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Abstract

Phase diagram of the Bi-Cu-Ga ternary system has been investigated experimentally with 27 alloys and analytically by
using a Calphad method. Thirteen annealed alloys at 200 °C were investigated by using scanning electron microscopy
(SEM) with energy dispersive spectrometry (EDS), and X-ray powder diffraction (XRD) methods. Temperatures of phase
transformation were determined with 14 alloys which are lying along three vertical sections Bi-Cu0.5Ga0.5, Cu-Bi0.5Ga0.5
and Ga-Bi0.5Cu0.5 by using differential thermal analysis (DTA). Based on the experimental result and by using Calphad
method, ternary phase diagrams were constructed with a new description of liquidus phase. Calculated phase diagram and
experimentally obtained results are in good agreement. Liquidus projection and invariant reaction were calculated by using

new thermodynamic parameters for liquidus phase.

Keywords: Ternary Bi-Cu-Ga system,; Calphad method,; Experimental results; Liquidus projection.

1. Introduction

Description of phase diagrams is an important task
for all researchers over the world. A good way to
present phase diagram is by combination
experimental results and Calphad method [1, 2]. As a
result of combining, these two methods will be a
reliable description of total Gibbs energies of phases.
By using software such as OpenCalphad [3],
ThermoCalc [4], Pandat [5] and many other for
visualization of the phase diagram will result in a
faster and easier work for industry in their way of
searching for best practically applicable alloys.
According to this knowledge that Cu and Cu-based
alloys have a wide variety of application in a different
discipline, investigations of Cu alloys is necessary.
The largest user of copper is building industry
(roofing, cladding, heating and rainwater system,
water pipes, oil and gas lines, electrical wiring, etc.),
electronic industry, transportation and many others.
Such wide applications of copper is due to the reason
that copper is tough, ductile and malleable materials
and key properties of copper alloys are excellent
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electrical and heat conductivity, good erosion,
corrosion and biofouling resistance, high strength,
good machinability, non-magnetic, etc. [6-11]. It is
important that all used copper is recyclable without
any loss of quality. Also copper can easily make alloys
with a lot of elements [12-15]. The most important
copper alloys are divided into four families, pure
coppers, high copper alloys, brass, and bronzes.
Chosen ternary system belongs to the brasses family
of cast copper-bismuth alloys. To the best of our
knowledge, the thermodynamic description of ternary
Bi-Cu-Ga system has not been investigated up to now.

2. Experimental procedure

All samples with total masses of about 3 g were
prepared from high purity Bi, Cu and Ga (99.999 at.
%) produced by Alfa Aesar (Germany) in an induction
furnace under high-purity argon atmosphere. The
average weight loss of the samples during melting
was about 1 mass %.

After melting, samples for the SEM-EDS and
XRD investigation were put into quartz glass
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ampoules, sealed under vacuum and annealed at 200
°C for three weeks and quenched into ice water in
order to preserve the equilibrium compositions at
designated temperature. The average weight loss of the
samples during annealing was less than 0.5 mass %.

The compositions of samples and coexisting
phases were determined using JEOL JSM-6460
scanning electron microscope with energy
dispersive spectroscopy (EDS) (Oxford Instruments
X-act).

Powder XRD data for phase identification of
samples were recorded on a D2 PHASER (Bruker,
Karlsruhe, Germany) powder diffractometer
equipped with a dynamic scintillation detector and
ceramic X-ray Cu tube (KFL-Cu-2K) in a 26 range
from 10° to 75° with a step size of 0.02°. The
patterns were analyzed using the Topas 4.2
software, ICDD databases PDF2 (2013).

Phase transition temperatures were determined by
DTA method. The DTA measurements were
performed on a DTG-60H (Shimadzu). Alumina
crucibles were used and measurements were
performed under flowing argon atmosphere. Samples
weighing between 20 and 30 mg were investigated at
a heating rate of 5 °C/min with three cycles of heating
and cooling. The sample masses and heating rates
were determined by analysis of one sample at
different testing conditions. The reference material
was empty alumina crucible. The overall uncertainty
of the determined phase transformation temperatures
was estimated to be +1 °C.

3. Literature data
3.1. The ternary Bi-Cu-Ga system

Up to now in the literature there, exists one paper
[16] related to ternary Bi-Cu-Ga system. Guresi¢ et al.
[16] investigated the effect of chemical composition
on the microstructure, hardness and electrical
conductivity profiles of the Bi-Cu-Ga alloys at 100 °C.
Properties and phase relation are investigated on 27
ternary alloys. Alloys are experimentally examined
with different techniques such as SEM-EDS, XRD,
LOM, hardness by Brinell and Vickers and electrical
conductivity. In the paper is presented calculated
isothermal section at 100 °C, which is calculated by
using data for constitutive binary systems from
literature [17-19]. As the experimental data obtained
by EDS are in agreement with calculated phase
diagram, the solubility of third element into the binary
intermetallic compound is neglected and no ternary
compound is found. The crystal structure data for the
solid phases in the ternary system are listed in Table 1.

3.2. The binary systems

The three binary systems which are constitutive

systems of this ternary Bi-Cu-Ga system are
investigated extensively by a lot of groups. In this
work, the thermodynamic parameter for the binary
systems are taken from literature [17-19]. Calculated
phase diagram Bi-Ga [17], Bi-Cu [18] and Cu-Ga [19]
are presented in Figure 1.
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Figure 1. Calculated binary phase diagram a) Bi-Ga [17],

b) Bi-Cu [18] and ¢) Cu-Ga [19].
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Table 1. Crystal structure data for the solid phases in the Bi-Cu-Ga system.

Phase | Temperature °C Composition range | Space grupe | Pearson's symbol | Lattice parameters /nm | Ref.
(Cu) <1084 83.9-100 at.% Cu Fm3m cF4 a=b=c=3.6573 [20]
(at 25%)
(Bi) <271.4 100 at.% Bi (at 25°) R3m hR2 azb4.3461 [21]
c=11.8615
a=4.5197
(Ga) <29.7 100 at.% Ga (at 25°) Cmca 0oC8 b=7.6633 [22]
¢=4.5260
Cu, Ga_ _
B 616.8-910.9 x=23.9 at.% Ga Im3m c2 [19]
(at 616.8 %)
Cu, Ga, a=b=2.60050
d 317.5-622.3 x=21.2 at.% Ga P6,/mmc hP2 ¢=4.25940 [23]
(at 616.8 )
Cu, Ga_
g 25-319.16 x=22.2 at.% Ga Fm_;;m a=b=c=3.660 [24]
(at 25%)
Cu, Ga_
Yo 490.5-832.3 x=29.3 at.% Ga P43m cP52 a=b=c=8.71 [24]
(at 490.5°)
Cu, Ga_
Y, 25-627.9 x=30-33 at.% Ga PZBm cP52 a=b=c=8.747 [25]
(at 25%)
Cu, Ga_
Y, 25-486.4 x=33.1-37 at.% Ga P43m cP52 a=b=c=8.7186 [26]
(at 25%)
Cu, Ga_
Y3 25-471.8 x=38-41.5 at.% Ga P4_13m cP52 a=b=c=8.6954 [26]
(at 25%)
CuGa, 25-259.5 UG, P4/mmm tP3 a=h=2.830 [27]
x=006.7 at.% Ga ¢=5.839

Binary Bi-Ga is a monotectic system, while Bi-Cu
system is simple eutectic system and both are consists
of two solid solutions and liquid phase. On binary Bi-
Ga at a temperature above 221°C at Gallium rich part
liquid phase shows miscibility of the gap. Binary Cu-
Ga is more complicated in comparison with other two
binary systems. In this system, 11 different phases
appear.

4. Experimental results
4.1. Isothermal section at 200 °C

Phase equilibrium at 200 °C has been investigated

with 13 ternary alloys by using SEM-EDS and XRD
method. The composition of the samples is checked
by mapping entire polished surface of the samples. In
Table 2 are given results of the composition of
samples and phases determined by the SEM-EDS
method. Results of XRD analysis are also given in
Table 2 together with calculated lattice parameters.
Lattice parameters are determined by using full
Rietveld refinement and Topas software. The phases
determined with these two methods are in agreement
with each other. The same phases detected with SEM-
EDS are confirmed with XRD.
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Table 2. Experimental results of phase equilibrium in the ternary Bi-Cu-Ga system at 200 °C.

Determined phases

Compositions of phases (at. %)

Lattice parameters (A)

N | Composition at.%
EDS XRD Bi Cu Ga a=b c
40.01 Bi (Cu) (Cu) 0.60+0.1 | 82.57+0.2 | 16.83+0.1 3.6583 3.6583
1 47.47 Cu (Bi) (Bi) 98.01£0.5 | 1.19£0.2 | 0.80+0.2 4.5498 11.8624
12.52 Ga ¢ ¢ 1.03£0.2 | 77.92+£0.6 | 21.05+0.8 3.6587 3.6587
39.89 Bi (Bi) (Bi) 98.31+0.3 | 0.67+0.4 1.02+0.1 4.5411 11.8689
2 40.50 Cu Y i 0.32+0.2 | 67.6+0.3 | 32.08+0.2 8.7498 8.7498
19.61 Ga
40.32 Bi (Bi) (Bi) 98.32+0.8 | 1.53+0.1 0.15+0.2 4.5417 11.8676
3 29.04 Cu Ys s 0.75+0.1 | 56.52+0.2 | 42.73+0.3 8.6867 8.6867
30.64 Ga CuGa, CuGa, 1.62+0.3 35.240.5 | 63.18+0.3 2.8252 5.8313
40.04 Bi L L 0.61+0.2 | 9.08+0.4 | 90.31+0.1 - -
4 15.09 Cu (Bi) (Bi) 98.12+0.3 | 0.86+0.2 1.02+0.1 4.5417 11.8698
44.87 Ga CuGa, CuGa, 1.72£0.3 | 32.25+0.4 | 66.03+0.7 2.8278 5.8382
4.58 Bi (Bi) (Bi) 98.41+0.1 | 0.77+0.1 0.82+0.3 4.5476 11.8621
5 90.34 Cu (Cu) (Cu) 0.33+£0.1 | 94.04+0.1 | 5.63+£0.4 3.6306 3.6306
5.08 Ga
6.49 Bi (Bi) (Bi) 98.71£0.3 | 0.35£0.8 | 0.94+0.1 4.5462 11.8692
6 81.40 Cu (Cu) (Cu) 1.05£0.4 | 85.77+0.4 | 13.18+0.1 3.6423 3.6423
12.11 Ga
12.98 Bi (Bi) (Bi) 97.8+0.7 1.12+0.3 1.08+0.3 4.5487 11.8619
7 64.41 Cu ¢ ¢ 1.35£0.5 | 75.92+0.6 | 22.73+0.2 3.6612 3.6612
22.61 Ga Y Y 0.91+£0.4 | 68.78+0.2 | 30.31+0.5 8.7501
15.61 Bi (Bi) (Bi) 98.37+0.4 | 0.51+0.2 1.12+0.4 4.5417 11.8598
8 33.89 Cu Ys s 2.63£0.2 | 55.87+0.3 | 41.5+£0.3 8.6893 8.6893
50.5 Ga CuGa, CuGa, 0.17+0.1 33.8£0.3 | 66.03£0.1 2.829 5.8372
8.99 Bi L L 4.93+0.1 2.37+0.2 | 92.7+0.5 - -
9 10.84 Cu (Bi) (Bi) 98.91+0.2 | 0.58+0.1 0.51+0.3 4.5478 11.8608
80.17 Ga CuGa, CuGa, 0.35+£0.2 | 32.02+0.5 | 67.63+0.7 2.8301 5.8392
15.30 Bi L L 6.52+0.6 | 2.37+0.5 | 91.11+0.1 - -
10 22.18 Cu (Bi) (Bi) 98.13£0.4 | 0.56+0.3 1.31+0.1 4.5498 11.8627
62.52 Ga CuGa, CuGa, 2.45+0.6 | 32.74+0.4 | 64.81£0.2 2.8245 5.8307
20.91 Bi (Bi) (Bi) 98.1£0.2 | 0.77+0.4 1.13+£0.4 4.5401 11.8621
11 37.97 Cu Ys Y; 1.35£0.1 | 58.24+0.5 | 40.41+0.3 8.6913 8.6913
41.12 Ga CuGa, CuGa, 1.32+0.1 | 33.88+0.1 | 64.80+0.2 2.8298 5.8376
32.97 Bi (Bi) (Bi) 97.31+0.3 | 0.88+0.1 1.81£0.1 4.5413 11.8642
12 40.73 Cu s Y; 1.784¢0.6 | 60.11+£0.2 | 38.11+0.2 8.6928 8.6928
26.30 Ga
26.95 Bi (Bi) (Bi) 97.5+0.3 0.47+£0.3 | 2.03+0.2 4.5434 11.8615
13 66.73 Cu (Cu) (Cu) 1.35£0.2 | 88.15+0.2 | 10.5+£0.2 3.6401 3.6401
6.32 Ga
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Results presented in Table 2, confirmed the
existence of seven different phase regions. Samples
marked with numbers 5, 6, and 13 determined same
two-phase regions, (Cu)+(Bi). In the equilibrium of
samples 3, 8, and 11, the same three-phase regions were
determined, (Bi)+y,+CuGa,. Samples 4, 9, and 10 are
from three-phase region L+(Bi)+CuGa,. In
microstructures of the samples, 1 and 7 are two different
three-phase regions (Cu)+(Bi)+{’ and (Bi)+(+y,,
respectively. Samples 2 and 12 are confirmed to be in
two different two-phases regions (Bi)+y, and (Bi)+y,,
respectively. EDS results of four detected binary
intermetallics compound (C’, v,, v, and CuGa,) show
small solubility of the third element. Solubility in most
cases is smaller than 2 at. % except for samples 8 and
10. Intermetallic compound v, detected in sample 3
dissolves 2.63+0.2 at.% of Bi and intermetallic
compound CuGa, detected in sample 10 dissolves
2.4540.6 at.% of Bi. The detected solubility of Ga and
Cu into solid solution (Bi) is small for most samples,

"Tsamae‘l'u
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L
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except for sample 13, where the amount of Ga reaches
2.03+0.2 at. %. Solid solution (Cu) dissolves a small
amount of Bi and a significant amount of Ga, but
according to the study of the binary systems, this was
expected. The maximum solubility of Ga into (Cu) solid
solution at 200 °C temperature is =18 at.% of Ga.

In Figure 2 are given eight BEC micrographs of
samples with marked phases.

4.2. Vertical sections

Phase transition temperatures of the 14 selected
samples along three vertical sections were
experimentally determined using DTA method. Solid
stable transition temperatures were determined from
the onset of the corresponding peak. The liquid
temperatures were evaluated from the peak
maximum. Obtained DTA data are given in Table 3.
Temperatures presented in Table 3 are taken from the
first heating cycle.
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Figure 2. SEM micrographs of the selected alloy samples annealed at 200 °C for four weeks.
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Table 3. Phase transition temperatures along three vertical
sections in the ternary Bi-Cu-Ga system.

Nominal Phase transition temperatures (°C)
composition (at.%) Other peak Liquid
Vertical section Bi—Cu, Ga,,
Bi,,Cu,,Ga,, 217.5|627.4 771.5
Bi,,Cu,,Ga,, 215.7 910.1
Bi,,Cu,,Ga,, 221.8|253.5 920.6
Big,Cu,,Ga,, 223.8{250.9 803.3
Bi,Cu, ,Ga, 221.5|250.3 591.1
Vertical section Cu-Bi, Ga,,
Bi,,Cu,,Ga,, 230.1{244.2 | 627.3 740.5
Bi,,Cu,,Ga,, 227.5|630.4 922.1
Bi,,Cu,,Ga,, 271.51320.8 4924 | 622.4| 970.5
Bi,Cu,Ga,, |273.7 9343
Vertical section Ga—Bi,Cu,,
Bi,Cu,,Ga,, 265.8 | 780.4 1025.3
Bi,;,Cu,,Ga,, 228.21{249.1 | 630.5 8243
Bi,,Cu,,Ga, 29.7 |223.7|243.7 519.3
Bi,,Cu,,Gay, 30.1 |229.5]243.1 354.8
Bi, ,Cu, ;Ga,, 31.5 190.5

5. Thermodynamic modeling

The Bi-Cu-Ga ternary system was thermodynamically
assessed by CALPHAD method [1, 2] using Thermo-
calc software package [4]. Thermodynamic
parameters for constitutive binary systems were taken
from literature [17-19].

After a critical evaluation of experimental results
and literature data in this work, the Liquid phase is
thermodynamically assessed and, all other phases are
treated as pure binary phases. The detected solubility
of the third element in v, (sample 3) and CuGa,
(sample 10) is not considered in the modeling because
this was considered as an error due to the fact that
other results of this compound detected small
solubility of the third element. Also, the solubility of
Ga (sample 13) into solid solution (Bi) is not used in
the modeling because this large amount is detected
just in one sample.

5.1. Unary phase

The thermodynamic parameters for Bi, Cu, and Ga
were taken from the literature published by Dinsdale
[28], which are described by Eq. 1.

G (T)-H™ =4+B-T+C-TInT+D-T" +

1
+E-T'+F-T*+1-T"+J-T” M

where H* is the molar enthalpy of the elements i
at 298.15 K and 1 bar in standard element reference
(SER) state, T is absolute temperature.

5.2. Solution phases

The ternary solution phases ¢ (¢=liquid) is treated
as a substitutional solution. The Gibbs free energy is
expressed by Redlich-Kister polynomial [29]:

b _ ¢ [ ¢
Gm - xBiGBi + xCuGCu + xGaGGa +

+ RT (x,, Inx,, + x,, Inx, +x,, Inx;, )+

2)

¢ ¢
F XX, Ly cu + XiXGaLipi 6o + Xau¥oaLewca +
ex
+ GBi,Cu,Ga

where x,, x. and x_ are molar fractions of
elements Bi, Cu, and Ga, respectively.
GY., G!, and G!, are the Gibbs energies of Bi, Cu, and
Ga in ¢ phase. R is gas constant, 7 temperature, and
RT(xy Inx, + x,, Inx,, +x,, Inx,,) corresponds to the
contribution of the ideal entropy of mixing to the
Gibbs energy. I . U;, o @nd Ly, o, are interaction
parameters from the corresponding binary systems
[17-19]. The engi,Cu,Ga term in Eq. 2 is the ternary
excess Gibbs energy, which is expressed as:

0r¢ lr¢
xBi LBi,Cu,Ga + 'xCu LBi,Cu,Ga +
3

+ Xg, I

ex ¢ _
GBi,Cu,Ga - xB’ixCuxGa
'‘Bi,Cu,Ga

0 1 2
Where La:?i,Cu,Ga’ Lq;i,Cu,Ga and L?S‘i,Cu,Ga are temary
interaction parameters which are described by using

Kaptay equation [30, 31]:
iL??i,Cu,Gu = hi : CXp(—T /Ti) (4)

where 4, is the enthalpy part of interaction energy
and 7, is a special temperature.

6. Thermodynamic modeling and calculations

Based on literature data and present experimental
data, the thermodynamic optimization of Bi-Cu-Ga
system has been performed. The optimization of the
parameters was conducted using the PARROT module
based on a least square procedure. The
thermodynamic parameters for liquid phase obtained
in this work and literature parameters taken from the
literature are present in Table 4 in the unit of J/mol of
the atom.

All of the binary compounds are treated as pure
binary ones since the solid solubility for the third
element in most cases is negligible. In Figure 3 is
presented calculated isothermal section at 100 °C
compared with experimental data from literature [16].
Figure 4 presents a comparison between the
calculated and the experimental phase relations at 200
°C from this work.
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Table 4. The thermodynamic parameters for the ternary Bi-Cu-Ga system.

Phase, name in database and model Thermodynamic parameters References
Ly =8401.6+0.996135- T [17]
'Lt = -560.9-2.43423- T [17]
L0t = 754.8-0.682275- T [17]
Lyt =-1162.5 [17]
Lyt =20747.5-5.85-T [18]
L 'Lt = —4925+2.55-T [18]
LIQUID Lt = 4387.5-2.3-T [18]
(Bi, Cu, Ga) Ophamd — _58110.5+154.5439- T ~18.3753- T- In(T)) [19]
Lot = -33884.7+1.9151- T [19]
L =-11256.9 [19]
CL . =—5897.57- exp(~=0.001333-T) This work
'Ly o =—21423 .7- exp(—0.000289- T) This work
ZLIZ;’i,Cu,Gg =-3977.0 This work
0y FCC_Al _ .
(Cu) Lot =—38799.9+17.8403- T [19]
FCC_Al Lo =—38704.9-16.5753- T [19]
(Bi, Cu, Ga),(Va)
B LM = 50-T 18]
B O[FCC A _55066.9+24.5934- T [19]
BCC_A2 Lo
(Cu, Ga),(Va), L G =—29932.0-28.7715- T [19]
S IR = —44826.0+12.5993- T [19]
HCP_A3 1 HC;’ ;43
(Cu, Ga),(Va), Leu Gava =—36117.4=9.0-T [19]
(Ga) ORTHORHOMBIC (Ga),(Va), 0 ORTHORHOMSIC _ (GSER [19]
C' 0 CUISGALZETA _ _ .
CUSGA2 ZETA U8 =-10100.0-4.4596-T + [19]
(C)y175(Ga), 50 +0.778- GE* +0.222- G2
CuGa, CUGA2 (Cu),(Ga), 0LV — _23437.9-13.2663- T+ GorF +2- GIEF [19]
Lo e MM = —998310.4+ 234.1156- T [19]
Yo O L2048 GAMMAD = 157967.9-99.2709- T + [19]
CU9GA4 GAMMAO SER SER
— +12- -
(Cu),(Cu,Ga),(Ga), S Geu + 0, —1
0[CUIGH GAMMA _ 97365 984 6505 T + 19
+6- GER+7-GEF —1
opcuicat GAMMAL = 157967.9-99.2709- T + [19]
+2- G + Gt
0 yCU9GA4_GAMMAL __ _ .
1 LCT00H- MM — 27365.9—84.6505- T + (1]
CU9GA4_GAMMALI +6- G 4 7. GSER
Cu) (Cu,Ga),(Cu,Ga), (Ga . : ‘
(Cl i 5 (@), O[CUSCAS GAMMAL — () 5. (157967.9~99.2709- T +12-
GE* + G )+0.5-(27365.9-84.6505- T +6- Gor + [19]
7-G2E*)-9660.7 —13.3550- T — 249577.6 + 58.5289- T
Table 4 is continued on the next page.
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Table 4 continues from the previous page

opcueeas Gl = (,5. (157967.9-99.2709- T +12-

Cu:Ga:Cu:Ga
GS® 4GS +0.5- (27365.9-84.6505- T + 6-
G +7. GS*) - 9660.7—13.3550- T —

Cu

249577.6+58.5289-T

Opcroond SaMvAl = —9660.7—13.3550- T+ 4714.0—

'Cu:Cu,Ga:Cu:Ga

249577.6+58.5289-T

1yCU9GA4_GAMMAL _
LCu:Cu,Ga:Cu:Ga - 47 1 40

Opcroots oaval = —9660.7—13.3550- T+ 4714.0—

Cu:Cu:Cu.Ga:Ga

249577.6+58.5289-T

17 CU9GA4_GAMMAl _
LCu:Cu:Cu,Ga:Ga - 47140

OLEUo0A S = ~9660.7 —13.3550- T — 4714.0—

Cu:Cu,Ga:Ga:Ga

249577.6+58.5289-T

17 CU9GA4_GAMMAL _
LCu:Cu,Gu:Ga:Ga - 47140

OpCUseAs GAMNAL — _9660.7—13.3550- T —4714.0—

'Cu:Ga:Cu,Ga:Ga

249577.6+58.5289-T

1yCU9GA4 _GAMMAL _
'Cu:Ga:Cu,Ga:Ga - 47140

Ys
CU9GA4 GAMMA?2
(Cu),(Cu,Va),(Cu,Ga), (Ga),

CLCUIGH G2 (5. (157967.9~99.2709- T +12-
G + G37) +0.5- (27365.9~84.6505- T+ 6-
G 47- GSE*) ~9660.7—13.3550- T —

249577.6+58.5289-T

[19]

0[CUIGH GIMIA> _ 97365 984 6505+ T +6- Go* +

Cu:Cu:Ga:Ga

7 . GSER

Ga
Lisretea " =6 G + 4 G [19]
Loeases ™ =3-GE* +7- G2 [19]
LG e a2 — —87862.1-18.4959- T [19]
OLCU9GA4iGAMMA2 — 0 [1 9]

'Cu:Cu,Va:Ga:Ga

OpcrooAs AN = —9660.7—13.3550- T —4714.0—

'Cu:Cu:Cu,Ga:Ga

249577.6+58.5289-T

1 yCU9GA4_GAMMA2 _
LCu:Cu:Cu,Ga:Ga - 47140

OpCuGan GAMMA — _325261.8+205.6819- T

'CuVa:Cu,Ga:Ga

Vs
CU9GA4 GAMMA3
(Cu,Va)(Cu,Ga), (Ga),

0CUPGAS_GAMMAS _ () 5.(157967.9~99.2709- T +12-
G+ GE*)+0.5-(27365.9-84.6505- T + 6-
G5 4+ 7. GS™) - 9660.7—13.3550- T —

249577.6+58.5289-T

OpCUoGas GAMME — 97365.9—84.6505- T +6- G5 +

Cu:Ga:Ga

7.6

[19]

0 7CU9GA4_GAMMA3 _ ~  ~SER . (SER
LVa:Cu:Ga =3 GCu +4 GGa

LU0 O 50000+ 7- G

Opcoat GAMME — _48276.5+166.7149- T

'Cu Va:Cu:Ga

Table 4 is continued on the next page.
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Table 4 continues from the previous page

Loyagava =0 [19]
L o e MM = —9660.7—13.3550- T — 4714.0 - (19]
249577.6+58.5289- T
L e s — —4714.0 [19]
0 yCU9GA4_GAMMA3
Lyl s =-238466.3 [19]
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Figure 4. The calculated isothermal section at 200 °C ternary system compared with the present
compared with experimental data from this work. experimental data: a) Ga-BiCu, b) Cu-BiGa and

¢) Bi-CuGa.
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In Figure 5 are presented calculated vertical
sections compared with experimentally determined
temperatures of the phase transformation. As can
be seen from Fig. 5, the calculations are in
agreement with most of the experimental data.

By using optimized parameters presented in
this study liquidus projection was calculated and
presented in Fig. 6.

In Figure 7 are given magnified part of liquidus
projection. Positions of magnified parts are marked
in figure 6.

Furthermore, from the presented liquidus
surface projection, the existence of sixteen
invariant reactions is suggested. The calculated
temperatures of invariant equilibria and the
corresponding compositions of liquid phases are

0
0 listed in Table 5. One reaction is a peritectic type
Cu x(Ga) Ga marked with symbol P, and fourteen reactions are
Figure 6. Predicted liquidus projection of the ternary Bi- univariant type marked with symbol U and the
Cu-Ga system with isotherms line in °C. least one is a eutectic type with symbol E.
0.002
a)
x(Cu)
0.00151
71
0.001]
L+L”
0.0005
0
0.6 07 0.8 0.9 1
X(Bi) Bi
0.9992
. ¢)
x(Bi) (B

0.9984+

0.9976

0.99681

0.996 .
0.0002 0.0003 0.0005 0.0006 0.0008 0 0.015 0.03 0.045 0.06
Cu x(Ga) x(Ga)
Figure 7. Magnified liquidus projection of the ternary Bi-Cu-Ga system.
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Table 5. Predicted invariant reactions involving the liquid phase in the Bi-Cu-Ga ternary system. (U, P and E abbreviation

are univariant, peritectic and eutectic respectively).

T (°C) Invariant reaction Type Phase at.%(B1) at.%(Cu) at.%(Ga)
L 80.9 15.7 3.4
(Cu) 0.06 82.29 17.65
826.6 L' +(Cu)—>L"+p U,
B - 75.46 24.54
L 9.29 70.09 20.62
L 83.32 9.44 7.24
B - 74.18 25.82
778.6 L'+B—>L"+9° U,
L’ 9.04 62.638 28.28
y° - 70.22 29.78
L 63.25 6.32 30.43
Y’ - 66.09 33.91
623.6 L' +y"—L" +y! U,
L 14.79 36.17 49.04
y! - 66.08 33.92
(Cu) 0.05 79.61 20.34
B - 76.23 23.77
620.6 (Cu)+B —>L+¢ U,
L 95.04 3.41 1.55
g - 77.55 22.45
L 95.15 3.28 1.57
B - 76.09 2391
616.9 L+B —C+y° U,
¢ - 77.39 2261
Y0 - 70.88 29.12
L 98.22 1.25 0.53
Y’ - 70.74 29.26
490.6 L+y°—>y+¢ U
Y - 70.73 29.27
s - 77.88 22.12
L 99.72 0.22 0.06
! - 70.39 29.61
319.2 L+y+(—>C P,
C - 78.68 21.32
g - 77.8 22.2
L 99.73 0.21 0.06
¢ - 78.69 21.31
318.7 L+ — '+ (Cu) U,
g - 77.8 22.2
(Cu) 0.03 80.55 19.42
L 99.86 0.11 0.03
) ! - 70.28 29.72
271.1 L+7y'— (Bi)+¢ U, :
(Bi) 100 - -
< - 77.8 222
L 99.86 0.11 0.03
. g - 77.8 22.2
271.1 L+ — (Bi) +(Cu) U, -
(Bi) 100 - -
(Cu) 0.02 81.01 18.97

Table 5 is continued on the next page.
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Table 5 continues from the previous page

L 97.04 0.02 2.94
% - 65.82 34.18
264.9 L +y'— v+ (Bi) U,
" - 65.13 34.87
(Bi) 100 - -
L 88.32 0.01 11.67
' - 63.15 36.85
246.5 L+7y>— (Bi)+y° U, -
(Bi) 100 - -
P - 62.18 37.82
Y - 57.14 42.86
L 67.8 0.11 32.09
240.6 L'+y* - L" + CuGa, U,
L 11.71 3.98 84.31
CuGa, - 333 66.7
L 75.08 0.04 24.88
. P - 57.25 42.75
227.7 L+ v’ — (Bi) + CuGa, U,
(Bi) 100 - -
CuGa, - 333 66.7
L 70.27 0.05 29.68
) CuGa, - 333 66.7
224.1 L' + CuGa, — L" + (Bi) U,
L 10.18 3.26 86.56
(Bi) 100 - -
L 0.13 0.14 99.73
) CuGa, - 333 66.7
29.4 L — CuGa, + (Bi) + (Ga) E,
(Bi) 100 - -
(Ga) - - 100
7. Conclusions Acknowledgements

The ternary Bi-Cu-Ga system was experimentally
investigated using DTA, SEM-EDS and XRD
methods and assessed using the CALPHAD approach.
Phase transformation temperatures were detected by
using DTA measurement on 14 alloy samples from
three vertical sections.

The isothermal section at 200 °C was investigated
with 13 ternary alloys with SEM-EDS and XRD
methods. Seven different phase region were detected
with SEM-EDS and XRD method. The calculated
isothermal section at 200 °C shows thirteen phase
region from which seven are experimentally
confirmed.

Based on present experimental data and literature
data, a thermodynamic modeling of the Bi-Cu-Ga
system was performed. Generally, a satisfactory
agreement between calculated results and experimental
data is reached. Liquidus surface projection of the
ternary Bi-Cu-Ga system was calculated in which these
are sixteen invariant reactions.

This work has been supported by the Ministry of
Education, Science and Technological Development
of the Republic of Serbia (Grant No. OI172037) and
2011 Union-Innovative center of the Central South
University of China.
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