
in the area of speech processing (see [27–36]), with an accent on applying the CycleGAN 
approach in [31–36]. For example, in [32], the authors proposed a front-end based on 
Cycle-Consistent Generative Adversarial Network (CycleGAN), which transforms natu-
rally perturbed speech into normal speech and hence improves the robustness of an ASR 
system. In [34], the authors proposed a non-parallel voice conversion (VC) method that 
can learn a mapping from source to target speech without relying on parallel data, based 
on the CycleGAN approach, and they expended on that in [35] and [36]. Nevertheless, in 
speech processing applications, it is hard to collect a sufficient amount of data on the noisy 
part of the speech (on the clan part of the speech, a sufficient amount of data is usually 
available, as there is large number of ASR data bases with clean speech). Thus, motivated 
by the paper [21], which elaborates on the general problem of using CycleGAN on an 
asymmetric scarce data problem, applied to an image transfer task, a speech enhancement 
using augmented semi-supervised learning (SSL) CycleGAN approach is proposed in a 
task of a single-channel SE [22], obtaining improvements in comparison to the baseline 
CycleGAN SE method as measured by several well-established speech quality measures. 
Recently, a CycleGAN regularized by similarity between feature maps corresponding to 
coder and decoder networks, respectively, reported in [23], obtained significant improve-
ment in comparison to the baseline CycleGAN in the task of image domain translation. 
In this paper, we explore the approach in [23] in order to improve the quality of speech in 
SE task, i.e., in the task of translation of noisy to clean speech. Namely, we apply the feature 
map regularization technique reported in [23], combined with the augmentation approach 
reported in [21] and [22], in order to further improve the results of SE in the scarce domain 
(lack of data on the noisy domain side). As can be seen in the section with experimental 
results, we obtained improvements in comparison to the baseline system reported in [22].

2. PREVIOUS WORK

In this section, we elaborate on some existing approaches, mainly baseline CycleGAN 
[19], as well as the semi-supervised augmentation approach SSL CycleGAN [21, 22] and 
the regularized feature map approach [23]. 

2.1 Baseline CycleGAN

We first mention the Generative Adversarial Network (GAN), which is the generative 
network model that aims to model the particular distribution represented by the obser-
vations in the given pool of data. We start with the discriminator network , which is 
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designed to discriminate between the samples generated by the generator network and 
the ground truth observations. On the other hand, the generator G models the true data 
distribution by learning to confuse the discriminator, thus competing in order to reach 
the Nash equilibrium expressed by the mini-max loss of the training procedure, where the 
optimization problem is given by

,      (1)

where x is distributed according to , while the hidden variable  is distributed ac-
cording to )(zp . On the other hand, when applying GAN architecture in image (or any 
other) domain translation task (translating from the “left” domain , to the “right” do-
mainY ), there is the problem of ill-posedness where there are “large” regions in the  
domain that are mapped to the same point in the Y  domain. In order to regularize the 
mentioned problem and avoid such situation, the cycle consistency loss is invoked in the 
overall loss function [19], using two domain translators ,  in the 
form of GAN architectures, realized in mutually opposite directions, enforcing the bi-
jectivity of both  by adding the additional penal in the loss function (1). Namely, the 
mentioned “close to bijective” could be stated as , and , 

, thus obtaining the following additional penal to the loss function:

11
))(())((),( yyLMExxLMEML yxcyc −+−=Ω ,    (2)

thus making the overall loss function in the following form:
),(),,,(),,,( MLDDMLDDML cyccycYXadvYX Ω+Ω=Ω λ ,    (3)

for some  where the adversarial loss advΩ , according to the concept in (1), is de-
fined as

),(),(),,,( XadvYadvYXadv DMDLDDML Ω+Ω=Ω ,     (4)

with

     (5)

and 0>cycλ being regularization coefficient, controlling the amount of regularization.

2.2 Augmented SSL CycleGAN

In [21], the authors tackled the general problem of asymmetric scarce data problem, i.e., 
the scarce domain problem applied in the image transfer task, and applied the proposed 
approach in the SE task in [22], which invoked the Augmented (Bootstrapped) Semi-Su-
pervised CycleGAN (BTS SSL CycleGAN) in order to overcome the mentioned problem, 
by applying two strategies. First, by using the relatively small amount of available labeled 
training data from the scarce domain and SSL approach, overfitting of the discriminator of 
the scarce domain is prevented, since the amount of data in the scarce domain is limited. 
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Then, after the initial learning, augmentation of the scarce domain is introduced, by pe-
riodically adding the artificially generated examples provided by the GAN network map-
ping from the regular to the scarce domain. The SSL part of the cost function is given by
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thus obtaining the overall cost as

For some 0>SSLλ  where is the number of paired examples YXyx ii ×∈),( , 
, available for training, while all other training examples in the data base are 

unpaired. Concerning the augmentation invoked in [21] and applied in [22], augmenta-
tion of the discriminator corresponding to the scarce noisy speech domain is performed 
by adding the samples obtained by the inverse network mapping from the full to the scarce 
domain after a number of initial iterations, where XD is forced not to overfit, by applying 
the SSL strategy, i.e., by using cost (6) and thus initially training the discriminator XD as 
well as the generator that corresponds to the scarce domain. Then, the augmentation 
is performed as follows: samples generated by the generator M are periodically added to 
the pool of data corresponding to the scarce domain, thus modifying its statistics, i.e., pdf. 
Actually, in every -th training iteration, additional  samples generated by the network 

)(kM (the current state of the network that maps from the full domain  to the scarce 
domain X ) are added to the pool of the discriminator . Also, additional well-known 
identity penal ),( MLidΩ  is added in order to further regularize (see [22]), defined by 

                                                                      (7)

2.3 Feature Map Regularized CycleGAN

Although CycleGAN uses cycle consistency loss defined by (2) in order to enforce “close 
to the bijectivity” of the direct and the inverse mappings  and M , in [23], a regularized 
feature map approach is proposed by introducing the cycle consistency type of loss that 
involves feature maps, where several distances that measure similarity between those are 
invoked. Thus, the original CycleGAN is additionally regularized. The loss function is 
then expended as

.          (8)

The regularizer FMPcycΩ  is obtained as follows: Let dnmxf
L

ffRF ××∈
~),( and 

be the first and last feature map tensor of network implementing L . If one considers  
unwrapped tensors along the third dimension, i.e., matrices 

dnmxl
L

xl
L

lflRFunroledF ×∈= )(ˆ ~),(~),( , dnmxl
L

xl
L

lflRFunroledF ×∈= )(ˆ ~),(~),( and considers those 
to be matrices of observations in and llnm observations in and the same for 

dnmyf
M

ffRF ××∈
~),( and be the first and last feature map tensor of network 

implementing , we obtain the ML estimates of the mean and the covariance of the 
probability density function (PDF) describing the statistics that renders xf

LF
~),(ˆ  and yf

MF
~),(ˆ  

as well as yf
MF

~),(ˆ  and  (the assumption is that the PDFs are multivariate Gaussians), 
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thus enabling to introduce ),( MLFMPcycΩ  in the form of various informational as well as 
Riemannian distance/similarity measures between the mentioned Gaussian PDFs , 2G , 
i.e., parameters of those (see [23]), such as for example those given by simple

121121211 ),( µµ −+Σ−Σ=GGd         (9)

                                           (10)

or based on informational similarity measure such as, for example, KL divergence be-
tween  and 

2G

,        (11)

with  given by 
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LgdxFMPcyc GGdEGGdEML +=Ω                (12)
or, for example, Riemannian distances (see [23]), which we do not give here. Thus, we 
obtain the reguralizer  as

   (13)

where we set  and and xl
LG

~),(  are Gaussians with parameters obtained 
by ML estimates from observations in  and xl

LF
~),(ˆ respectively, while and  

are Gaussians with parameters obtained by ML estimates from observations in yf
MF

~),(ˆ  and 
yl

MF
~),(ˆ respectively. We refer to the previously mentioned feature map reguralized Cycle-

GAN as FMR-CycleGAN.

3. APPLICATION OF BTS SSL FMR-CYCLEGAN TO SPEECH ENHANCEMENT

In this paper, we combine the approach of Augmented (Bootstrapped) BTS-SSL-Cycle-
GAN with the FMR-CycleGAN approach, both presented in Subsections 2.2 and 2.3, re-
spectively, in order to obtain better speech enhancement results in comparison to the 
baseline BTS-SSL-CycleGAN approach reported in [22]. We actually additionally regu-
larize speech enhancement BTS-SSL-CycleGAN designed to operate in conditions of low 
amounts of noisy speech training data (scarce domain) by applying the FMR approach. 
For simplicity, in order to lower the training time, we use a simpler form of feature map 
regularization given by 

   (14)

with 
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,      (15)
,      (16)

where we consider  as Euclidian 
vectors and use KL divergence defined as

                    (17)

3. NETWORK ARCHITECTURE

In the implementation of the proposed approach, we use the network architecture also 
used in [22], proposed in [35], which is again the modified CycleGAN architecture pro-
posed in [26], based on the gated CNN proposed in [38], which is the state-of-the-art 
speech processing architecture. The hyper-parameters are set as follows: The number of 
epochs was set to 5000, the mini batch size to 1, the generator learning rate to 0002.0=Gη , 
the generator learning rate decay set to , the discriminator learning rate 
to , and the discriminator learning rate decay to GD νν = . Also, mel-cepstral 
coefficients, logarithmic fundamental frequency and aperiodicities are extracted every 5 
ms from a randomly chosen fixed-length segment of 128 frames. One-dimensional CNN 
is used as a generator to capture the relationship among features while preserving the 
temporal structure.

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the proposed FMR regularized 
BTS-SSL-CycleGAN (with regularization performed as in Section 3) in comparison to 
baseline CycleGAN as well as BTS-SSL-CycleGAN in a SE task, i.e., in the task of noise 
speech to clean speech translation. The database contains 200 noisy and clean speech ut-
terances (used as reference signals in order to assert the objective voice quality measures, 
so it is actually database of paired examples, although it is used in SSL manner, as de-
scribed in previous sections) produced by 10 male and 10 female speakers (10 utterances 
per each). The database is also divided in two by means of clean/noisy speech, i.e., 100 
clean and 100 noisy speech utterances. As far as the type of noise, it is a mixture of sta-
tionary Gaussian noise and various types of non-stationary noise components, including 
traffic and office noise, crackling, creaking, etc. 
In order to assess the objective voice quality of the resulted denoising procedure, we utilize 
the family of PESQ standards used by phone manufacturers, network equipment (ITU-T 
P.862 standard recommendation). Namely, we utilize PEQMOS as well as MOSLQO meas-
ures. Also, we use a signal-based spectro-temporal measure of similarity between referent 
and degraded human speech that models human speech, i.e., Virtual Speech Quality Ob-
jective Listener (ViSQOL), particularly designed for Voice over IP (VoIP) transmissions. 
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Using ViSQOL, two other measures are obtained, VISQOL and NSIM. In Tables 1 and 2, the 
experimental results of the SE task on the described database, expressed in the PEQMOS 
and MOSLQO measures, are given for the proposed FMR regularized BTS-SSL-Cycle-
GAN, in comparison to the baseline CycleGAN as well as BTS-SSL-CycleGAN. Also, in 
Tables 2 and 3, the experimental results of the SE task on the same database and for the 
same algorithms are presented, but expressed in the VISQOL and NSIM measures, re-
spectively. It can be seen that the proposed FMR regularized BTS-SSL-CycleGAN obtains 
better results on the used database in comparison to the mentioned baseline methods 
when considered in the context of all objective voice quality measures used. Percentage in 
the first column of all tables presents the percentage of paired examples used in the actual 
SSLtype learning of BTS-SSL-CycleGAN as well as FMR regularized BTS-SSL-CycleGAN.

Table 1: PEQMOS: noisy to clean speech task.

[%] CycleGAN BTS-SSL FMR BTS-SSL

25 - 0.837 0.845

50 - 0.857 0.863

100 0.828 0.867 0.874

Table 2: MOSLQO: noisy to clean speech task.

[%] CycleGAN BTS-SSL FMR BTS-SSL

25 - 1.178 1.183

50 - 1.191 1.215

100 1.178 1.238 1.317

Table 3: VISQOL: noisy to clean speech task.

[%] CycleGAN BTS-SSL FMR BTS-SSL

25 - 1.392 1.412

50 - 1.425 1.510

100 1.369 1.452 1.573

Table 3: NSIM: noisy to clean speech task.

[%] CycleGAN BTS-SSL FMR BTS-SSL

25 - 0.579 0.584

50 - 0.581 0.612

100 0.569 0.585 0.615
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