Journal of Mining and Metallurgy, Section B: Metallurgy

SOLUBILITY OF CO₂ IN MOLTEN Li₂CO₃-LiCl

X.-W. Hu^{a,*}, W.-T. Deng^b, Z.-N. Shi^{a,c}, A.-M. Liu^a, J.-Y. Yu^a, Z.-W. Wang^a

^a Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, China

^b China Nerin Engineering Co., Ltd, Nanchang, China

^c State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China

(Received 26 April 2020; Accepted 05 March 2021)

Abstract

Solubility of CO₂ in molten Li₂CO₃-LiCl was measured by a pressure differential method, and the enthalpy change of the solution was calculated on that basis. The relationships between the solubility and the enthalpy change, and the temperature and the composition of the melts were discussed. The results showed that when the temperature was 873–923 K and the Li₂CO₃ content was 10–50 mol%, the solubility of CO₂ increased with decreasing temperature and/or increasing Li₂CO₃ content. The maximum solubility was 3.965 × 10⁻⁷g_{CO2}/g_{melt} at 873 K when the content of Li₂CO₃ was 50 mol%. The solution of CO₂ was exothermic. With increasing temperature and Li₂CO₃ content, more enthalpy was needed for CO₂ solution.

Keywords: MSCC-ET; Li₂CO₃-LiCl melts; CO₂ solubility; Pressure differential method; Solution enthalpy change

1. Introduction

Carbon fuels have been exploited rapidly as human industrialisation has progressed. This has resulted in large emissions of CO_2 , the most concerning greenhouse gas. Accordingly, there has been much attention on how to effectively decrease CO_2 emissions and carbon fuel use.

Electrochemical transformation is an important method for CO₂ utilisation. A higher temperature is more helpful for the electrochemical reduction of CO₂ from the viewpoint of both thermodynamics and kinetics. Therefore, molten salt is a better medium for the electrochemical transformation of CO₂ than an aqueous solution. Furthermore, molten salt often has a wider electrochemical potential window. As a result, the molten salt CO₂ capture and electrochemical transformation (MSCC-ET) process has become a research hotspot. This process produces carbon and oxygen, with high value-added carbon materials obtained by improving the electrode, electrolyte, and/or process conditions [1-3], and oxygen generation achieved from utilising solar energy, enabling humans to breathe and survive in outer space [4-5].

For the MSCC-ET process, molten salts that have been reported to date include carbonate [1, 6-10], chloride-oxide [5, 11], chloride-carbonate [3, 12-14], fluoride-carbonate [4, 15], and carbonate-oxide [16].

https://doi.org/10.2298/JMMB200426024H

In this process, it is important to understand the solubility of CO_2 in the melt, because this affects the electrical conductivity of the electrolyte, as well as the current efficiency during the electrolysis process [17].

Clase et al. measured the solubility of CO₂ in a molten Na₂CO₃-K₂CO₃ eutectic mixture at 1073 K and Henry's constant was determined as 1.83×10^{-1} mol·L⁻¹·atm⁻¹ [18]. Clase et al. also measured CO₂ solubility in molten Li₂CO₃-Na₂CO₃-K₂CO₃ (43.5, 31.5 and 25.0 mol%) at 973 K, and the solubility was determined as 9.5×10^{-2} mol·L⁻¹ under a CO₂ pressure of 1 atm [19].

Wakamatsu et al. studied the solubility of CO_2 in molten LiCl-Li₂O using the mass measurement technique, reporting a 95% solution of the molar quantity of Li₂O into the molten salts in the range of $0-60 \text{ mol}\% \text{ Li}_2\text{O}$ at 923 K [20]. Our previous study on the same melts using Raman spectroscopy indicated that the solubility of CO_2 was $0.1105 \text{ g}_{CO2}/\text{g}_{melt}$ for the melts containing 8 wt% of Li₂O at 923 K and the conversion rate of Li₂O to Li₂CO₃ was 94.19% [17].

Shi et al. studied the solubility of CO₂ in molten LiF-Li₂CO₃. The maximum solubility was 6.8×10^{-4} mol_{CO2}/mol_{melt} at 913 K when the mole fraction of LiF was 50% [21]. Deng found the absorption of CO₂ in molten LiCl-KCl to be negligible; however, CO₂ could be rapidly captured when Li₂O or CaO was added into molten LiCl-KCl, with a conversion efficiency of Li₂O to Li₂CO₃ of around 94%. CO₂

Corresponding author: huxw@smm.neu.edu.cn

solubility in molten Li-Na-K carbonates was much higher than in molten LiCl-KCl, with approximately 6 mmol CO_2 absorbed by 100 g Li-Na-K carbonate. More time was required to reach the absorption equilibrium in molten carbonates with CaO or Li₂O, and the conversion efficiency of Li₂O was approximately 45% [22].

On the other hand, considering the laborious experimental conditions to determine the CO_2 solubility, some theoretical models were developed and used to model the CO_2 solubility in the electrolyte, such as Statistical Associating Fluid Theory (SAFT) [23, 24], Cubic-Plus-Association (e-CPA) [25, 26], and Mixed-Solvent Electrolyte (MSE) [27]. However, these models have all been applied for the aqueous systems or ionic liquids but few models were focused on the molten salts systems.

Compared with other molten salts systems used in MSCC-ET process, molten chloride-carbonates are getting more attention for their lower operating temperature and cost. However, there have been few research publications on the solubility of CO₂ in molten chloride-carbonates. In the present study, the solubility of CO₂ in molten Li₂CO₃-LiCl was studied using the pressure differential method, and the effects of Li_2CO_3 content temperature and were comprehensively determined. Data on the thermodynamics of CO₂ solution was also calculated.

2. Experimental

The purity and company of the regents are listed in Table S1. All solid chemicals were dried at 423 K for 24 h to remove water and then stored in an argonfilled glove box with water and oxygen contents less than 1 ppm.

The solubility of CO_2 in molten Li_2CO_3 -LiCl was measured using a pressure differential method. The apparatus used for the experiment is shown in Figure 1. The same apparatus and method were used to measure the solubility of CO_2 in molten Li_2CO_3 -LiF [21]. The molten salts sample was held in a corundum crucible which was placed in a stainless steel container. The container was put in a furnace connecting to a temperature controller for heating to a certain temperature. The valves were used to control gas flows, the two pumps were for evacuating the air, and the digital pressure gauge was for reading the pressure.

Table S1.	Information	on the	regents
-----------	-------------	--------	---------

Regent	Purity	Company
Li ₂ CO ₃	>99%	Alfa
LiCl	>99.9%	Alfa
CO ₂	>99.5%	Sifang(Shenyang, China)

The volume (V_m) of the container and connecting tube was measured using CO_2 according to the following procedure. First, the volume (V_1) in the bellow was measured by the water displacement method. Second, the air in the whole apparatus was evacuated and the container and connecting tube were filled with CO_2 , giving a pressure reading of P_0 . Third, Valve 8 was opened to allow CO_2 to flow into the bellow, giving a pressure reading of P_0 '. Finally, the V_m value was calculated using equation (1).

$$P_0 V_m = P_0 (V_m + V_1) \tag{1}$$

With V_m thus obtained, the concentration of CO_2 in the melts could be measured. First, a sample with a certain mass (*m*) was placed in the container and heated to the target temperature. The volume of the melt was calculated by knowing the value of *m* and the density, which was measured using the Archimedes' principle [28]. Second, CO_2 was allowed to flow in by opening Valve 7. Finally, the Soave-Redlich-Kwong equation [29] of state was used to calculate the number of moles of CO_2 dissolved into the melt. Then, the number of moles was converted to the mass of CO_2 .

3. Results and discussions 3.1. Determination of dissolution equilibrium duration time

To determine the dissolution equilibrium duration, the pressure changes in the container for the Li_2CO_3 -LiCl melts with different compositions were measured at 873 K, as shown in Figure 2 (The related data were listed in Table S2). When the pressure in the container remained constant, CO₂ dissolution had reached equilibrium. The reaction between CO₂ and the melts is given in equation (2) [30]. The amount of CO₂ dissolved in the melts increased with increasing time. However, after 60–80 minutes there was little

Figure 1. The apparatus for measuring the solubility of CO₂.

CO₂. 1- Molten salts; 2-Corundum crucible 3-Containter; 3 Furnace; 4-Temperature controller; 5, 6, 7, 8, 9-Valves; 10-CO₂ let; 11-Pressure gage; 12-Bellow; 13-Diffusion pump; 14-Vacuum pump

$x_{_{Li_2CO_3}}$ /mol %	Dissolution during time/min	Pressure of CO ₂ /MPa	
	10	0.0918	
	20	0.0927	
	30	0.0935	
	40	0.0937	
	50	0.0940	
10	60	0.0942	
	70	0.0943	
	80	0.0945	
	90	0.0946	
	100	0.0945	
	110	0.0945	
	10	0.0933	
	20	0.0954	
	30	0.0982	
	40	0.0997	
	50	0.1021	
20	60	0.1025	
	70	0.1026	
	80	0.1027	
	90	0.1027	
	100	0.1027	
	110	0.1027	
	10	0.0948	
	20	0.0973	
	30	0.9998	
	40	0.1015	
	50	0.1019	
30	60	0.1024	
	70	0.1025	
	80	0.1025	
	90	0.1025	
	100	0.1025	
	110	0.1025	
	10	0.0946	
	20	0.0954	
	30	0.0970	
	40	0.0990	
	50	0.1002	
40	60	0.1015	
	70	0.1018	
	80	0.1023	
	90	0.1023	
	100	0.1023	
	110	0.1023	

Table S2. Values of pressure and dissolution during time of CO₂ in molten Li₂CO₃-LiCl systems at 873K

further change, indicating that dissolution equilibrium had been reached. In the following solubility measurements, the pressure was read after 80 minutes.

$$Li_2CO_3 + CO_2 = Li - C_2O_5 - Li$$
(2)

3.2. Solubility of CO₂ in molten Li₂CO₃-LiCl

The relationship between the solubility of CO_2 in the melts with various compositions and temperature is shown in Figure 3 (The related data were listed in Table S3). Solubility decreased with increasing temperature, which indicated the equilibrium between Li₂CO₃ and Li-C₂O₅-Li in equation (2) shifted left. Therefore, the temperature must not be set too high when Li₂CO₃-LiCl melts are used as the medium for CO₂ electrolysis. Additionally, solubility increased as Li₂CO₃ content increased, indicating the very low solubility of CO₂ in the molten chloride, whereas the molten carbonate allowed CO₂ dissolution. The effect of LiCl in the melts was only to decrease the liquidus temperature and thereby decrease the working temperature.

Overall, the solubility of CO₂ in the Li₂CO₃-LiCl melts was much lower than that in the Li₂O–LiCl melts (approximately 10⁻⁵ times lower), in the studied ranges of temperature and sample compositions. The maximum solubility of CO₂ was $3.965 \times 10^{-7} g_{CO2}/g_{melt}$ at 873 K when the content of Li₂CO₃ was 50 mol%.

3.3. The enthalpy change of the solution of CO,

The enthalpy change $\Delta_{sol}H$ of CO₂ solution in the Li₂CO₃-LiCl system was expressed according to equations (3) [31].

$$\Delta_{sol}H = R \left(\frac{\partial ln \left(K_H(T, P) / P^0 \right)}{\partial \left(1 / T \right)} \right)_P$$
(3)

where, $K_H(T,P)$ is effective Henry constant $(L \cdot \text{mol}^{-1}\text{Pa}^{-1})$, which can be expressed according to equation (4).

$$K_{H}(T,P) = \phi_{CO_{2}}(T,P)P_{CO_{2}}^{m} / C_{(CO_{2})}$$
(4)

where, $P_{CO_2}^m$ is the equilibrium pressure of CO₂ (MPa) and $\phi_{CO_2}(T,P)$ is the fugacity coefficient of CO₂, which can be calculated using the Soave method [31].

The relationship between $\Delta_{sol}H$ and Li₂CO₃ content in the melts at different temperatures is shown in Figure 4 (The related data were listed in Table S4).

From Figure 4 it can be seen that the value of $\Delta_{sol}H$ was negative; therefore, CO₂ dissolution was an exothermic process. The value of $\Delta_{sol}H$ decreased with increasing temperature and Li₂CO₃ content, which indicated more enthalpy was needed for CO₂ solution.

Figure 2. Relationship between pressure and dissolution during time of CO₂ in molten Li₂CO₃-LiCl systems at 873K; (a) LiCl-10mol%Li₂CO₃; (b) LiCl-20mol%Li₂CO₃; (c) LiCl-30mol%Li₂CO₃; (d) LiCl-40mol%Li₂CO₃

Figure 3. Solubility curves of CO, in Li₂CO₃-LiCl melts for different compositions of the melts

Figure 4. The enthalpy change of CO₂ in Li₂CO₃-LiCl melts for different compositions of the melts

Table S3. Values of equilibrium pressure and solubility of
 CO_2 in Li_2CO_3 -LiCl melts

	$x_{_{Li_2CO_3}}$ /mol %	T/K	Equilibrium Pr essure of CO ₂ /MPa	Solubility of $CO_2/g_{CO2}/g_{melt}$
		873	9.46×10^{-2}	3.911×10^{-7}
	10	898	9.82×10^{-2}	3.906×10^{-7}
		923	1.015×10^{-2}	3.902×10^{-7}
		873	1.027×10^{-1}	3.934×10^{-7}
20	898	1.063×10^{-1}	3.930×10^{-7}	
		923	1.102×10^{-1}	3.925×10^{-7}
30		873	1.016×10^{-1}	3.948×10^{-7}
	30	898	1.051×10^{-1}	3.946×10^{-7}
		923	1.085×10^{-1}	3.944×10^{-7}
		873	1.011×10^{-1}	3.956×10^{-7}
40	898	1.047×10^{-1}	3.953×10^{-7}	
		923	1.081×10^{-1}	3.951×10^{-7}
	873	1.006×10^{-1}	3.965×10^{-7}	
	50	898	1.041×10^{-1}	3.962×10^{-7}
		923	1.073×10^{-1}	3.960×10^{-7}

\odot	•	0
	BY	SA

		V /	
$x_{Li_2CO_3}$ /mol %	<i>T</i> /K	MPa	$\Delta H/kJ \text{ mol}^{-1}$
	873	0.164	-4.449
10	898	0.158	-4.577
	923	0.153	-4.704
	873	0.152	-4.924
20	898	0.147	-5.069
	923	0.142	-5.214
	873	0.155	-5.055
30	898	0.149	-5.209
	923	0.145	-5.362
	873	0.156	-5.375
40	898	0.150	-5.533
	923	0.145	-5.692
	873	0.157	-5.641
50	898	0.151	-5.803
	923	0.147	-5.964

Table S4. Values of K_H and $\Delta_{sol}H$ of CO_2 in Li_2CO_3 -LiCl melts

4. Conclusions

The solubility of CO_2 in molten Li_2CO_3 -LiCl with 10–50 mol% Li_2CO_3 content at 873–923 K was measured using a pressure differential method. This also enabled the enthalpy change of solution to be calculated. The following additional conclusions were drawn:

When the temperature decreased and the concentration of Li_2CO_3 increased, the solubility of CO₂ increased, with a maximum solubility of $3.965 \times 10^{-7} \text{ g}_{\text{CO}2}/\text{g}_{\text{melt}}$ at 873 K when the content of Li_2CO_3 was 50 mol%.

 CO_2 dissolution in the Li₂CO₃-LiCl melts was an exothermic process. The enthalpy change of CO_2 solution decreased with increasing temperature and Li₂CO₃ content.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 51974081, 51474060), and the Natural Science Foundation of Liaoning Province, China (grant no. 2019-MS-129).

Reference

- [1] H. Y. Yin, Energ. Environ. Sci. 6 (2013) 1538-1545.
- [2] J. Ren, M. Johnson, R. Singhal, S. Licht, J. CO₂. Util. 18 (2017) 335-344.
- [3] B. Deng, X. Mao, W. Xiao, D. Wang, J. Mater. Chem.

A. 25 (2017) 12822-12827.

- [4] L. Li, Z. Shi, B. Gao, J. Xu, X. Hu, Z. Wang, J. Electrochem. Soc. 163 (2016) E1-E6.
- [5] L. Li, Z. Shi, B. Gao, X. Hu, Z. Wang. Electrochimica. Acta. 190 (2016) 655-658.
- [6] H. V. Ijije, C. Sun, G. Z. Chen, Carbon. 73 (2014) 163-174.
- [7] S. Licht, B. H. Wang, S. Ghosh, Ayub. H, D. L. Jiang, J. Ganley, Carbon. 15 (2010) 2363-2368.
- [8] V. Kaplan, E. Wachtel, K. Gartsman, Y. Feldman, I. Lubomirsky, J. Electrochem. Soc. 157 (2010) B552-B556.
- [9] D. Tang, H. Yin, X. Mao, W. Xiao , D. H. Wang, Electrochim. Acta. (114) 2013 567–573.
- [10] M. Gao, B. Deng, Z. Chen, M. Tao, D. Wang, Electrochem. Commun. 88 (2018) 79-82.
- [11] K. Otake, H. Kinoshita, T. Kikuchi , R. O. Suzuki, Electrochem. Acta. 100 (2013) 293-299.
- [12] H. V. Ijije, R. C. Lawrence, N. J. Siambun, S. M. Jeong, D. A. Jewell, D. Hu, G. Z. Chen, Faraday Discuss. 172 (2014) 105-116.
- [13] N. J. Siambun, H. Mohamed, D. Hu, D. Jewell, Y. K. Beng, G. Z. Chen, J. Electrochem. Soc. 158 (2011) H1117-H1124.
- [14] J. B. Ge, L. W. Hu, W. Wang, H. D. Jiao , S. Q. Jiao, Chemelectrochem. 2 (2015) 224-230.
- [15] L. Massot, P. Chamelot, F. Bouyer, P. Taxil, Electrochim. Acta. 48 (2003) 465-471.
- [16] B. Deng, J. Tang, X. Mao, Y. Song, H. Zhu, W. Xiao, D. Wang, Environ. Sci. Tedhnol. 50 (2016) 10588-10595.
- [17] X. Hu, W. Deng, Z. Shi, Z. Wang, G. Gao, Z. Wang, J. Chem. Eng. Data. 2019, 64: 202-210.
- [18] P. Claes, B. Thirion, J. Glibert, Electrochim. Acta. 41 (1996) 141-146.
- [19] P. Claes, D. Moyaux, D. Peeters, Eur. J. Inorg. Chem. 4 (1999) 583-588.
- [20] T. Wakamatsu, T. Uchiyama, S. Natsui, Fluid Phase Equilibr. 385 (2015) 48-53.
- [21] Z. Shi, W. Deng, X. Song, X. Hu, B. Gao, Z. Wang, J. Chem. Eng. Data. 61 (2016) 3020-3026.
- [22] D. Wang, B. Deng, Z. Chen, Faraday Discuss. 190 (2016) 241-258.
- [23] X. Ji, C. Held, G. Sadowski, Fluid Phase Equilibr. 335 (2012) 64-73.
- [24] D. Pabsch, C. Held, G. Sadowski, J. Chem. Eng. Data. 65 (2020) 5768-5777.
- [25] P. J. Carvalho, L.M. C. Pereira, N. P. F. Goncalves, A. J. Queimada, J. A. P. Coutinho, Fluid Phase Equilibr. 388 (2015) 100–106.
- [26] Y. Li, Z. Qiao, S. Sun, T. Zhang, Fluid Phase Equilibr. 520 (2020) 112657.
- [27] R. D. Springer, Z. Wang, A. Anderko, P. Wang, A. R. Felmy, Chem. Geol. 322-323 (2012) 151–171.
- [28] X. W. Song, W. T. Deng, Z. H. Liu, Chemical. Papers. 69 (2015) 1101-1107.
- [29] G. Soave, Chem. Eng. Sci. 27 (1972) 1197–1203.
- [30] J. Liu, Z. Wang, Z. Wang, J. Song, G. Li, Q. X, J. You, H. Cheng, X. Lu, Phys. Chem. Chem. Phys. 21 (2019) 13135-13143.
- [31] S. Zhang, Y. Chen, R. X. Ren, Y. Zhang, J. Zhang, X. Zhang, J. Chem. Eng. Data. 50 (2005) 230-233.

RASTVORLJIVOST CO₂ U RASTOPLJENOM Li₂CO₃-LiCl SISTEMU

X.-W. Hu^{a,*}, W.-T. Deng^b, Z.-N. Shi^{a,c}, A.-M. Liu^a, J.-Y. Yu^a, Z.-W. Wang^a

^a Glavna laboratorija za ekološku metalurgiju višemetalnih minerala (Ministarstvo prosvete), Metalurški fakultet, Severoistočni univerzitet, Šenjang, Kina
^b China Nerin Engineering Co., Ltd, Nančang, Kina

[°] Glavna državna laboratorija za valjanje i automatizaciju, Severoistočni univerzitet, Šenjang, Kina

Apstrakt

Rastvorljivost CO_2 u rastopljenom Li_2CO_3 -LiCl sistemu je izmerena metodom diferencijalnog pritiska i na osnovu toga je izračunata promena entalpije rastvora. Razmatrani su odnosi između rastvorljivosti i entalpije, kao i temperature i sastava rastopa. Rezultati su pokazali da se, kada je temperatura bila između 873 i 923 K, a sadržaj Li_2CO_3 između 10–50 mol%, rastvorljivost CO_2 povećala sa smanjenjem temerature i/ili povećanjem sadržaja Li_2CO_3 . Maksimalna rastvorljivost je iznosila 3,965 × 10⁻⁷g_{CO2}/g_{melu} na temperaturi od 873 K kada je sadržaj Li_2CO_3 iznosio 50 mol%. Rastvor CO_2 je bilo egzotermno. Sa porastom temperature i sadržaja Li_2CO_3 , bila je potrebna veća entalpija za rastvor CO_3 .

Ključne reči: MSCC-ET; Li₂CO₃-LiCl rastop; Rastvorljivost CO₂; Metoda diferencijalnog pritiska; Promena entalpije rastvora

