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Abstract

The goal of this work is to achieve a novel solution of the transient heat transfer problem in the start-up phase of direct-
chill casting processes using a Generalized Finite Differences Method. This formulation is applied in order to solve the heat
transfer equation in strong form under a Lagrangian description. The boundary conditions incorporation is done in a
simple and natural way. The meshfree nature of this approach allows to capture the motion and phase boundaries evolution
without using remeshing approaches. The simplicity, efficiency and suitability of this numerical formulation is demonstrated
by comparison of the obtained numerical results with the results already published by other researchers. This shows that
our approach is promising for the numerical simulation of heat transfer problems during the start-up phase of direct-chill
casting processes.

Keywords: Finite Pointset Method; Heat transfer; Direct-chill casting; Start-up phase; Solidification

*Corresponding author: feliks@live.com.mx

Journal  of  Mining and Metal lurgy,
Section B: Metal lurgy

DOI:10.2298/JMMB180214005S

1. Introduction

Semi-continuous casting techniques are the most
used processes for mass-production of aluminum
alloys. One of these techniques is the so-called
“Direct-Chill Casting” method (DCC) [1]. It begins
with a step in which molten metal is poured into a
water-cooled mould where heat from the nearby
mould walls is extracted causing its solidification.
Once the metal leaves the mould cooling zone, it is
further cooled in a secondary cooling zone where
water is sprayed on the casting surface. This cooling
process continues until the casting reaches the
possible maximum length [2]. One of the most
important phases in the DCC process is the start-up
phase which is the period from the operation start to
the time when a steady state is achieved. This phase is
highly important since many defects in the end
product could originate during this step. In order to
get homogeneous casting products, the control of
process parameters as cooling rates, casting speed,
inlet velocities, and the casting temperature is needed.
Notwithstanding, it is hard to optimize and enhance
these techniques with experimental studies because it
is very tough to quantify temperatures, stresses fields,
pressures, or velocities, especially within the mould

region during the start-up phase where complex
physical phenomena exist [3]. Numerical modelling
and simulation is commonly used to improve and
prevent the occurrence of casting defects because it
produces a lot of detailed information which cannot
be obtained with other kind of techniques [4].

The numerical modelling and simulation of
physical phenomena involved in continuous casting
(CC) and DCC processes are usually based on
classical mesh – based approaches [5]. For example,
several numerical algorithms based on Finite Element
Method (FEM) have been developed for the
modelling of three-dimensional fluid flow, heat
transfer, and solidification in CC processes [6], the
analysis of convective heat transfer in the molten
metal and phase change in aluminum DCC [7],
prediction of stresses, strains, mushy zone length, and
heat transfer in DCC [8], the study of cooling and
solidification of semi-continuous casting processes of
copper [9], determination of two-fluid flow and the
meniscus interface movement in an electromagnetic
CC of steel [10], heat transfer study in the primary
cooling zone in DCC using experimental
measurements of the ingot, mould, and cooling water
temperatures during casting [11], the simulation of
mould cavity filling process, study of the influence of
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molten steel flow, and the pouring types on the
solidification kinetics at the initial stage in CC [12].

Other numerical approaches based on the Finite
differences Method (FDM) have been used to model
the steady-state three-dimensional heat flow in CC of
steel [13], the numerical prediction of 3D laminar or
turbulent liquid flow, heat transfer, and macroscopic
solidification in DCC of aluminum alloys to
investigate the temperature distributions and
solidification patterns in the mould and post mould
regions [14], and the analysis of the steady-state heat
transfer phenomena in CC [15]. Similarly, numerical
procedures based on the Finite Volume Method
(FVM) have been proposed for the prediction of
turbulent flow and temperature in complex flows of
molten steel in CC [16], and the modeling of heat
transfer and solidification in CC, considering the
establishment of experimental non-uniform and
uniform water distributions for the cooling conditions
[17].

Meshless or meshfree methods have been
developed in recent decades as an alternative to the
classical mesh-based techniques since they allow to
overcome some of the drawbacks in such methods
[18]. The advantages of meshfree methods over mesh-
based methods rely on the fact that they use a set of
finite nodes scattered within a domain of interest as
well as on its boundaries, without needing some
information with respect to the connectivity and
relations between particles such that they do not
constitute a mesh of elements. This makes them very
attractive in problems involving high deformations
and discontinuities in the computational domain
without employing remeshing techniques. As a result,
it gives the freedom to remove or incorporate particles
whenever and wherever required, allowing a simple
development of adaptive strategies.

The Local Radial Basis Function Collocation
Method (LRBFCM) is a strong form meshless method
that has been used for the numerical simulation of CC
process of steel considering turbulent fluid flow and
solidification [2], the simulation of transient heat
transfer of the start-up phase in DCC of aluminum
alloys [19], and the simulation of DCC under the
influence of a low-frequency electromagnetic fields
[20]. Other strong form meshless method approach
that has been tested for the modeling of heat transfer
and solidification in CC processes in the primary and
secondary cooling regions is the Oñate’s Finite Point
Method (FPM) [21]. 

Apart from the mentioned meshless methods
given in strong form, there exist some other weak
form approaches such as the element-free Galerkin
method (EFG) that has been used for the simulation of
transient heat transfer of the start-up phase in DCC of
an aluminum alloy round billet considering the non-
linear aspects related to the material properties and

boundary conditions [22]. Recently, another weak
form meshless method that has been tested in the
analysis of the solidified shell thickness, the mushy
zone thickness, the metallurgical length, and residual
stress in CC processes is a 3D thermo-elastoplastic
Petrov–Galerkin (MLPG) method [23].

A truly meshfree Generalized Finite difference
Method (GFDM) is the Finite Pointset Method (FPM)
proposed by J. Kuhnert [24]. It has shown to be much
better than other meshfree methods and the long-
established mesh-based methods for treating
multiphase or free surface flows, fluid mechanics
problems involving quickly evolving domains, and
for problems including heat transfer or convective
flows [25, 26, 27]. It is a Lagrangian method of
strong-form that utilizes a weighted least-squares
(WLSM) method to solve elliptic partial differential
equations and to compute spatial derivatives [28]. It
has numerous advantages when compared with other
numerical techniques because it is capable of simply
and naturally incorporating any form of boundary
condition without requiring some stabilization or
special treatments, and its implementation is
straightforward [27]. Nevertheless, the transient
problem arising in semi-continuous casting processes
has not been tested yet. Consequently, the application
of FPM to analyze the transient heat transfer and
solidification problems in direct-chill casting is
proposed in this work; to the author’s knowledge this
is the first time that this approach has been applied in
order to solve this practical engineering industrial
process in metal casting. With the purpose of getting
some information on its performance, the numerical
solution of the start-up phase in a DCC example is
compared with numerical published data predicted by
other researchers using different numerical methods.
The structure of this article is as follows: Section 2
describes the partial differential equation to be
considered. Section 3 describes the ideas behind FPM
and the numerical scheme applied for the solution of
the governing equations. The numerical examples and
their results are presented in Section 4. Finally, in the
last section some conclusions are given.

2. governing equations

The modeling of the transient heat transfer and
solidification in DCC will be done by means of the
heat transfer equation which in Lagrangian form is
given by

(1)

where c is the specific heat, k is the conductivity,
T is the temperature, ρ is the density and t is the time.
The problem is defined with proper initial and
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boundary conditions.
The initial and boundary conditions for this

problem are

(2)

(3)

where ∂Ω indicates the kind of boundary, ∂Ωk
denotes an inflow boundary condition and ∂Ωl refers
to a wall boundary condition, q is the heat flux
density, n is the outward unitary normal vector on ∂Ω
and T0 is the initial temperature. Furthermore, q=0 for
isolated boundaries or q=hc(T-T∞) in convective
boundaries, where T∞ is a reference temperature and
hc is the convective heat transfer coefficient.

3. numerical Scheme

In this section we present the ideas behind FPM,
and the numerical scheme applied for the solution of
this transient heat transfer problem in DCC. We start
with a temporal discretization of Eq. (1) using an
implicit Euler scheme, which leads to

(4)

where the superscripts indicate the level of time
for T and ∆t is the time step. Eq. (4) can be rewritten
in general form as

(5)

where A, B, C and D are defined as: A=ρc,
B=∆t∇k, C=k∆t and D=ρcTn [26].

3.1 The Finite Pointset Method

In this subsection, the general ideas behind FPM
are described, which is a GFDM that uses the WLSM.
Following [27, 28]:

Let Ω be a material domain with boundary ∂Ω and
suppose that a set of nodes r1, r2,⋯, rN are distributed
with corresponding function values f(r1), f(r2),⋯,
f(rN). Then, we are interested in computing the value
of f at whatever location f(r) using the function values
at node positions in the vicinity of r. A weight
function w(ri-r) is proposed in order to determine the
number of nodes and the vicinity of r whose form is

(6)

where ri is the position of the i – th node in the
vicinity of r, α is a positive constant whit a value of
6.5 and h is the smoothing length. A Taylor's series

approximation of f(ri) around r is

(7)

where fk and fkl (fkl=flk) depict the set of first and
second spatial derivatives at the node position r, rki
and rk are the k -th components of the positions ri and
r, respectively, and ei is the truncation error. fk and fkl
can be determined minimizing ei for the np Taylor's
series approximations of f(ri) for to the np nodes in the
r vicinity. The resultant system of equations can be
expressed in matrix form as

(8)

with

(9)

(10)

(11)

(12)

(13)

with ∆rki=rki-rk, ∆rkli=(rki-rk)(rli-rl) and
∆rkki=0.5(rki-rk)2, where k≠l and k,l = 1,2,3.

The value of a is computed with WLSM
minimizing the quadratic form

(14)

which reads (MtWM)a=(MtW)b, where W=
diag(w1,w2,⋯, wnp). Therefore, a=(MtWM)-1(MtW)b.
Thereby, the values of the function and its derivatives
at r are automatically calculated.

3.2 FPM form for general elliptic partial
differential equations

General elliptic partial differential equations like Eq.
(5) have been studied earlier in [25]. Thus, in this
subsection we present the corresponding FPM
discretization for these general equations [27]. For
solving a general elliptic equation with FPM, Eq. (5)
must be taken along with the system of np Taylor's series
approximations of f(ri) around r. On this occasion, the
matrices involved in the computation have the
following new form: b=[f(r1),f(r2),...,f(rnp),D]t,
M=[s1,s2,...,snp,sE]t, and W= diag(w1,w2,...,wnp,1),
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where sE=[A,B1,B2,B3,C,0,0,C,0,C]t and B=[B1,B2,B3]t.
If r∈∂Ω, we have to incorporate the corresponding

boundary conditions in the system of equations. For
the special case of this transient heat transfer problem
in DCC, the boundary conditions (3) have the general
form

(15)

Thus, for this boundary condition the matrices
involved in the computation are:

(16)

(17)

and

(18)

where sB=[E,n1,n2,n3,0,0,0,0,0,0].
If we define Q=[Q1,Q2,...,Q10] being the first row

of (MtWM)-1, and the terms in the WLSM solution
a=(MtWM)-1(MtW)b are explicitly calculated, we can
notice that the next linear equations result

(19)

where f(rj) represents the unknown function value
at the node j and n(j) the number of j-th nodes in the
vicinity. As Eq. (19) holds for j = 1,2,⋯ ,N, it forms a
full sparse system of linear equations LT = P that can
be solved with iterative procedures. Therefore, any
kind of solidification and thermal phenomena
governed by Eq. (1,5) can be computed with this
procedure, just aggregating proper entries in the
systems of equations [25, 26].

4. numerical examples and results

With the goal of validating the suitability of this
FPM approach to model the transient heat transfer
problem in the start-up phase of the DCC process, the
solution of a heat transfer and solidification general
benchmark problem and the solution of a simplified
model of the start of the DCC process in axisymmetry
are reported and compared with the published
numerical and theoretical data [19, 22].

4.1 Solidification in an infinite corner
This transient heat transfer and solidification

general benchmark problem corresponds to an infinite
corner of liquid that starts to freeze under a Dirichlet
boundary temperature condition. This example was

selected since it allows to validate the proposed FPM
formulation against the results of an analytically
solvable two-dimensional solidification problem [29].
In this example, an infinite corner of liquid with a
uniform initial temperature T0=273.45 K starts to
freeze under a Dirichlet boundary temperature
condition TD=272.15 K on the lower left corner, and in
the rest of the edges a Neumann outflow boundary
condition was used without taking into account the
convective fluid flow generated during the cooling.
The melting temperature of the liquid in the corner is
Tm=273.15 °C, whilst its thermal properties at the
melting point are: cm=1 J/kg K, km=1 W/mK and ρm=1
kg/m3. In this example the thermal conductivity and
the specific heat of the solid and liquid phases are
assumed to be equal to their corresponding values in
the melting point.

The effect of the latent heat is included through an
effective heat capacity. The latent heat of this fluid is
taken as hf=0.25 J/kg and the computation was
performed for 0.5 s. The numerical solution was
obtained considering a squared geometry of 3 m of
length with two point clouds (PC) with 2601 and 441
points with a mean spacing of 0.06 m and 0.15 m,
respectively. The smoothing length used in the fine
PC simulation was chosen as 0.192 m and the time
step was selected as ∆t=0.001s. Finally, the smoothing
length used in the coarse PC simulation was chosen as
0.48 m and the time step was selected as ∆t=0.005 s.

The analytical solution for the solidification front
location assuming constant thermal properties and
densities is given by Stapor [29] and it reads

(20)
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Figure 1. Solidification front at t = 0.5 s, where x and y axis
denote the distance from the lower left corner
where the Dirichlet boundary condition is
imposed



The solidification front location at t = 0.5 s
obtained by means of this FPM formulation is shown
and compared with the previous analytical solution,
and with the XFEM simulation results of Stapor [29]
in Figure 1. In this case the interphase position
calculated with FPM perfectly matches the analytical
solution and the Stapor’s XFEM simulation with a
fine mesh. Further, it could be observed that the
solidification front position predicted by FPM with a
coarser point cloud is closer to the analytical solution
than the corresponding numerical solution obtained
with XFEM. These results show that this FPM
formulation works very well for the computation of
heat transfer and solidification processes.

4.2 Simplified model of the start-up phase in a
DCC process

Once the FPM formulation was tested for the
previous example of heat transfer and solidification,
the next natural step is to model and obtain a
numerical approximation of the thermal effects
involved in the start-up phase of a DCC process. With
this purpose in mind, the simplified model of the start
of the DCC process in axisymmetry studied by
Vertnik et al. in [19] was selected.

The initial configuration of this problem is a
cylinder, 0≤z≤0.01m, 0≤r≤0.25m, whose initial
temperature is T0. The boundary conditions on z=0 are
of Dirichlet type with T|(z=0)=T0, and the boundaries
at the moving bottom are isolated. The boundary
conditions at the outer surface are of the Robin type
with a reference temperature T∞.

In this study case the convective heat transfer
coefficients are distributed as shown in Table 1 and
the material properties are specified in Table 2. In this
formulation, the effect of the latent heat was taken
into account using the effective heat capacity method:
c=csfs+cL(1-fs)+hf(∂fs)∕∂T. The liquid fraction
increases linearly with temperature between TL and Ts.
The thermal conductivity in the mushy zone vary
linearly with temperature as km=ks fs+kL(1-fs), where fs
is the solid fraction and it is defined as 

(21)

The smoothing length used in this simulation was
h = 0.00875 m with a time step ∆t =0.1 s. The solution
of this example has been obtained with an initial
discretized domain of 505 nodes with an average
spacing of 0.0025 m. In this example, the domain
growth is imposed moving the current point cloud
according with the casting speed, and adding a new
row of nodes in z=0 when a gap with the size of the
initial mean spacing is formed.
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Table 1. Convective heat transfer coefficients hc along the
casting direction

Table 2. Process parameters used for the numerical
simulation

Axial position / m Convective heat transfer
coefficient / W/m2K

0≤z≤0.01 0
0.01≤z≤0.06 3000
0.06≤z≤0.1 150
0.1≤z≤1.25 4000

Parameter Value
Initial temperature, T0 980 K

Reference temperature, T∞ 298 K
Liquidus Temperature, TL 911 K
Solidus Temperature, TS 775 K

Liquid thermal conductivity, kL 57.3 W/mK 
Solid thermal conductivity, kS 120.7 W/mK 

Liquid density = Solid density, ρL=ρS 2982 kg/m3

Liquid specific heat, cL 1179 J/kgK
Solid specific heat, cS 1032 J/kgK 
Fusion latent heat, hf 348.2 kJ/kg 

Casting speed, υz 0.000633 m/s 

Figure 2. Temperature profiles and the liquidus and solidus
isotherms at a) 500 s, b) 1000 s and c) 1500 s
predicted by FPM (top) and LRBFCM Vertnik et
al. [19] solution (bottom)



The temperature profiles over the billet at different
time steps predicted by this formulation of FPM are
shown in Figure 2 where a comparison with the
corresponding numerical results of Vertnik et al. [19]
is shown. As it can be seen in this picture, the
temperature distributions, and the liquidus and solidus
isotherms predicted by FPM match very well with
their numerical counterparts in [19].

Further, these figures depict smooth and physical
temperature fields with a stable evolution through
time. This indicates the FPM potential for the
numerical simulation of this start-up DCC transient
heat transfer problem since the accuracy of the
solutions is appropriate, and the non-linear aspects
related to material domain growth and the phase
changes are well reproduced.

In Figure 3, the centerline, mid-radius, and surface
temperatures at different time steps predicted by this
formulation of FPM together with the corresponding
numerical results of Vertnik et al. [19] are shown.
Regarding the computed temperature along these
lines, the graphs are in a very good agreement.
However, minor differences in the temperatures up to

around 7 K can be observed in some points which are
directly attributed to the differences in the numerical
approaches. Further, in the FPM solution the domain
growth was imposed moving the whole current point
cloud according with the casting speed, whilst in [19]
the domain growth was imposed moving only the
boundary points at the end of the billet according with
the casting speed, and adding a new row of points
between the boundary and inner ones when it is
needed. Nevertheless, these results show the
effectiveness of this approach to model the transient
thermal behavior and the evolution of the solidified
shell thickness in the start-up phase in DCC.

5. conclusions

Once the current formulation of FPM was
implemented and tested in a simplified model of the
start-up phase in a DCC process, the following could
be concluded:

1. This approach could be used properly to
simulate this kind of transient heat transfer and
solidification problems in DCC.
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Figure 3. Comparison of centerline, mid-radius, and surface temperatures predicted by FPM with the corresponding
LRBFCM Vertnik et al. [19] solution at: a) 500 s, b) 1000 s, c) 1500 s and d) steady-state solution (2100 s)



2. This approach has shown an excellent behavior
for the numerical simulation of these transient
problems.

3. This is the first time, to the author’s knowledge,
that the discussed version of FPM for transient heat
transfer and solidification in DCC has been
successfully tested for this industrial process.

4. The range of application of FPM has been
extended in this work in the context of DCC.

5. Since this formulation is a truly meshless
method, there is no need to keep a regular node
distribution in order to obtain good numerical

approximating solutions, not even to compute any
numerical quadrature.

6. It can be used in the future for the analysis of
more complex problems in the start-up phase in DCC
as the coupling of transient heat transfer and fluid
flow.

7. FPM is promising since it is a feasible and a
much simpler approach for implementation; it is able
to handle high deformations in the domain, and
finally, it is capable of naturally incorporating any
form of boundary condition without requiring some
stabilization or special treatments.
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Nomenclature 
 PDE coefficient / 1  Thermal conductivity / W/m K 

 PDE coefficient / 1  Thermal conductivity at melting point / W/m K 

 PDE coefficient / 1  Liquid thermal conductivity / W/m K 

 PDE coefficient / 1  Solid thermal conductivity / W/m K 

 PDE coefficient / 1  Boundary normal vector / 1 

 PDE coefficient / 1  Number of neighbor points / 1 

 Functional / 1  Local heat flux density / W/m2 

 Differences matrix / 1  Particle position / m 

 Auxiliary vector / 1  -th particle position / m 

 Temperature / K   - th components of   / m 

 Initial temperature / K   - th components of   / m 

 Reference/ambient temperature / K  -th Differences vector / 1 

 Temperature at n-th time step / K  Time / s 

 Dirichlet temperature / K  Casting speed / m/s 

 Melting temperature / K  Weight function / 1 

 Liquidus temperature / K  Vertical coordinate / m 

 Solidus temperature / K  Axial coordinate / m 

 Weight matrix / 1  Weight function parameter / 1 

 Unknowns vector / 1  Auxiliary variable / m2 s 

 Unknowns vector / 1  Density / kg/m3 

 Effective specific heat / J/kg K  Density at melting point / kg/m3 

 Specific heat at melting point / J/kg K  Liquid density / kg/m3 

 Liquid Specific heat / J/kg K  Solid density/ kg/m3 

 Solid Specific heat / J/kg K  First order spatial differences / m 

 Truncation error vector / 1  Second order spatial differences / m2 

 Arbitrary function value / 1  Time step size / s 

 First spatial derivative / 1  Gradient operator / m-1 

 First spatial derivative / 1  Material derivative / s-1 

 Solid fraction / 1  A given domain / 1 

 Smoothing length / m  Boundary of the domain / 1 

 Convective heat transfer coefficient /   Inflow boundary / 1 

   Wall boundary / 1 
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ModelIranJe Prelaznog PrenoSa ToPloTe I SolIdIfIKacIJe
ToKoM dIreKTnog hladnog lIVenJa KorIŠĆenJeM oPŠTe MeTode

KonaČnIh razlIKa

f.r. Saucedo-zendejoa*, e.o. reséndiz-floresa

a* Nacionalni tehnološki institut Meksika/Institut za tehnologiju u Saltilu, Odsek za postdiplomske studije i
istraživanja, Koauila, Meksiko 

Apstrakt

Cilj ovog rada je da pronađe novo rešenje za problem prelaznog prenosa toplote u početnoj fazi procesa direktnog hladnog
livenja korišćenjem opšte metode konačnih razlika. Ova formulacija je primenjena da bi se rešila jednačina prenosa toplote
po proširenom modelu  Lagranžove jednačine. Uključivanje graničnih uslova urađeno je na jednostavan i prirodan način.
Bezmrežna priroda ovog pristupa omogućava da se dobije kretanje i evolucija graničnih faza bez korišćenja metoda
ponovnog umrežavanja. Jednostavnost, efikasnost i primerenost ove numeričke formulacije dokazuje se poređenjem
dobijenih numeričkih rezultata sa rezultatima koje su drugi istraživači već objavili. Ovo pokazuje da je naš pristup
obećavajući što se tiče numeričke simulacije problema prenosa toplote tokom početne faze procesa direktnog hladnog
livenja.

Ključne reči: Metod konačnih elemenata; Prenos toplote; Direktno hladno livenje; Početna faza; Solidifikacija


