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Abstract

In the literature, no detailed description is reported about how to detect if a miscibility gap exists in terms of interaction
parameters analytically. In this work, a method to determine the likelihood of the presence of a miscibility gap in a binary
substitutional solution phase is proposed in terms of interaction parameters. The range of the last interaction parameter
along with the former parameters is analyzed for a set of self-consistent parameters associated with the miscibility gap in
assessment process. Furthermore, we deduce the first and second derivatives of Gibbs energy with respect to composition
for a phase described with a sublattice model in a binary system. The Al-Zn and Al-In phase diagrams are computed by
using a home-made code to verify the efficiency of these techniques. The method to detect the miscibility gap in terms of
interaction parameters can be generalized to sublattice models. At last, a system of equations is developed to efficiently
compute the Gibbs energy curve of a phase described with a sublattice model. 
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1. Introduction

Miscibility gap occurs when a two-phase
coexistence line in a phase diagram ends at a critical
point [1]. On one hand, miscibility gap has been well
understood and extensively used to develop high-
performance materials through the spinodal-type
decomposition of the microstructure, such as (Ti,Zr)C
[2, 3], TiAlN [4], etc. On the other hand, for some
alloys like high-entropy alloys, intermediate phase or
miscibility gap should be avoided in order to form a
single-phase microstructure thereby obtaining
excellent performance. As a result, it is of great
importance to acquire the information about
miscibility gap of materials during the developing
process. In the literature, many authors presented
mathematic equations for understanding miscibility
gap in terms of Gibbs energies [5-8], and numerically
detected them by a discretization of composition axis
[9-13]. To the best of our knowledge, however, there
is no detailed description about how to detect if a
miscibility gap exists in terms of interaction
parameters analytically. One purpose of this paper is
to develop a novel method to determine the existence
of miscibility gap analytically for given
thermodynamic parameters. In addition, the ranges of

interaction parameters are analyzed mathematically in
the solution model. The other objective in the present
work is to provide a new approach to calculate the
miscibility gap and guide selection for the interaction
parameters during the thermodynamic assessment in
binary systems.

In section 2, we present a simple method to
identify if there is a miscibility gap in terms of the
interaction parameters analytically. Subsequently, in
order to investigate the existence of the miscibility
gap, we deduce the first and second derivatives of
Gibbs energy with respect to composition for a phase
described with a sublattice model in section 3 and
section 4. After that in section 5, the calculations of
the Al-Zn and Al-In phase diagrams are demonstrated
to show the unique features of the presently developed
new algorithm. Finally, a summary is made in section
6. It could be mentioned that the outcome of the
present work is of both scientific and educational
interests. 

2. On the existence of miscibility gap in view of
interaction parameters

In thermodynamic equilibrium calculations, if the
miscibility gap exists it should be considered. In this
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section, we will investigate the existence of the
miscibility gap in a binary phase with a substitutional
solution model.

For fixed T and P, let          and     be the molar
fractions of components A and B, respectively. Then,
the molar Gibbs energy of a phase described with a
substitutional solution model can be expressed as

(1)

where       (respectively,      ) is the Gibbs energy
of pure A (respectively, B).           are the
interaction energy parameters between A and B.

Generally, a miscibility gap involves phase
separation within a single phase. The corresponding
Gibbs energy curve for fixed T shows two coexisting
compositions and two inflection points, except for the
consolute point [1], cf. Fig. 1. Mathematically, this
implies that there are two real number solutions to
equation                     in interval (0, 1). Here the second
order derivative of       with respect to     is given by

(2)

We now discuss the existence of the miscibility
gap with the increase in the number of the interaction
parameters.

2.1 Case 

For the case           and                    , by expression
(2), equation                can be expressed as:

(3)

It is obvious that Eq. (3) has two solutions in
interval (0, 1) only if                     . In other words, there
exists a miscibility gap in this phase when                . 

2.2 Case

Similarly, for the case            and ,
the equation                 is equivalent to 

(4)

Let       denote the right hand side of Eq. (4). It
should be noted that there exist two real solutions to
Eq. (4) if and only if the maximum of         in interval
(0, 1) is greater than RT. The function           is a cubic
polynomial and has three zero points, 0, 1 and

. This indicates that equation has

two solutions where is the first
order derivative of          and

(5) 

Thanks to the feature of the cubic function, there
are only two cases such that , namely,

(6)

We are now in a position to construct the
judgement for the existence of the miscibility gap
according to or . For , if 
and , there is a miscibility gap in this phase,
while for         , if and , the
miscibility gap exists in this phase. 

When dealing with the miscibility gap in assessment
process, to evaluate a set of self-consistent parameters,
the last interaction parameter should be reasonably
selected on the basis of former interaction parameters.
In fact, if , since 
and the fact that as or             , equation

always has two solutions in interval (0, 1) no
matter what value the parameter L1 takes, i.e., there is
always a miscibility gap in this phase. 

On the other hand, if , we rewrite Eq. (4)
as

(7)
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Figure 1. Modified Gibbs energy curves after a linear
shifting,                              , at different
temperatures in Al-Zn binary system. The curve
at T0 = 625.7111 K shows the Gibbs energy
related to the consolute point while equation

has only one solution
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The functions from the both sides of Eq. (7) are
plotted against x in Fig. 2, we can observe that when

, only one value satisfies Eq. (7), where       and
L1

0 can be computed by 

(8)

Hence, we can conclude that if or ,
Eq. (7) has two solutions in interval (0, 1), namely,
there will exist a miscibility gap in this phase.

2.3 case 

The analysis described in sections 2.1 and 2.2 would
be complex and expensive for the case
and . Therefore, a numerical method
for finding the solutions of polynomial will be
employed here. Rewrite the equation as

(9)

It is easy to check that the function from the left
side of Eq. (9) is a polynomial of degree n+2. By
computing the eigenvalues of the corresponding
companion matrix [17], if there are at least two real
eigenvalues in interval (0,1), a miscibility gap exists;
otherwise, it does not exist.

Generally, in a binary system, a substitutional
solution model is considered with no more than 4
interaction parameters, i.e.,      , and mostly we just
take n = 2. In thermodynamic assessment process,
according to previously introduced interaction
parameters, we can compute the range of the last
interaction parameter in which a miscibility gap

exists. Now consider the case n = 2 and rewrite Eq.
(9) as 

(10)

where the left hand side is a function symmetry

with respect to    , and for different L2 the

corresponding function curves invariably pass

through the point , as shown in

Fig. 3. In Eq. (10), by taking , the right hand

side becomes              . Thus, if                                        , 

there is always a miscibility gap in this phase

whatever the parameter L2 takes.

If , it can be observed from

Fig. 3 that when taking or , Eq. (10)

has only one solution x0,1 or x0,2 , respectively.  These

two sets of values             and can be obtained

by solving Eq. (11) of unknowns :

(11)

Thus, if or , there exists a
miscibility gap in the phase.
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Figure 2. Geometric illustration for Eq. (7) Figure 3. Geometric illustration for Eq. (11)
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It is remarkable that since the analysis for the
existence of miscibility gap in this section is in terms
of interaction parameters at different discrete values
of temperature, the present approach can also be used
to check the existence of the miscibility gaps for
different expressions of T-dependence of interaction
parameters [14-16] quickly and efficiently. 

In addition, for the linear model for the T-
dependence of interaction parameters, generally given
by , Kaptay described that for the simplest
case of n = 0 an artificial inverted miscibility gap
appears at high temperature when           and 
[15]. In fact, this simple rule can be used for the case
of n = 1 due to the fact that if , there always
holds at high temperature no
matter what value L1 is. 

Furthermore, for the case n = 2, according to the
discussion about Eq. (10) and Fig. 3, we find that if

, a miscibility gap appears
regardless of the value of L2. Since the parameter           can
be approximated by    at sufficiently high
temperatures, we have .  This
implies that an artificial inverted miscibility gap
arises if , or roughly, .
On the other hand, the function from the right side of
Eq. (10) always passes though the point (1/2, 0), and
when taking x = 1/2, the left side in Eq. (10) is equal
to . Analogous to the analysis above,
in view of Fig. 3, when , i.e.

, an artificial inverted miscibility gap
appears at high temperatures.

3. finding the miscibility gap for a phase
described with a sublattice model

The method descried in section 2 deals with a
phase described with a substitutional solution
model. Next we consider a sublattice model in
which the corresponding Gibbs energy can also be
expressed by a function of two variables, such as
phase η in the Zr-Sn [18] binary system, which is
described with the sublattice model
(Zr)5(Sn)3(Sn,Va)1. Let be the
site fractions of the third sublattice for phase η.
The molar fractions of components Sn and Zr are

and                                           (12)

Then the corresponding Gibbs energy expression
reads:

(13)

In this section, we shall study the existence of the
miscibility gap for a phase described with a sublattice
model under fixed T and P where the Gibbs energy
expression involves two internal variables or

:

or                                       (14)

where constant a is the sum of the numbers of sites
for all sublattices, and bivariate function G has the
same form as expression (1). We next focus on the
case of . The case of is similar to that
of . To this end, we start by deducing the first
and second derivatives of GM with respect to x. 

Generally, the mole fraction of element B in that
phase is defined by

(15)

Here Eq. (15) follows from the relation                    ,
and aB is a constant and can be zero. Then GM is
regarded as a function of x:

(16)

Consequently, we obtain the first derivative of GM
with respect to x as:

(17)

From the relation (15), there holds that 

(18)          

Thus, we arrive at 

(19)

Similarly, we get the following second derivative:

(20)
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By taking , it is easily verified that the

term has the same expression

as Eq. (2). From the discussion in section 2, we know

when the miscibility gap exists, there are two real

number solutions to equation in interval

(0,1). Noting that , we can conclude

that the method described in section 2 works equally

well in the case of a sublattice model.
The phase η in Zr-Sn [18] binary system is used

as an example to verify the correctness of these
derivatives. Here we take , and set a
temperature T = 1200 K and a number of axis
subdivisions N = 50. In Fig. 4 we find that the first
and second derivatives computed directly by the
expressions (19) and (20) coincide with those
calculated numerically by the finite difference
approximation schemes.

4. the derivatives in a sublattice model

In this section, we shall expand the derivation
method introduced in section 3 to a general sublattice
model. These derivatives can help to obtain the Gibbs
energy curve efficiently by a simple Newton
algorithm.

In order to make it easier to understand the
derivation for the derivatives of GM with respect to x,
a phase described with (A,B)a(A,B)b is taken as an
example. Let and denote the constituent
fractions of the first and second sublattices,
respectively. Then we have 

(21)

Under fixed T and P, GM is considered as a function
of       and       since and .
Together with Eq. (21), GM can also be regarded as a
function of      and x, that is, 

(22)

Thus we can express the partial derivative of GM
with respect to x,

(23)

Similarly, we have 

(24)

Clearly, there holds that for any x, 

(25)

In fact, Eq. (25) can also be obtained from the
partial Gibbs energies of the end-members in [19, 20].
Applying the end-members (A:A) and (A:B) yields

(26)

(27)

Note that the partial Gibbs energies of the end-
members are related to the chemical potentials of the
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Figure 4. The first (a) and second (b) derivatives of GM of phase η at T = 1200 K in Zr-Sn system computed directly via
formulas (19), (20) and numerically by finite difference schemes
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elements, and .
Thus we deduce that

(28)

Analogously, by using the end-members (A:A)
and (B:A), there consequently holds that

(29)

It is obvious that Eq. (25) and Eq. (29) are
equivalent. 

For a given x, we now have 4 equations of 4
unknowns as follows:

(30)

Eq. (30) can be solved by the simple Newton
method. 

Now we take the phase Cu2Mg described with
(Cu,Mg)2(Cu,Mg)1 in Cu-Mg [21] binary system as an
example to observe the efficiency of Eqs. (23), (24)
and (30). At T = 1000K, let N = 100 be the number of
x axis partitions. In Fig. 5(a), the values of Gibbs
energy at each node by solving Eqs. (30) with Newton
method (denoted by     ) are close to those calculated
by traditional discretization method (denoted by    ).
In the discretization method, the value of Gibbs
energy at any discrete node xi is approximately
obtained by computing the minimum of Gibbs
energies at all the gridpoints with the number of
internal variable axis subdivisions N`= 1000. Such
calculations are time-consuming, in particular for a

multi-component phase. And in the Newton method,
there are just 10 iterations at each node xi. In Table 1,
for a fixed N = 100, we present the maxima of the
differences of the above two Gibbs energies at all
nodes against various N`. As shown in Table 1, the
computation time from the present algorithm is much
shorter than that due to the discretization method.

In Fig. 5(b), the first derivatives computed by Eq.
(23), equal to those by Eq. (24), nearly coincide with
the results calculated by the finite difference method.
And the maximum of the differences of the results by
Eq. (24) (denoted by    ) and the finite difference
method (denoted by        ) is nearby line x = 1/3. In Table
2, the maxima of those differences near line x = 1/3
are presented against various N.
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Figure 5. The Gibbs energies (a) and the first derivatives (b) of the GM of Cu2Mg phase at T = 1000K in Cu-Mg system
computed by present methods and general numerical methods

N` Max     

Computation
time of

discretization
method

Computation
time of
Newton
method

1000 51.5938 0.0198 s

0.0003 s
2000 23.8303 0.0263 s
5000 8.5057 0.0407 s
10000 3.8669 0.0605 s
100000 0.259 0.4217 s

-G G

G

M
n

M
d

N 1000 2000 5000 10000 100000

Max
162.1459 41.7066 6.724 1.6499 0.0029

Table 2. The maxima of against different NG’ G’M M-µ

G’ G’M M-µ

Table 1. The maxima of and the computation
times of the discretization method against different
N`. Since the Newton method is independent of the
number of subdivisions N`, the computation time
does not change
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5. results and discussion

Some numerical results are presented to verify the
efficiency of the proposed algorithm in section 2. By
using the method described in section 2 to find the
existence of the miscibility gap in a phase described
with a substitutional solution model, the Al-Zn [22]
and Al-In [23] binary phase diagrams are computed
with a home-made MATLAB code. The
corresponding procedure to calculate binary phase
diagrams is described in detail in our recent work
[24]. It is stressed that in the calculation of this phase
diagram, after finding a miscibility gap in a phase, one
still needs to check whether it is the global
equilibrium or not. In the calculation of Fig. 6(a), we
can easily find the miscibility gap in phase fcc_a1
with the interaction parameters, instead of the
discretization of composition axis. And in Fig. 6(b)
the miscibility gap exists in the liquid phase.

The parameters L0, L1 and L2 for fcc_a1 phase in
the Al-Zn and liquid in the Al-In system are given in
Table 3. By inserting L0, L1 into Eq. (11), we can
calculate the range for L2 where a miscibility gap
exists in this phase.

At T = 625K, using Eq. (11), it shows that only
when L2 < -994.14 or L2 > 1292.17 a miscibility gap
can exist in phase fcc_a1 for the Al-Zn system. The
value of L2 given in the Al-Zn system is within that
range, which coincides with the fact that there is a
miscibility gap in phase fcc_a1 at 625 K.

On the contrary, at T = 626 K, it can be seen that
the value of L2 in the fcc_a1 phase of the Al-Zn
system is outside the range resulting from Eq. (11);
also, there is no miscibility gap in phase fcc_a1 at this
temperature. In addition, except for the solid phase,
this method can also be applied to the liquid phase in
the Al-In system.

Analogously, the parameters L0, L1 for η phase in the
Zr-Sn system are given in Table 4. By inserting L0 into
Eq. (9), we calculate the range for L1 where a miscibility
gap exists. At T = 1340K, using Eq. (8), we find that only
when L1 < -28772 or L1 > 28772 a miscibility gap can
exist in phase η. The value of L1 given in the Zr-Sn
system is within that range. At T = 1341 K, the value of
L1 is outside the range computed from Eq. (8). And there
is no miscibility gap in phase η at this temperature. 
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Phase T L0 L1 Results from Eq.(11) L2

fcc_a1 (Al-Zn)
625 7594.45 3743.46 < - 994.14   >1292.17 -1030.73

626 594.92 3738.87 < -1042.02   >1344.52 -1027.42

liquid (Al-In)
1208 20670.85 2393.88 < 1675.25   >5021.26 1652.19

1209 20670.36 2392.68 < 1641.15   >5063.49 1649.02

Phase T L0
Results

from Eq.(9) L2

η (Zr-Sn)
1340 -17520 < - 28772

> 28772 -28780

1341 -17548 < -28801
> 28801 -28747

Table 3. Parameters L0, L1 and L2 are given in the corresponding TDB file at these temperatures. And L2 parameter from
Eq. (11) is solved with the given L0, L1

Table 4. Parameters L0 and L1 are given in the
corresponding TDB file at these temperatures. And
L1 parameter from Eq. (8) is solved with the given
L0

Figure 6. Al-Zn (a) and Al-In (b) phase diagrams computed
by the present algorithm via MATLAB

(a)

(b)



The outcome of the present work is of interest for
the thermodynamic optimization in which a
miscibility gap is involved. During the
thermodynamic optimization of a binary system in
which a miscibility gap exists, Eq.(8) and Eq.(11) can
be used to detect numerical regions of the interaction
parameters very easily, which will reduce the amount
of work for assessments. As a summary, Table 5
presents the implication and guidance to
thermodynamic calculations and optimizations from
the analytical results for each of the cases n = 0, 1, 2
and > 2.  

To the best of our knowledge, no detailed
description is presented in textbooks on how to
identify if a miscibility gap exists in terms of the
given thermodynamic parameters analytically in a
binary system. The present work shows all of the
details in order to detect the existence of the
miscibility gap in a binary system, being of interest to
undergraduates and graduates.

6. Summary

In this work, the existence of the miscibility gap in
a phase described with a substitutional solution model
is analyzed for a binary system. When a miscibility
gap exists in the phase, the second derivative of Gibbs
energy           has two zero points in interval (0, 1). The
quick and direct judgment for the existence of the
miscibility gap is established for the cases of n = 0
and n = 1, respectively. For n ≥ 2, eigenvalue method
is used to solve a corresponding polynomial system
equivalent to . In particular, for a given L0 as
well as L0 and L1, we propose a numerical method to
find the numerical ranges for L1 as well as L2 in which
there is a miscibility gap in the phase. A home-made
code has been written to compute the Al-Zn and Al-In
binary phase diagrams with the present algorithm.

Based on the chain rule of the derivative of

compound function, we deduce the first and second
derivatives of Gibbs energy with respect to
composition for a phase described with a sublattice
model in a binary system. The method to detect the
miscibility gap in terms of interaction parameters can
be generalized to a sublattice model in which the
Gibbs energy has two internal variables. Moreover, in
view of the derivatives, we have developed a system
of equations to efficiently compute the Gibbs energy
curve of a phase described with a sublattice model. 
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Apstrakt

U postojećoj literaturi nema detaljnih opisa o tome kako analitički detektovati postojanje prekida u rastvorljivosti na
osnovu interakcionih parametara. U ovom radu je predložen metod za određivanje verovatnoće postojanja prekida u
rastvorljivosti u binarnom supstitucionom rastvoru, a uz pomoć interakcionih parametara. Raspon između poslednjeg
interakcionog parametra i prethodnih parametara se analizira da bi se dobio skup doslednih parametara povezanih sa
prekidom u rastvorljivosti. Osim toga, izračunati su prvi i drugi izvod Gibsove energije u odnosu na sastav faze opisane
pomoću modela podrešetke u binarnom sistemu. Fazni dijagrami Al-Zn i Al-In su proračunati uz pomoć sopstvenog koda
da bi se verifikovala efikasnost ovih tehnika. Metod za otkrivanje prekida u rastvorljivosti na bazi interakcionih parametara
može se generalizovati i na modele podrešetki. Na kraju, razvijen je sistem jednačina da bi se efikasno izračunala kriva
Gibsove energije kod faze opisane pomoću modela podrešetke.

Ključne reči: Termodinamički proračuni; Proračuni ravnoteže; Fazni dijagram; Prekid u rastvorljivosti; Algoritam.


