J. Min. Metall. Sect. B-Metall. 50 (2) B (2014) 157 - 164

Journal of Mining and Metallurgy, Section B: Metallurgy

## INFLUENCES OF DIFFERENT COMPONENTS ON VISCOSITIES OF CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> MELTS

G.H. Zhang <sup>a, b, c,\*</sup>, K.C. Chou <sup>a, b</sup>, X.Y. Lv <sup>d</sup>

<sup>a</sup> State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China
<sup>b</sup> School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, China
<sup>c</sup> Graduate School of Frontier Sciences, The University of Tokyo
<sup>d</sup> Steel Plant of Baoshan Iron & Steel Co., Ltd

(Received 19 August 2013; accepted 16 June 2014)

#### Abstract

The present study is aimed to distinguish the different influences of CaO and MgO, as well as  $Al_2O_3$  and SiO\_2 on viscosity of CaO-MgO- $Al_2O_3$ -SiO\_2 melts. It is found that for melt without  $Al_2O_3$ , viscosity increases monotonously as CaO is gradually replaced by MgO. The addition of  $Al_2O_3$  leads to a complex variation of viscosity. In different composition ranges, viscosity may exhibit different variation tendencies as changing the relative contents of CaO and MgO while keeping contents of other components constant. It is also found that when replacing SiO\_2 by equivalent mole of  $Al_2O_3$ , (i) in CaO- $Al_2O_3$ -SiO\_2 system, viscosity increases when  $Al_2O_3$  content is small relative to CaO content (there are enough Ca<sup>2+</sup> ions to charge compensate  $Al^{3+}$  ions), but decreases when CaO content is inadequate for charge compensation; (ii) in MgO- $Al_2O_3$ -SiO\_2 system, viscosity always decreases as substituting  $Al_2O_3$  for SiO\_2. The reason for this difference for two systems may be resulted from the weak charge compensation ability of Mg<sup>2+</sup> ion for  $Al^{3+}$  ion relative to Ca<sup>2+</sup> ion. All the viscosity variations can be interpreted well by our new proposed viscosity model.

Keywords: Viscosity; CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>; Bridging oxygen; Non-bridging oxygen

#### 1. Introduction

The viscosities of aluminosilicate melts are important because of their dramatic effects on pyrometallurgical processes. For instance, reliable viscosities are needed (i) to guarantee smooth operation of the blast furnace, (ii) for foaming processing, (iii) for the successful separation of metal and slag during the basic oxygen steelmaking process and (iv) in the continuous casting process where the slag acts as a lubricant. Therefore, accurate viscosity values are essential for the optimization and improvement of metallurgical processes. CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> slag system is a fundamental system in the pyrometallurgical processes. Up to now, many experimental [1-19] and theoretical [20-24] researches have been done for this system. Lots of viscosities data for CaO-MgO-Al<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub> system [12, 14-17, 19] and its sub-binary systems [1-8] (e.g. CaO-SiO<sub>2</sub> system, MgO-SiO<sub>2</sub> system, etc.) and sub-ternary systems [2, 7-13, 18] (e.g. CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system, MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system *etc.*) have been measured. However, deep analyses about the influences of different components on viscosities are lacking. In CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system, there are mainly three

\* Corresponding author: ghzhang\_ustb@163.com

DOI:10.2298/JMMB130819016Z

questions involved: viscosity variation in the cases of (i) substituting CaO by MgO, or vice versa (ii) substituting Al<sub>2</sub>O<sub>3</sub> by SiO<sub>2</sub>, or vice versa, and (iii) substituting MO (M=Mg or Ca) by Al<sub>2</sub>O<sub>3</sub>, or vice versa, while keeping contents of the other components constant. Among these three cases, the third one has received much attention [3, 20, 23-24]. It was found that there was a maximum viscosity along the constant SiO<sub>2</sub> content line in CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system and MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system. In other words, viscosity first increases and then decreases when gradually replacing MO by Al<sub>2</sub>O<sub>3</sub>. The present study mainly deals with the viscosity variation law of the first and second cases based on the measured viscosity data in the literature to distinguish the different influences of CaO and MgO, as well as Al<sub>2</sub>O<sub>2</sub> and SiO<sub>2</sub>.

#### 2. Theoretical basis

In the following sections, when analyzing the viscosity variation behavior, our new proposed viscosity model [24-29] will be utilized. This structurally based viscosity model can well describe the viscosity variation of aluminosilicate melts

involving MgO, CaO, SrO, BaO, FeO, MnO, Li<sub>2</sub>O, Na<sub>2</sub>O, K<sub>2</sub>O, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, CaF<sub>2</sub>, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub> and P<sub>2</sub>O<sub>5</sub> components. The temperature dependence of viscosity is calculated by Arrhenius equation,

$$\ln\eta = \ln A + E / RT$$
 [1]

where  $\eta$  is the viscosity, Poise; A is the preexponent factor, Poise; R is the gas constant, 8.314 J/(molK); T is the absolute temperature, K; E is the activation energy, J/mol, while is calculated as follows,

$$E = \frac{572516 \times 2}{\binom{n_{O_{Si}} + \alpha_{Al} n_{O_{Al}} + \sum \alpha_{i} n_{O_{i}} + \sum \alpha_{Al,i} n_{O_{Al,i}} + \sum \alpha_{Si} n_{O_{Si}} + \sum \alpha_{Al,i} n_{O_{Al,i}} +$$

where  $n_{0}$  are the mole numbers of different types of oxygen ions; parameter  $\alpha$  describes the deforming ability of bond around the corresponding unit, which is optimized from the viscosity data of simple system. The deforming abilities of chemical bonds around different types of oxygen ions are shown in Table I. The higher the value in Table I is, the weaker the chemical bond around this type of oxygen ion will be. In the denominator of Eq. [4], the first, second, third, fourth, fifth and sixth terms represent the contributions of bridging oxygen bonded with Si<sup>4+</sup> ion; oxygen bonded with Al<sup>3+</sup> ion not being charge compensated; free oxygen bonded with metal cation *i*; bridging oxygen bonded with compensated Al<sup>3+</sup> ion by cation *i*; non-bridging oxygen bonded with Si<sup>4+</sup> ion, and non-bridging oxygen bonded with cation j and  $Al^{3+}$  ion charge balanced by cation *i*. The numbers of different types of oxygen ions are related to composition and can be calculated by following the following assumption [28].

Assumption I: Ca<sup>2+</sup> ion has a higher priority than Mg<sup>2+</sup> ion to charge compensate Al<sup>3+</sup> ion. Only when the Ca<sup>2+</sup> ion is exhausted, Mg<sup>2+</sup> ion could be used to charge compensate Al<sup>3+</sup> ion.

Assumption II: The equilibrium constant for the charge compensation reaction of MO with Al<sub>2</sub>O<sub>3</sub> to generate  $M_{1/2}AIO_2$  unit (oxygen ion in this unit is bridging oxygen  $O_{Al,i}$ ) is infinite. Following this rule, in the case of  $x_{MO} / x_{Al_2O_3} > 1$ , all MO act as charge balancers, whereas in the case of  $x_{MO} / x_{Al_2O_3} > 1$ , all Al<sup>3+</sup> ions form the AlO<sub>4</sub><sup>5-</sup> tetrahedrons, and any excess  $MO \cdot (= x_{MO} - x_{Al_2O_3})$  acts as a network modifier. Assumption III: When the free oxygen (in excess

Assumption III: When the free oxygen (in excess MO) react with bridging oxygen (in  $M_{1/2}AIO_2$  or SiO<sub>2</sub>) to generate non-bridging oxygen, it is assumed that the bridging oxygen for AIO<sub>4</sub><sup>5</sup> and SiO<sub>4</sub><sup>4</sup> tetrahedra are equivalent, and the numbers of non-bridging oxygen bonded to AI<sup>3+</sup> ion and Si<sup>4+</sup> ion are proportional to the numbers of AIO<sub>4</sub><sup>5</sup> and SiO<sub>4</sub><sup>4+</sup> tetrahedral present.

Assumption IV: The equilibrium constant for the reaction of a free oxygen (in excess MO) with a bridging oxygen (in  $M_{1/2}AlO_2$  or  $SiO_2$ ) to generate

non-bridging oxygen is infinite. Therefore, for a MO- $\sum M_{1/2}$ AIO<sub>2</sub>-SiO<sub>2</sub> system, when the mole fraction of the excess basic oxide MO exceeds 2/3, it is assumed that there are no bridging oxygens present in melt.

Assumption V: For systems  $\sum (MO)_i - \sum_i M_{1/2}AIO_2 - SiO_2$ containing both excess CaO and MgO, the numbers of different types of oxygen ions can be calculated by the random mixing rule. In practice, the calculation makes use of firstly, Assumption IV by considering all the excess basic oxides to be one basic oxide; then multiply each term by the re-normalized mole fractions of the excess basic oxides  $(MO)_i / \sum (MO)_i$ , or  $M_{1/2}AIO_2$  (or  $SiO_2)/(1-).\sum (MO)_i$ 

# 3. Different influences of CaO and MgO on viscosity

In order to distinguish the different influences of CaO and MgO on viscosity, viscosities of compositions with the same contents of  $Al_2O_3$  and  $SiO_2$  should be known. The measured compositions in the literature fulfilling this condition are summarized in Table II.

## 3.1. CS-MS group

The comparisons of viscosities for CaO-SiO<sub>2</sub> and MgO-SiO<sub>2</sub> melts with the same content of SiO<sub>2</sub> are shown in Figure 1, from which it can be seen that MgO-SiO<sub>2</sub> melt possesses a higher viscosity value than CaO-SiO<sub>2</sub> melt. This phenomenon is also found by many researchers [22, 23, 25].

Viscosity is related to the bond strength. Melt with a strong bond strength means a large resistance to viscous flow under the external force, so a high viscosity will be. For a ionic bond, the bond strength can be approximately evaluated by the coloumbic force *I* between cation M and O  $(I = \frac{2Q}{(r_{M^{Z^{2}}} + r_{O^{2}})^{2}})^{2}$ , where Q is the covalence of M ion;  $r_{M^{2+}}$  and  $r_{O^{2-}}$  are the radii of  $M^{z+}$  and oxygen ions, respectively). According to the Pauling's method [30], the ionic bond percentage for Ca-O and Mg-O bonds are 77.4% and 67.8% [25]. Thereby, Ca-O and Mg-O bonds are mainly composed of ionic bond. From the magnitude of  $I_{Mg-O}$ =1.956 and  $I_{Ca-O}$ =0.907, it could be concluded that the Mg-O bond is stronger than Ca-O bond. From Table I, the deforming ability of chemical bond around  $O_{si}^{Mg}$  is weaker than that around  $O_{si}^{Ca}$ , so, a stronger non-bridging bond is formed in MgO-SiO<sub>2</sub> melt relative to CaO-SiO<sub>2</sub> melt, which means a higher viscosity.

| $O_{Si}$ | O <sub>Ca</sub> | O <sub>Mg</sub> | O <sub>Al</sub> | $O_{Si}^{Mg}$ | $\mathbf{O}_{Si}^{Ca}$ | $O^{\rm Mg}_{\rm Al,Mg}$ | O <sup>Mg</sup> <sub>Al, Ca</sub> | O <sup>Ca</sup> <sub>Al, Ca</sub> | O <sub>Al, Mg</sub> | O <sub>Al, Ca</sub> |
|----------|-----------------|-----------------|-----------------|---------------|------------------------|--------------------------|-----------------------------------|-----------------------------------|---------------------|---------------------|
| 1        | 17.34           | 15.54           | 5.671           | 6.908         | 7.422                  | 3.975                    | 8.334                             | 7.115                             | 4.996               | 5.606               |

| Table 1. Deforming | abilities of chemi | cal bonds around | different | type of oxygen ions | 5 |
|--------------------|--------------------|------------------|-----------|---------------------|---|
|                    | ~                  |                  | ~~~       |                     |   |

|           |             |       | Dofe  |                                |                  |             |
|-----------|-------------|-------|-------|--------------------------------|------------------|-------------|
| Group     | No.         | CaO   | MgO   | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | Keis.       |
|           | CS-MS-1     | 0.417 |       |                                | 0.583            | 1,2,3       |
| CS MS     | CS-MS-2     |       | 0.414 |                                | 0.586            | 4,5         |
| CS-1VIS   | CS-MS-3     | 0.5   |       |                                | 0.5              | 1,4,5,6,7,8 |
|           | CS-MS-4     |       | 0.5   |                                | 0.5              | 4,5,8       |
|           | CS-MS-CMS-1 | 0.5   |       |                                | 0.5              | 5,8         |
|           | CS-MS-CMS-2 | 0.333 | 0.165 |                                | 0.5              | 7           |
| CS-MS-CMS | CS-MS-CMS-3 | 0.278 | 0.222 |                                | 0.5              | 7           |
|           | CS-MS-CMS-4 | 0.25  | 0.25  |                                | 0.5              | 9           |
|           | CS-MS-CMS-5 |       | 0.5   |                                | 0.5              | 5,8         |
|           | CAS-MAS-1   | 0.125 |       | 0.125                          | 0.75             | 8,10        |
|           | CAS-MAS-2   |       | 0.125 | 0.125                          | 0.75             | 8,11        |
|           | CAS-MAS-3   | 0.165 |       | 0.168                          | 0.667            | 11          |
|           | CAS-MAS-4   |       | 0.165 | 0.167                          | 0.667            | 11          |
| CACMAC    | CAS-MAS-5   | 0.25  |       | 0.25                           | 0.5              | 8,10,11     |
| CAS-MAS   | CAS-MAS-6   |       | 0.25  | 0.25                           | 0.5              | 8           |
|           | CAS-MAS-7   | 0.28  |       | 0.092                          | 0.627            | 2,12        |
|           | CAS-MAS-8   |       | 0.281 | 0.092                          | 0.627            | 12          |
|           | CAS-MAS-9   | 0.199 |       | 0.11                           | 0.691            | 12          |
|           | CAS-MAS-10  |       | 0.2   | 0.11                           | 0.69             | 12          |
|           | MAS-CMAS-1  |       | 0.281 | 0.092                          | 0.627            | 12          |
|           | MAS-CMAS-2  | 0.139 | 0.14  | 0.092                          | 0.629            | 12          |
| MAS-CMAS  | MAS-CMAS-3  |       | 0.446 | 0.206                          | 0.349            | 13          |
|           | MAS-CMAS-4  | 0.376 | 0.065 | 0.207                          | 0.351            | 14          |
|           | CAS-CMAS-1  | 0.199 |       | 0.11                           | 0.691            | 12          |
|           | CAS-CMAS-2  | 0.1   | 0.099 | 0.109                          | 0.692            | 12          |
| CAS CMAS  | CAS-CMAS-3  | 0.28  |       | 0.092                          | 0.627            | 2,12        |
| CAS-CMAS  | CAS-CMAS-4  | 0.139 | 0.14  | 0.092                          | 0.629            | 12          |
|           | CAS-CMAS-5  | 0.381 |       | 0.06                           | 0.559            | 2           |
|           | CAS-CMAS-6  | 0.101 | 0.28  | 0.055                          | 0.564            | 15          |
| CMAC 1    | CMAS_1-1    | 0.423 | 0.073 | 0.119                          | 0.385            | 16          |
| CMIAS_1   | CMAS_1-2    | 0.208 | 0.289 | 0.114                          | 0.388            | 17          |
|           |             | 1     |       |                                |                  | 1           |

Table 2. Compositions for studying different influences of CaO and MgO on viscosity

Т

Г

## 3.2. CS-MS-CMS group

The viscosity of CaO-SiO<sub>2</sub>, MgO-SiO<sub>2</sub> and CaO-MgO-SiO<sub>2</sub> melts with the same content of SiO<sub>2</sub> are shown in Figure 2. With the gradual increase of MgO

content, viscosity increases, which agrees with the conclusion obtained in CS-MS group. Therefore, in melt without  $Al_2O_3$ , viscosity increases monotonously as substituting MgO for CaO.



Figure 1. Variation of viscosity for CS-MS group



Figure 2. Variation of viscosity for CS-MS-CMS group

## 3.3. CAS-MAS group

Al<sub>2</sub>O<sub>2</sub> is an amphoteric oxide, and it can form  $AlO_{4}^{5-}$  tetrahedron, and be incorporated into the SiO<sub>2</sub> network provided there are enough metal cations present to charge balance the  $Al^{3+}$  ions. When  $Al_2O_2$  is absent, basic oxides CaO and MgO mainly act as network modifiers and participate in forming nonbridging oxygen which decreases the viscosity; while when Al<sub>2</sub>O<sub>2</sub> is added, some parts of basic oxide will charge compensate Al<sup>3+</sup> ion to form more bridging oxygen which increases viscosity. So, the viscosity variation will exhibit complex behavior when  $Al_2O_3$  is present. Variations of viscosity with temperature for compositions in CAS-MAS group are shown in Figure 3. By comparing the viscosities of compositions CAS-MAS-1 and CAS-MAS-2, CAS-MAS-3 and CAS-MAS-4, as well as CAS-MAS-5 and CAS-MAS-6 for which the mole fraction of MO is lower than that of Al<sub>2</sub>O<sub>3</sub>, it can be seen that MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt has a lower viscosity than CaO- $Al_2O_2$ -SiO<sub>2</sub> melt (with the same contents of  $Al_2O_2$  and  $SiO_2$ ). However, by comparing viscosities of compositions CAS-MAS-7 and CAS-MAS-8, as well as CAS-MAS-9 and CAS-MAS-10, MgO-Al<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub> melt for which the mole fraction of MO is higher than that of Al<sub>2</sub>O<sub>3</sub> has a higher viscosity than CaO-Al<sub>2</sub>O<sub>3</sub>- SiO<sub>2</sub> melt.

The content of CaO (or MgO) is less or equal to the content of Al<sub>2</sub>O<sub>3</sub> for compositions CAS-MAS-1 $\sim$ CAS-MAS-6, so almost all the CaO and MgO will participate in charge compensating Al<sup>3+</sup> ion but not forming non-bridging oxygen. In this case, content of non-bridging and free oxygen can be neglected. The melt is mainly composed of bridging oxygen O<sub>si</sub> and O<sub>Al,Ca</sub> for CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system (or O<sub>si</sub> and O<sub>Al,Mg</sub> for MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system). For CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> and MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melts with the same contents of Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>, concentration of O<sub>si</sub> is the same. Therefore, the viscosity difference is mainly determined by the difference between the deforming



Figure 3. Variation of viscosity for CAS-MAS group

abilities of chemical bond around bridging oxygen  $O_{Al, Ca}$  and  $O_{Al, Mg}$ . From Table I, it can be seen that the deforming ability of chemical bond around  $O_{Al, Ca}$  is lower than that around  $O_{Al, Mg}$ . Therefore, a higher viscosity will be anticipated for CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt than MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt when the content of MO is less than that of Al<sub>2</sub>O<sub>3</sub>.

The contents of MO is higher than that of  $Al_2O_2$ for compositions CAS-MAS-7~CAS-MAS-10. In this case, part of CaO or MgO (=  $x_{Al_2O_3}$ ) charge compensate Al<sup>3+</sup> ion to form bridging oxygen, while the other part (=  $x_{MO} - x_{Al_2O_3}$  ) form non - bridging oxygen  $O_{si}^{i}$  and  $O_{Al,i}^{i}$  (*i*=Mg, Ca). The values in Table I show that deforming abilities around  $O^{\rm Mg}_{si}~$  and  $O^{\rm Mg}_{Al_{\rm A}Mg}$ are weaker than  $O_{Si}^{Ca}$  and,  $O_{Al, Ca}^{Ca}$  while it is stronger for bridging oxygen  $O_{Al, Mg}$  than  $O_{Al, Ca}$  since the  $AlO_4^{5-}$ tetrahedron charge balanced by  $Ca^{2+}$  ion is much more stable than that balanced by  $Mg^{2+}$  ion [11]. So, from CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt to MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt with the same contents of  $Al_2O_3$  and  $SiO_2$ , there will be two changes: bridging oxygen  $O_{Al, Ca}$  transforms to;  $O_{Al, Mg}$ non-bridging oxygen  $O_{Si}^{Ca}$  and  $O_{Al, Ca}^{Ca}$  transforms to  $O_{Si}^{Mg}$ and  $O_{Al,Mg}^{Mg}$ . The first change decreases viscosity, while the later one increases viscosity. The viscosity increment will exceed the decrement when there is enough extra basic oxide  $x_{MO} - x_{Al_2O_3}$  to generate enough non-bridging oxygen. So, MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt has a

higher viscosity than CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt when content of MO is higher than that of Al<sub>2</sub>O<sub>3</sub>. Furthermore, the larger the  $x_{MO} - x_{Al_2O_3}$  is, the larger the viscosity increment will be for MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt relative to CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt. The  $x_{MO} - x_{Al_2O_3}$  value is higher for compositions CAS-MAS-7 and CAS-MAS-8 than compositions CAS-MAS-9 and CAS-MAS-10, so in Figure 3, the viscosity increment is higher for the former group.

## 3.4. MAS-CMAS group

Figure 4 shows that viscosity decreases when partly replacing MgO in MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> ternary system by CaO to form a quaternary system CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> ( $x_{CaO} > x_{Al_2O_3}$ ). The reason for the phenomenon is that CaO content is higher than Al<sub>2</sub>O<sub>3</sub> content, so after substitution, all Al<sup>3+</sup> ions originally compensated by Mg<sup>2+</sup> ions will be compensated by Ca<sup>2+</sup> ions for the higher priority of Ca<sup>2+</sup> ion relative to Mg<sup>2+</sup> ion [24]. This leads to the form of more stable AlO<sub>4</sub><sup>5-</sup> tetrahedron which increases the viscosity. But, according to the above analysis, the non-bridging oxygen bonded with Ca<sup>2+</sup> ion is weaker than that bonded with Mg<sup>2+</sup> ion.

CaO content is higher than  $Al_2O_3$  content, so nonbridging oxygen bonded with  $Ca^{2+}$  ion will be formed. This factor will decrease viscosity. Furthermore, the larger the value of  $x_{CaO} - x_{Al_2O_3}$  is, the more non-bridging oxygen bonded with  $Ca^{2+}$  ion will be formed, and the larger the viscosity decrease will be. In Figure 3, from composition



Figure 4. Variation of viscosity for MAS-CMAS group

MAS-CMAS-1 to MAS-CMAS-2, there is only a little decrease of viscosity for the small value of  $x_{Ca0} - x_{Al_2O_3}$ . But from composition MAS-CMAS-3 to MAS-CMAS-4, viscosity decreases dramatically for its large  $x_{Ca0} - x_{Al_2O_3}$  value.

## 3.5. CAS-CMAS group

All the six compositions in this group fulfill  $x_{CaO} - x_{Al_2O_3} > 0$ . So, all Al<sup>3+</sup> ions in this group are compensated by Ca<sup>2+</sup> ions. It can be seen from Figure

5 that viscosity increases when substituting part of MgO for CaO (from CAS-CMAS-1 to CAS-CMAS-2, from CAS-CMAS-3 to CAS-CMAS-4, and from CAS-CMAS-5 to CAS-CMAS-6).



Figure 5. Variation of viscosity for CAS-CMAS group

Replacing part of CaO by MgO but keeping  $x_{CaO} - x_{Al_2O_3} > 0$  can leads to two changes: part of  $O_{Si}^{CaO}$ transform to  $O_{Si}^{Mg}$  bond; part of  $O_{Al,Ca}^{Ca}$  transform to  $O_{AL,Ca}^{Mg}$ . The two changes coexist during the substitution process. The viscosity variation of the melt is determined by the deforming abilities differences (between  $O_{si}^{Mg}$  and  $O_{si}^{Ca}$ , as well as  $O_{Al,Ca}^{Mg}$  and  $O_{Si,Ca}^{Ca}$ , as well as the relative concentration of  $O_{si}^{Mg}$  and  $O_{Al,Ca}^{Mg}$ . From Table I, it can be seen that  $O_{si}^{Mg}$  bond is stronger than  $O_{S_i}^{C_a}$  bond, while  $O_{Al, C_a}^{Mg}$  bond is weaker than  $O_{Al, C_a}^{C_a}$ bond. Furthermore, the bond strength increment from  $O_{si}^{Ca}$  to  $O_{si}^{Mg}$  is smaller the bond strength decrement from  $O_{Al,Ca}^{Ca}$  to  $O_{Al,Ca}^{Mg}$ . Meanwhile, the concentration ratio of  $O_{Si}^{Mg}$  to  $O_{Al,Ca}^{Mg}$  is decided by the content ratio of SiO<sub>2</sub> to  $Al_2O_3$  <sup>[24]</sup>, so, when there is enough  $Al_2O_3$  in melt, enough  $O_{Al,Ca}^{Mg}$  will be formed to decrease viscosity. But if the content of Al<sub>2</sub>O<sub>3</sub> is smaller relative to SiO<sub>2</sub>, more  $O_{Si}^{Mg}$  will be formed than  $O_{Al, Ca}^{Mg}$ . Therefore, in this case, the viscosity increasing tendency resulted from transforming of  $O_{Si}^{Ca}$  to  $O_{Si}^{Mg}$  will be dominated, which leads to the increase of viscosity. In this group, the content of Al<sub>2</sub>O<sub>3</sub> for every composition is very small relative to SiO<sub>2</sub>, so viscosity increases when replacing part of CaO by MgO.

## 3.6. CMAS\_1 group

It can be seen from Figure 6 that viscosity decreases as replacing part of CaO in composition CMAS\_1-1 by MgO to form composition CMAS\_1-2 (while keeping the mole fraction of remaining CaO higher than that of Al<sub>2</sub>O<sub>3</sub>). According to the analyses in CAS-CMAS group, it can be concluded that more  $O_{Al,Ca}^{Mg}$  will be formed when there is a higher value of  $2x_{Al_2O_3}/x_{SiO_2}$  (1mol Al<sub>2</sub>O<sub>3</sub> is equivalent to 2mol SiO<sub>2</sub> after being charge compensated). The ratio of  $2x_{Al_2O_3}/x_{SiO_2}$  in this group is approximately to be 1, so

the concentrations of  $O_{Si}^{Mg}$  and  $O_{Al,Ca}^{Mg}$  are almost the same [24]. However, the bond strength increment from  $O_{Si}^{Ca}$  to  $O_{Si}^{Mg}$  is smaller the bond strength decrement from  $O_{Al,Ca}^{Ca}$  to  $O_{Al,Ca}^{Mg}$ , so the viscosity decrement will be dominated. Therefore, there is a decrease for viscosity from CMAS 1-1 to CMAS 1-2.



Figure 6. Variation of viscosity for CMAS\_1 group

# 4. Different influences of $Al_2O_3$ and $SiO_2$ on viscosity

The influence of  $Al_2O_3$  and  $SiO_2$  on viscosity is discussed in CaO-Al\_2O\_3-SiO\_2, MgO-Al\_2O\_3-SiO\_2 and CaO-MgO-Al\_2O\_3-SiO\_2 system by replacing part of SiO\_2 by  $Al_2O_3$  while keeping the contents of CaO and MgO unchanged.

4.1. CAS group



Figure 7. Variation of viscosity for CAS group

Figure 7 shows that viscosity decreases from CAS-1 to CAS-2, CAS-3 to CAS-4, but increases from CAS-5 to CAS-6. Combining with the composition in Table III, it can be seen the  $Al_2O_3$  content is higher than CaO content for compositions CAS-1, CAS-2, CAS-3 and CAS-4, but lower than CaO content for compositions CAS-5 and CAS-6. Therefore, it can be concluded that when there is enough CaO to charge compensate  $Al^{3+}$  ion, the

| $Al_2O_3$ and $SiO_2$ on viscosity |       |       |      |                                |                  |       |  |  |  |
|------------------------------------|-------|-------|------|--------------------------------|------------------|-------|--|--|--|
| Carrow                             | No.   |       | D.C. |                                |                  |       |  |  |  |
| Group                              |       | CaO   | MgO  | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | Reis. |  |  |  |
|                                    | CAS-1 | 0.216 |      | 0.216                          | 0.568            | 10    |  |  |  |
|                                    | CAS-2 | 0.219 |      | 0.271                          | 0.51             | 11    |  |  |  |
|                                    | CAS 2 | 0.2   |      | 0.4                            | 0.2              | 10    |  |  |  |

Table 3. Compositions for studying different influences of

|          | CAS-1    | 0.216 |       | 0.216 | 0.568 | 10 |
|----------|----------|-------|-------|-------|-------|----|
|          | CAS-2    | 0.219 |       | 0.271 | 0.51  | 11 |
| CAS      | CAS-3    | 0.3   |       | 0.4   | 0.3   | 10 |
| CAS      | CAS-4    | 0.3   |       | 0.5   | 0.2   | 10 |
|          | CAS-5    | 0.512 |       | 0.188 | 0.3   | 10 |
|          | CAS-6    | 0.51  |       | 0.34  | 0.15  | 10 |
|          | MAS-1    |       | 0.25  | 0.15  | 0.6   | 18 |
|          | MAS-2    |       | 0.25  | 0.2   | 0.55  | 18 |
| MAS      | MAS-3    |       | 0.25  | 0.25  | 0.5   | 8  |
|          | MAS-4    |       | 0.35  | 0.05  | 0.6   | 18 |
|          | MAS-5    |       | 0.35  | 0.1   | 0.55  | 18 |
|          | CMAS_2-1 | 0.055 | 0.154 | 0.121 | 0.67  | 15 |
| CMAS 2   | CMAS_2-2 | 0.056 | 0.157 | 0.155 | 0.632 | 15 |
| CIVIAS_2 | CMAS_2-5 | 0.423 | 0.074 | 0.058 | 0.445 | 19 |
|          | CMAS_2-6 | 0.423 | 0.073 | 0.119 | 0.385 | 16 |

substitution of Al2O3 for SiO2 will increase viscosity, while when CaO content is not adequate, the substitution will decrease viscosity. The reason for this is that when content of CaO is higher than  $Al_2O_2$ , the new added Al<sub>2</sub>O<sub>3</sub> can lead to two aspects of influences on viscosity. First, it consumes equivalent mole of CaO (which originally acts as the network modifier) to charge compensate Al3+ ion. The compensated Al<sup>3+</sup> ion incorporates into the network of SiO<sub>2</sub>. This aspect increases viscosity. However, as substituting Al<sub>2</sub>O<sub>3</sub> for SiO<sub>2</sub>, strong Si-O bond is replaced by weak Al-O bond. This factor decreases viscosity. As the content of Al<sub>2</sub>O<sub>2</sub> is small relative to CaO, all the Al<sup>3+</sup> ions will be charge compensated and the viscosity increment will be larger than the viscosity decrement, so viscosity increases from CAS-5 to CAS-6. But when Al<sub>2</sub>O<sub>3</sub> content is higher than CaO content, part of  $Al_2O_3 = x_{Al_2O_3} - x_{CaO}$  can not be incorporated into the  ${\rm Si}\tilde{\rm O}_2$  network. This part of Al<sub>2</sub>O<sub>3</sub> can dramatically decrease viscosity for the weak Al-O bond relative to Si-O. Therefore, viscosities decrease from CAS-1 to CAS-2, CAS-3 to CAS-4. In our previous paper [31], it is also found from experiments that in CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt, viscosity first increases and then decreases as gradually replacing SiO<sub>2</sub> by Al<sub>2</sub>O<sub>3</sub>, which agrees with the conclusion of the present study.

#### 4.2. MAS group

Figure 8 shows that viscosity always decreases in  $MgO-Al_2O_3-SiO_2$  system when substituting  $Al_2O_3$  for

SiO<sub>2</sub> regardless of  $x_{MgO} < x_{Al_2O_3}$  or  $x_{MgO} > x_{Al_2O_3}$ . In CaO- $Al_2O_3$ -SiO<sub>2</sub> system, when the  $Al_2O_3$  content is small, the substitution will increase viscosity. Why the opposed variation tendency of viscosity is present in MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system. It has been pointed out above that the main factor for viscosity increase in CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt are that all Al<sup>3+</sup> ions enter into stable  $AIO_4^{5^2}$  tetraĥedron after being charge compensated by  $Ca^{2+}$  ions and part of CaO (=  $x_{Al_2O_3}$ ) originally acting as network modifier now charge compensate Al<sup>3+</sup> ion. But the charge compensation ability of Mg<sup>2+</sup> is weak (it can be seen from Table I that  $O_{Al, Mg}$  bond has larger deforming ability than OAL Ca bond) which means a large deforming ability under external force. Therefore, in this case, during the substitution of Al<sub>2</sub>O<sub>3</sub> for SiO<sub>2</sub>, the viscosity increment will be smaller than the viscosity decrement resulted from the substitution of weak Al-O bond for strong Si-O bond, so viscosity decreases.



Figure 8. Variation of viscosity for MAS group

#### 4.3. CMAS\_2 group

From Figure 9, it can be seen that from CMAS\_2-1 to CMAS\_2-2, viscosity decreases; while from CMAS\_2-5 to CMAS\_2-6, viscosity increases. The reason for this may be that composition CMAS\_2-1 and CMAS\_2-2 only contain small content of CaO which is not enough to charge compensate all the Al<sup>3+</sup> ions. This case is similar to the case of MAS group.



Figure 9. Variation of viscosity for CMAS 2 group

Therefore, the viscosity variation law is the same as MAS group. CMAS\_2-3 and CMAS\_2-4 only contain small content of MgO, and CaO content is enough to charge compensate all  $Al^{3+}$  ions, so viscosity increases when substituting  $Al_2O_3$  for SiO<sub>2</sub> as the case of CAS group.

### 5. Summary

The present study focuses on the influences of different components on CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> melt by combining the experimental data in the literature and our theoretical viscosity model. From the above examples, it can be seen that the complex variation behavior of viscosity is resulted from the existence of Al<sub>2</sub>O<sub>2</sub>. When substituting CaO for MgO, viscosity changes monotonously for melt without Al<sub>2</sub>O<sub>3</sub>. However, the viscosity variation becomes very complicated when Al<sub>2</sub>O<sub>3</sub> is added. The present study also found that as substituting Al<sub>2</sub>O<sub>3</sub> for SiO<sub>2</sub> in CaO-Al<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub> melt, viscosity increases when the content of Al, O, is small relative to that of CaO, but decreases when there is a large substitution. However, the viscosity always decreases for MgO-Al<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub> melt as substituting Al<sub>2</sub>O<sub>3</sub> for SiO<sub>2</sub>. The weak charge compensation ability of Mg<sup>2+</sup> ion for Al<sup>3+</sup> ion may be the reason for this phenomenon.

## Acknowledgement

Thanks are given to the financial supports from China Postdoctoral Science Foundation (2012M510318 and 2013T60061) and the Fundamental Research Funds for the Central Universities (FRF-TP-13-002A) as well as the National Natural Science Foundation of China (51304018).

#### References

- J.O.M. Bockris and D.C. Lowe, Proc. Roy. Soc. Lond., 226 (1954) 423.
- [2] J.S. Machin and T. B. Yee, J. Am. Ceram. Soc., 31 (1948) 200.
- [3] P. Kozakevitch, Rev. metall., 57 (1960) 149
- [4] G. Urbain, Y. Bottinga and P. Richet, Geochim. Cosmochim. Acta, 46 (1982) 1061.
- [5] G. Urbain, Rev. Int. Hautes Temp. Refract., 11 (1974) 133.
- [6] M. Kawahara, K. Mizoguchi and Y. Suginohara, Bull. Kyushu Inst. Technol. Sci. Technol., 43 (1981) 53.
- [7] T. Licko and V. Danek, Phys. Chem. Glasses, 27 (1986) 22.
- [8] V. G. Hofmaier, Berg und Hutterun. Monatsh., 113 (1968) 270.
- [9] D. Sykes, J. Dickinson, E. James, R.W. Luth and C.M. Scarfe, Geochim. Cosmochim. Acta, 57 (1993) 1291.
- [10] R. Rossin, J. Bersan and G. Urbain, Revue Hautes

Temperatures Refractoires, 1 (1964) 159.

- [11] M.J. Toplis and D.B. Dingwell, Geochim. Cosmochim. Acta, 24 (2004) 5169.
- [12] F. Johannsen and H. Brunion, Z. Erzbergbau Metallhüttenwesen, 12 (1959) 272.
- [13] R. A. Lyutikov and L. M. Tsylev, Izv. Akad. Nauk SSSR Metall. Gorn. Delo, 1 (1963) 41.
- [14] U.N. Mishra, B. Thakur and M.N. Thakur, SEAISI Q., 23 (1994) 72.
- [15] J.S. Machin and T.B. Yee, J. Am. Ceram. Soc., 37 (1954) 177.
- [16] H. Kim, W.H. Kim and I. Sohn, D.J. Min, Steel Res. Int., 81 (2010) 261.
- [17] J.S. Machin and D.L. Hanna, J. Am. Ceram. Soc., 28 (1945) 310.
- [18] K. Mizoguchi, K. Okamoto and Y. Suginohara, Nippon Kinzoku Gakkaishi, 46 (1982) 1055.
- [19] J.S. Machin, T.B. Yee and D.L. Hanna, J. Am. Ceram. Soc., 35 (1952) 322.
- [20] G. Urbain, Steel Res., 58 (1987) 111.
- [21] T. Iida, H. Sakal, Y. Klta and K. Shigeno, ISIJ Int., 40 (2000) 110.
- [22] Q.F. Shu, Steel Res. Int., 80 (2009) 107.
- [23] L. Zhang and S. Jahanshahi, Metall. Mater. Trans. B, 29B (1998) 177.
- [24] G.H. Zhang, K.C. Chou and K.C. Mills, ISIJ Int., 52 (2012) 355.
- [25] G.H. Zhang, K.C. Chou, Q.G. Xue and K.C. Mills, Metall. Mater. Trans. B, 43B (2012) 64.
- [26] G.H. Zhang and K.C. Chou, J. Min. Metall. B, 48B (2012) 1.
- [27] G.H. Zhang and K.C. Chou, J. Min. Metall. B, 48 (2012) 433.
- [28] G.H. Zhang and K.C. Chou, Metall. Mater. Trans. B, 2014, in press.
- [29] G.H. Zhang and K.C. Chou, Metall. Mater. Trans. B, 43B (2012) 841.
- [30] L. Pauling, The nature of the chemical bond, Cornell University Press, Ithaca, 1960.
- [31] G.H. Zhang and K.C. Chou, ISIJ Int., 53 (2012) 177.