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Abstract

The effects of alloying elements (Co, Cu, Fe, Ge, Hf, Mg, Mn, Ni, Si, Sr, Ti, V, Y, Zn, and Zr) on elastic properties of Al have
been investigated using first-principles calculations within the generalized gradient approximation. A supercell consisting
of 31 Al atoms and one solute atom is used. A good agreement is obtained between calculated and available experimental
data. Lattice parameters of the studied Al alloys are found to be depended on atomic radii of solute atoms. The elastic
properties of polycrystalline aggregates including bulk modulus (B), shear modulus (G), Young’s modulus (E), and the B/G
ratio are also determined based on the calculated elastic constants (cij’s). It is found that the bulk modulus of Al alloys
decreases with increasing volume due to the addition of alloying elements and the bulk modulus is also related to the total
molar volume (Vm) and electron density             with the relationship of                                                  . These results are
of relevance to tailor the properties of Al alloys.
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1. Introduction

With a density approximately one third of that of
steel or copper, aluminum (Al) alloys with alloying
elements Cu, Mg, Si, Zn, and Zr, etc, are widely used
as engineering materials where light weight or
corrosion resistance is required. The properties of Al,
which make this metal and its alloys the most
economical and attractive for a wide variety of uses,
are appearance, light weight, fabric ability, physical
properties, mechanical properties, and corrosion
resistance [1-2]. Therefore, a detailed understanding
of the thermodynamic and elastic properties of Al
alloys is crucial for a better realization of its potential
in currently available applications and in developing
new ones. The thermodynamic modeling through
integrating first-principles calculations and
CALPHAD (CALculation of PHAse Diagram)
method has proven to be efficient and robust [3] and
demonstrated for relevant binary, ternary and multi-
component systems of Al alloys of [4]. Recently, the
enthalpies of formation and elastic properties for
binary Al compounds were systematically predicted
by first-principles calculations [5]. However, there are
no theoretical studies addressing the elastic property

changes in Al induced by alloying elements.
It is known that the elastic properties of materials

can be used to assess certain mechanical properties
such as ductility/brittleness, hardness, strength and so
on [6]. The theoretical prediction for the effect of
alloying additions on the elastic constants (cij’s) can
provide essential guidance in identifying materials
with desired mechanical properties[7]. The effects of
alloying elements on the elastic properties of AlTi and
AlTi3 [8], AlNi [9], AlNi3 [10], Mg [11] and Ni [12]
were studied via first-principles approach. These
works are important for tailoring the properties of
existed alloys and designing new alloys. In this paper,
the effects of alloying elements (Co, Cu, Fe, Ge, Hf,
Mg, Mn, Ni, Si, Sr, Ti, V, Y, Zn, and Zr) on the elastic
properties in the Al dilute solid solutions are predicted
via first-principles calculations using the efficient
stress-strain method [13]. The present work, together
with the previous work [5] on the elastic constants of
compounds, forms a basis for predicting the elastic
properties of Al alloys. It is our ambition to spark
systematic experimental studies of the elastic
properties with this contribution.

The rest of the present paper is described as
follows: the details of first-principles calculations
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using Vienna Ab-inito Simulation Package (VASP)
[14-15] are presented in Section 2, including the brief
introduction of equation of state (EOS) and elastic
theory used herein. In Section 3, The investigated
equilibrium properties include the volume (V0),
energy (E0), bulk modulus (B0) and its pressure
derivative (B0’) of the compounds, determined via
EOS fitting, and the single crystal elastic constants
(cij’s) together with structural stabilities and the
polycrystalline aggregates are presented and
discussed. Finally in Section 4, the summary of the
present work is given.

2. Theory and methodology

First-principles calculations are performed using
the VASP [14-15] code with the projected augment
wave (PAW) [16-17] method to describe the electron-
ion interaction and the generalized gradient
approximation (GGA) [18] to depict the exchange-
correction functional. All the structures are fully
relaxed with respect to cell shape, volume, and atomic
coordinates. For consistency, a 400 eV energy cutoff
is used for all the elements. A 2×2×2 fcc (face-
centered-cubic) supercell including 31 Al atoms and
one alloying atom (X) is employed in this study. The
energy convergence criterion of electronic self-
consistency is chosen as 10-6 eV/atom for all the
calculations. The reciprocal space energy integration
is performed by the Methfessel-Paxton technique [19]
for structure relaxations, while the final calculations
of total energies for EOS fittings and stresses for
determining the cij’s are performed by the linear
tetrahedron method including Blöchl corrections [20].
The samplings of k-point are 15×15×15 and
11×11×11 for EOS and elastic constants calculations
in terms of the Monkhorst-Pack [21] scheme,
respectively.

In order to fit the first-principles calculated E-V
(energy-volume) data points, the 4-parameter Birch-
Murnaghan equation of state with its linear form
given by Shang et al. [22] is employed,

(1)

where a, b, c and d are fitting parameters. In the
present work, usually 10 data points in the volume
range of 0.88-1.16V0 are used for the EOS fitting of
each structure. The equilibrium properties estimated
from EOS include the volume (V0), energy (E0), bulk
modulus (B0) and its pressure derivative (B0’). It is
worth mentioning that the fitting parameters are
representable by the equilibrium properties, and vice
versa [22].

In an effort to calculate the single crystal elastic
stiffness constants cij’s, an efficient strain-stress
method proposed by Shang et al. [13] is employed in
the present work. Under this methodology, for a given

set of strains ϵ = (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6) (where ϵ1, ϵ2 and
ϵ3 are the normal strains and ϵ4, ϵ5 and ϵ6 are the shear
strains) imposed on a crystal with lattice vectors L
specified in the Cartesian coordinates

(2)

where a1, a2 and a3 are the x, y, z components of
the lattice vector a, respectively, and it is the same for
lattice vectors b and c. After the deformation due to
strain ϵ, the deformed lattice vectors are obtained as
follows: 

(3)

Accordingly, a set of stresses, σ = (σ1, σ2, σ3, σ4, σ5,
σ6), associated with the deformed crystal will be
determined through first-principles calculations in the
present work. Correspondingly, for n sets of strains ϵ
(n-by-6 matrix) and the resulting stresses σ, the elastic
constants c (6-by-6 matrix as shown in Voigt’s
notation.) are determined according to the general
Hooke’s law as follows:

(4)

where “-1” represents the pseudo-inverse, which
can be solved based on the singular value
decomposition method to get the least square
solutions of elastic constants. Due to the symmetry of
crystals, the minimum linearly independent sets of
strains to determine the elastic constants are two for
cubic, three for hexagonal and rhombohedral, four for
tetragonal, and six for orthorhombic, monoclinic, and
triclinic structures [13, 23]. In this work, the
following linearly independent sets of strains are
selected:

with x=±0.007, and ±0.01, which are verified to
obey the Hooke’s law, leading to a sufficient
redundancy of the nonzero stresses and in turn
accurate elastic constants.

Based on cij’s, polycrystalline aggregates,
including the bulk (B), shear (G), and Young’s (E)
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modulus, can be computed via the Voigt’s approach
[24], viz,                                                  ,        and

for cubic structures. More details
regarding the calculations of elastic constants and the
applications of strain-stress method can be found
elsewhere [13, 25-27].

3. Results and discussion

Calculated lattice parameters of pure fcc Al and
Al-X alloys along with the available experimental
data are summarized in Table 1. Among the 15 Al-X
alloys studied herein, experimental data are available
for Al-Fe [28], Al-Si [29], and Al-Ti [30] from X-ray
diffraction (XRD) as shown in Table 1. A good
agreement is obtained between the calculated and
experimental data, with the differences of -0.51%, -
0.23%, and -0.16% for Al-Fe, Al-Si, and Al-Ti,
respectively. It is found in Table 1 that the lattice
parameters of Al-X alloys are proportional to the
corresponding lattice parameter of pure element X in
the fcc structure [31]. Figure 1 depicts the change of
the lattice parameter of Al due to the addition of solute
elements in comparison with the atomic radii of solute
atoms calculated from their fcc structures. Here, the
atomic radii of pure elements are calculated as half of
the nearest-neighbor atomic distance, being consistent
with those calculated by Wang et al. [31]. Figure 2
shows the change of the nearest-neighbor distance
between Al and X atom against the atomic radii of

solute atoms. The nearest-neighbor distance between
Al and X show a similar relationship against atomic
radii of solute atoms.

For dilute solutions the change of lattice parameter
can be treated as a linear function of composition
according to Wang et al. [32]. The linear regression
coefficients for each element are calculated using the
following equation [32]:

[pm/at. %] (5)

where N is the number of atoms in the supercell (N
= 32 for the present work),         the lattice parameter
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Figure 1. Influence of atomic radius of solute atom (X) on
lattice constant of Al-3.125 at. % X solution.

Table 1. Lattice parameters of Al-3.125X (X in at. %) fcc dilute solutions and linear regression coefficients of Eq. 5.

a lattice parameters in the fcc structure [31]; b Pearson handbook [45]; c Ref. [28]; d Ref. [29]; e Ref. [30].

Alloying element
(X)

Lattice parameters (Å) Lattice parameter
of pure element a

(Å)

Nearest-neighbor
distance between

Al and X (Å)

Linear regression
coefficient
(pm/at. %)Calc. Expt. Diff. (%)

Al 4.046 4.049 b -0.07 4.048 2.861 -

Al (32 atoms) 4.04 4.049 b -0.22 4.048 2.856 -

Co 4.008 3.518 2.748 -1.0365
Cu 4.025 3.631 2.808 -0.4887
Fe 4.007 4.0275 c -0.51 3.446 2.738 -1.055
Ge 4.047 4.284 2.882 0.2158
Hf 4.056 4.471 2.888 0.4938
Mg 4.053 4.516 2.892 0.3997
Mn 4.01 3.502 2.737 -0.9714
Ni 4.013 3.517 2.772 -0.8631
Si 4.034 4.0435 d -0.23 3.936 2.839 -0.2058
Sr 4.108 6 3.048 2.1576
Ti 4.038 4.0445 e -0.16 4.099 2.828 -0.0861
V 4.026 3.81 2.79 -0.4391
Y 4.083 5.046 2.974 1.3592
Zn 4.037 3.939 2.849 -0.09
Zr 4.06 4.529 2.901 0.6325



of the cell with 31 Al atoms and one X atom, and  
the lattice parameters of the cell with 32 Al atoms.

The calculated linear regression coefficients are listed
in Table 1. The linear regression coefficient of Ti and
Zn are almost zero indicating that the lattice
parameter rarely changes due to their additions, which
also can be seen in Figure 1.

The changes of the nearest-neighbor distance
around a solute atom can be described by local lattice
distortion which is listed in Table 2 along with
available experimental measurements [33]. The
calculated local lattice distortions in the present work
are within the experimental uncertainties for Cu, Ge,
Mn, and Zn [33], as shown in Figure 3. The local
lattice distortion due to the addition of Zn is the
closest to experimental data. This also verifies the
zero linear regression coefficient of Zn shown in
Table 1.

The predicted properties for Al-3.125X (at.%)
dilute solid solutions, including the elastic constants
(c11, c12 and c44), the bulk modulus (B), shear modulus

(G), Young’s (E) modulus, and B/G ratio along with
the available experimental data are shown in Table 3.
The estimated bulk modulus and equilibrium volume
using EOS (Eq. 1) are also shown for comparison.
The fitting error (Eq. 4 in Ref. [26]) of EOS is smaller
than 0.1, indicates the high qualities of first-principles
calculations. The bulk moduli of Al-X dilute solutions
calculated using the two methods (cij’s and EOS) are
very close to each other. The bulk moduli obtained
from EOS are slightly smaller than those from cij’s,
since the volume ranges used in EOS fitting are wider
[13]. The available experimental data for Al-X dilute
alloys are for Al-Cu [24, 34] and Al-Mg [35]. The
reported cij’s for Al-5Cu (at. %) are 308.22, 262.56,
and 27.03 GPa for c11, c12, and c44, respectively, where
c11 and c12 are much larger than the calculated values
at Al-3.125Cu (at. %). The extremely large c11 and c12
thus result in unreasonable large bulk modulus (277.8)
and B/G ratio (10.9). This is probably due to the
samples were in precipitation hardened state and
texture were existence. The calculated and
experimental elastic properties data for the Al-
3.125Mg (at. %) solid solution is compared in Figure
4. It should be mentioned that the experimental elastic
constants of Al-Mg [35] alloy with composition of
3.125 at % Mg are obtained by linear interpolation.
The calculated values are slightly larger than
experimental data, which is reasonable since the first-
principles calculations are performed at 0 K, while the
experimental data were measured at room
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Figure 2. Correlation between atomic radius of solute atom
(X) and the nearest-neighbor distance between Al
and X in Al-3.125 at. % X solution.

Table 2. Local lattice distortions in fcc Al-X solutions in
pm.

Figure 3. Calculated local lattice distortion compared with
experimental data [33].

 

Al

A

a
32

3

Alloying element
(X) This work Expt. [33]

Al - -
Co -10.84 -
Cu -4.84 -5.7±0.7

-6.9±0.7
-8.9±0.5
-9.5±0.5

Fe -11.87 -
Ge 2.53 2.1±0.6

2.6±0.5
3.3±0.5

Hf 3.12 -
Mg 3.58 -
Mn -11.99 -9.2±2.0
Ni -8.47 -
Si -1.7 -
Sr 19.15 -
Ti -2.81 -
V -6.69 -
Y 11.81 -
Zn -0.71 -0.9±2.0
Zr 4.44 -



temperature, and elastic constants decrease with
increasing temperature [36]. All the alloy systems
shown in Table 3 satisfy the Born criteria [37-38] for
mechanical stability, i.e.,                     ,                        and

for cubic structure, indicating that the Al alloys
with 3.125%X are within the limit of mechanical
stability.

Figure 5 shows that the calculated bulk moduli of
Al-X alloys decrease linearly with respect to the
increase of nearest-neighbor distances between Al and
X atoms. The smallest bulk modulus is due to the
addition of Sr, while the largest one is due to the
addition of Fe among all the Al alloys studied in the
present work. It can also be seen from Figure 6 which
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Alloying element (X) V0 B0 c11 c12 c44 B G E B/G

Al (expt.) a 16.595 ~80 114.3 61.9 31.6 79.4 29.4 78.6 2.7

Al b 16.487 77.2 119.1 56.5 32.3 77.4 31.9 84.1 2.43

Co 16.094 82.9 110 69.7 36.2 83.1 28.6 77 2.9
Cu 16.301 79.3 115.9 62.6 33.5 80.4 30.8 81.3 2.61

Cu c - - 308.22 262.56 27.03 277.8 25.4 73.8 10.9

Fe 16.087 83.3 104.9 72.8 35.5 83.5 25.8 70.2 3.24
Ge 16.57 76.2 94 68.4 26.3 76.9 20.9 57.5 3.68
Hf 16.677 79.7 102.4 69.8 25.5 80.6 21.8 60 3.69
Mg 16.641 75.6 107.6 60 30 75.9 27.3 73.2 2.77

Mg d - - 105.3 59.1 29.7 74.5 27.1 72.5 2.75

Mn 16.119 83.3 121 65.2 40.2 83.8 34.7 91.6 2.41
Ni 16.159 81.7 130.3 58.2 34.2 82.2 34.9 91.8 2.35
Si 16.409 77.6 124 54.7 33.1 77.8 33.7 88.4 2.31
Sr 17.327 68.4 100.3 53.6 31.2 69.2 27.8 73.5 2.49
Ti 16.455 80.3 104.6 69.5 28.4 81.2 23.4 64.1 3.47
V 16.32 81.4 112.9 66.2 36.4 81.8 30.5 81.3 2.68
Y 17.013 74.5 98.4 63.7 30.8 75.3 24.4 66.1 3.08
Zn 16.453 77.1 112.4 60.3 29 77.7 27.8 74.5 2.8
Zr 16.731 79.2 100.2 69.8 21.1 79.9 18.7 52.1 4.27

a Ref. [24]; b 32-atoms supercell; c Ref. [24, 34] for Al-5 at. % Cu (for reference only due to unreasonable large c11 and c12). ; d Ref [35]

Table 3. Calculated properties of Al-3.125X (at. %) dilute solid solutions: equilibrium volume (V, Å3), elastic constants (c11,
c12 and c44), bulk modulus (B), shear modulus (G), Young’s (E) modulus, and B/G ratio along with available
experimental data. The unit for elastic properties is GPa.

Figure 4. Calculated elastic constants of Al-3.125 Mg at. %
binary solid solution in the present work along
with experimental data [35].

Figure 5. Correlation between bulk modulus and nearest-
neighbor distance in Al-3.125 at. % X solution.



shows a strong dependence of the bulk modulus on
the atomic volume of the alloys, due to the addition of
the alloying element. The calculated bulk moduli of
Al-X alloys is further plotted in Figure 7 with respect
to the bulk modulus of pure solute atom X. Alloying
elements with higher bulk moduli, such as Co, Mn,
Fe, and Mn result in the higher bulk moduli of Al-X
alloys, and vice versa. 

According to Pugh criterion [39], a metal can be
considered to be brittle when its bulk/shear modulus
ratio is smaller than 1.75, otherwise ductile. All Al-X
dilute solid solutions have their B/G ratios greater
than 1.75, as shown in Table 3. This means Al will

remain be ductility with the addition of alloying
element.

To understand which factors are correlated with
the bulk modulus, Kim et al [10, 12] used the
empirical relationship between the bulk modulus and
volume reported by Miedema et al. [40]. According to
Miedema et al. [40] and Li and Wu [41],           has a
linear relationship with the change of electron density,
n, at the boundary of Wigner-Seitz cell for pure
elements, where Vm is the molar volume of the
element for alkali metals and non-transition metals.
The electron density n of Al31X solution can be
calculated by the following equation [41]:

(6)
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Figure 6. Correlation between bulk modulus and atomic
volume of Al-3.125 at.% X solution.

Figure 7. Influence of bulk modulus of solute atom (X) on
the bulk modulus of Al-3.125 at. % X solution.

Table 4. Volume (V), bond valence (ZB), and electron density (n) for pure elements, and Vm, n, and               for Al-3.125X
at. % solutions.
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Al 16.477 2.76 1.13 8.761 1.129 2.974
Co 10.877 3.09 1.917 8.552 1.16 4.955
Cu 12.029 2.57 1.442 8.662 1.139 3.976
Fe 11.377 3.32 1.969 8.548 1.164 4.677
Ge 24.174 - - 8.805 - -
Hf 22.277 3.97 1.203 8.862 1.131 3.574
Mg 22.851 2.08 0.614 8.843 1.11 2.029
Mn 10.988 3.41 2.094 8.565 1.163 4.936
Ni 10.941 2.83 1.746 8.587 1.152 4.75
Si 20.445 - - 8.719 - -
Sr 54.533 2.32 0.287 9.207 1.069 1.116
Ti 17.119 3.2 1.261 8.744 1.136 3.656
V 13.209 3.45 1.763 8.672 1.149 4.645
Y 32.925 3.21 0.658 9.04 1.099 2.127
Zn 15.318 2.4 1.057 8.743 1.126 2.501
Zr 23.428 3.75 1.08 8.89 1.124 3.298
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The calculated results are listed in Table 4
including the bond valence,             [42-44] where V
is the volume per atom of the ground state elemental
metal at 0 K. A linear relationship between               and

is shown in Figure 8, i.e. ,
which allows us to predict bulk modulus from
electron density and volume.

4. Summary

The effects of alloying elements (Co, Cu, Fe, Ge,
Hf, Mg, Mn, Ni, Si, Sr, Ti, V, Y, Zn and Zr) on elastic
properties of Al have been investigated by an efficient
first-principles stress-strain method. A good agreement
is obtained between calculated and available
experimental data. The elastic properties of
polycrystalline aggregates including bulk modulus (B),
shear modulus (G), Young’s modulus (E), and B/G ratio
are determined based on the calculated elastic stiffness.
It is found that (i) the bulk moduli of Al alloys decrease
with increasing volume caused by alloying elements
and (ii) the bulk modulus is also related to the total
molar volume (Vm) and electron density with the
relationship of                                            .
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Figure 8. Linear relationship between n and (B/Vm)1/2 of
Al-3.125 at. % X solution.
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