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Abstract

The famous Kissinger's kinetic evaluation method (Anal. Chem. 1957) is examined with respect to the feasible impact of
the individual quantities and assumptions involved, namely the model of reaction mechanism, f(a) (with the iso- and noniso-
thermal degrees of conversion, oo and 1) the rate constant, k(T) (and associated activation energy, E), heating/cooling rate,
B (supplementing additional thermodynamic term for the melt undercooling, AT) and above all, the association of the
characteristic temperature, T, , with the DTA peak apex. It is shown that the Kissinger’s equation, in contrary to the results
of Vold (Anal. Chem. 1949), is omitting the term of heat inertia arising from the true balance of heat fluxes. The absence of
this term skews the evaluated values of activation energies.

Keywords: Differential thermal analysis (DTA), kinetics, reaction mechanism, Kissinger, heating/cooling, equilibrium
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1. Introduction — Kissinger’s equation

While studying kinetics of thermal decomposition
of clays Murray and White [1] introduced the second
derivative of a standard rate equation [2, 3] as early as
in 1955

r (o, T) = da/dt = k(T) flor) = Aexp (-B/T) flo) (1)

where 1, a, t, T, E, A and B ( = E/R) are reaction
rate, degree of conversion , time, temperature,
activation energy, pre-exponential factor and a
constant (comprising the ratio of activation energy, E,
and universal gas constant, R) and providing a
widespread form [2, 3]:

d(do/dt)/dt = dau/dt [B/T2 dT/dt + df(er, )/da A exp
(-B/T)I (2)

This is equal zero at the moment of maximum
reaction rate (m) occurring at a characteristic
temperature, T . Under a constant heating rate, 3 =
dT/dt, the eq. (2) can be rewrite as follows

(dovdt) [BB/T? +dfle )/do Aexp (-B/T )]=0 (3)
Because the term (do/dt) is never zero, the
expression in square brackets can be adapted
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according to
[BB/T? +df(a,)/doe Aexp (-B/T )]=0 @)

The final form of which equals to a well known
equation

B/T?  =-df(a, )/do (A/B) exp (-B/T,) ®)

and its logarithmic form encompasses the famous
Kissinger’s equation [3,4]

log (/T ) = B/T_+ const (6)
Egs. (5) and/or (6) have undertook various
mathematical modifications and applicability

upgrading [6-19] in order to improve data logarithmic
fitting of individual experimental measurements
while endorsing reliability of evaluated activation
energies [20] . Kissinger equation [5] received as
many as four and half thousand citation responses
[21] and its Augis and Bennet variant [8] became one
of the best time-honored papers of Journal of Thermal
Analysis with four hundred fifty citations [21] . There
have been published numerous papers employing this
method for experimental data evaluation producing
thus plentiful values of activation energies - mostly as
a major subject of publication. However, only few
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papers analyzed the true meaning of evaluated data
with almost no deeper examination of mathematical
and physical background of this method under
conditions of nonisothermal study:.

The purpose of this paper is to examine the eqs.
(2-4) in more details investigating mathematical
circumstances that are purposeful and serviceable
for realistic applications as well as analyzing the
possible impact of the individual terms involved,
namely the model of reaction mechanism, f(a)
(with various meanings of the degree of
conversion, o), the rate constant, k(T) (and
associated activation energy, E), heating rate, J3,
and its cooling “opponent” version (needing to
include a thermodynamic driving force for the melt
undercooling, AT, as a supplementary term) and,
before all, the connotation of characteristic
“maximum” temperature, T_ , in literature [6-19]
habitually substituted by the temperature
corresponding to the wupper limit of an
experimentally measured apex of a DTA peak, T .

2. Choice of reaction mechanism, f(a)

It was shown that the Kissinger equation holds
for any kinetic model based on equation (1), which
can be mathematically derived [3] and generally
symbolized by f(a) [11] . However, despite the
apparent linearity of the dependences, we should
be aware that the sensitivity of the required linear
plot is damped by the logarithmic scale involved
and thus, the data may not be representative for
reaction profile fortitude. The original derivation
[4,5] is based on a simplest model of reaction
order, n, (i.e., (1 - o)) later added by nucleation-
growth JMAYK model, exponent p, (i.e., (1 - o)
(log (1- a))?) [3, 8, 13, 14, 18, 19] ending with a
logistic SB model, with two parameters, n and m,
(e, (1 -a)a™ [3, 19, 22, 23]. The evaluation,
however, cannot fully discriminate the category of
a model in question whilst the model itself affects
the values of activation energies insignificantly.
Moreover the revaluation is strictly dependent on
the progressive shifts of T _ along with the
increasing heating rate, which, for example, is not
the case of crystallization of finemet-kind of
metallic glasses with a specific nanocrystalline
structure [25, 26], that follows the Atkins NNG
model [27] of normal crystal growth. This subject
became a popular theme of the Kissinger equation
modification) [6-19] so that we are not going to
review and undertake deeper analysis within
existing literature. Other problems of legitimacy of
eq. (1) suspiciously consisting the assumption of

separability {r(T, a) = k(T). f(a)} and the
applicability of Arrhenius equation {k(T) =
A.exp(-E/RT)} is dealt with elsewhere [3, 28-30].

3. Effect of temperature change focused on
cooling applications

A number of recent applications of the Kissinger
equation have been concerned with a nonisothermal
crystallization of melts upon cooling, where
temperature decreases with time giving rise to
negative values of B which, factually, is not permitted
within the validity of eq. (3). Mathematically, for the
case of heating the left hand side in eq. (5) is positive
(and a regular chemical process possess thus positive
values of A and E) while on cooling it becomes
negative. There is arising a equation whether the
procedure of reversing the signal side would be
legitimate. Regarding eq. (2) its sufficient condition is
a positive value specifying the rate maximum in
which, T , points upwards. On the other hand this
equation can be modified even for a reversing signal
on cooling

d(do/dt)/dt = dov/dt [- B/T?  dT/dt - df(a)/do A
exp (-B/T )] =0. 7

The function in the square brackets is a mirror
image of eq. (2) subsisting the role of minimum and
thus yielding downward oriented peak. This
requirement contradicts the fundamental meaning of
the basic rate equation eq. (1) as well as the
experimental observations of solidification kinetics.
This case was thoroughly analyzed and modeled by
Vyazovkin [31] showing that the simulated data
provided mistaken and almost absurd results.

4. Revised equation when involving melt
undercooling, AT

It follows that the rate constant written in the form
standard exponential equation authorizes its
application at the heating mode, only. For a more
rigorous derivation we have to employ a modified rate
equation where the simple form of eq.(l) is
supplemented by additional term of a thermodynamic
driving force mounting with the melt undercooling,
AT [3, 32], as happen below equilibrium melting, T .
In such a case we obtain

do/dt = K(TAT) f(o) = A exp (-B/TAT?) f(a) .(8)

where AT = T — T. Upon applying the same
procedure as above we find analog of eq. (2) in the
form

d(da/dty/dt = da/dt (3B)/[T2(T,-T)]. +
+df(o)/da A exp {-B/T(T,-T)} ] =0 )

where  is now the rate of melt cooling. The
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modified parallel of the Kissinger equation (5) than
hold as

GRT?, (ATY] = dfia)/da. (A/B)exp {-B/T  (AT)} (10)

which enables to make a choice of the Kissinger-
like plots (variants of eq (5) but involving a reciprocal
combinations of T _, T and AT). Its approval needs a
range of experimental data, a preliminary test [33]
shown, however, a limited range of linearity so that a
more rooted mathematical and physical reasoning is
necessary.

5. Degree of conversion and its meaning for
homogeneous reactions and gradual transition
processes

Degree of conversion, o, can be experimentally
adjusted by various thermoanalytical measurements,
an important point of which is the definition of the
system under investigation. For example Svoboda et
al [28] shown that the values of apparent activation
energies, E, determined for glass transformation by
the Kissinger method, were in a disagreement with the
original values used for simulation, despite exhibiting
apparent linear dependences. It was caused by the
thermal history of the glassy samples and their
evidently nonequilibrium (constrain [3,30,35]) states.

Another disturbing effect can be expected when
studying variant processes of melting in multi-phase
diagrams [35]. For example a nonisothermal degree
of conversion, A, can be introduced in the form [36]

A=o (T), (11)

where o represents the classical ‘isothermal’
degree, and 1 (T) represents the equilibrium degree
of conversion for a given temperature T (so called
equilibrium  background), i.e. the degree
thermodynamically pushed toward the end of the
process. The nonisothermal rate equation, dA/dt, is
then given as a two-part sum

di/dt= o (A /dt) + 2, (do/dt), (12)
which in the logarithmic form reads
dlnA/dt= (dInA/dt) + (d In a/dt). (13)

Upon the substituting (d In &, /dt = 4. d In &, /dT)
we obtain the expression for the maximum of
nonisothermal rate (dA/dt = max)

/e = (dM/do). [ (d In 2 /dT) +
(d In o/dt)] + A.(d* In oc/dtz) 0. (14)

The term A, can be derived on the basis of an
experimentally measured property Z (e.g. enthalpy)
[36], the observation of which starts with the initial
value, Z, attaining at the end of the process its
maximum value, Z,, while for an isothermal course
accomplishes its intermediate value Z_(T)

corresponding to the equilibrium at given operation
temperature, T so that &, (T)= (Z, (T)-Z)( Z,-Z,).
The further analysis towards the Klssmger—hke plot is
more complicated, the detailed solution of which falls
beyond the concept of this contribution.

6. Characteristic temperature resolution of
maximum rate from the apex of a DTA peak

Original 1957 Kissinger derivation starts from the
temperature distribution in the differential thermal
analysis specimen holders obeying the general heat
flow equation (see eq.(1) in the original Kissinger’s
paper [5])
oT/ot — (k/pc)VT = (1/pc)(dg/dr) (15)

where (dq/dt) is the rate of heat generation due to
a chemical reaction. Kissinger assumed conditions
where the temperature of the outside of the holder
rises at a linear rate, @ (in our above symbolic, 3), the
solution of which is expressing the temperature at the
center of the sample in the form (see eq.(3) in the
original [5])

T =T, + &t —fdg/dr) (16)

where f (dg/dt) is a function of the reaction rate
(including also any secondary effects of the reaction).

The differential temperature, 6, is the difference in
temperature of the centers of the two samples.
According to Kissinger [5] this difference, 6, is then
given by

q :f(dq/dt)sample - (pC/k)(¢a2/4) reference (17)

and after the differentiation with respect to time
(see his eq.(6) [5]) reads

dg/dt = £ (dg/dt)(Fq/dr). (18)

Eq. (18) (and eq. (6) in ref.[5]) states that the peak
differential deflection occurs when the reaction rate is
a maximum.

This approach, however, evidently ignored the
effect of true heat transfer, which is responsible for the
DTA peak mounting, and which apex, T , is affected
by the sample heat inertia [31-33]. According to the
equation originally derived by Vold almost ten years
earlier (see her Eq. (5) in [40]) than that by Kissinger
[5], we can ensue the Vold's equation [40] as

-dg/dt = (K/C )q +(1-C/C,) B+ (dg/d/C+AK(T)/C.  (19)

The symbol K is the instrumental constant, C’s are
heat capacities of the sample (s) and reference (r) and
AK(T) reflects the difference between heat transfer
conditions between the sample and the reference, so
that

dg/dt — (Cs/K)dq/df = (dq/de)/K, (20)

which design is in contrary to the Kissinger’s final
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eq.(6) in [5] (above eq.(18)).
Substituting

(dg/dt) = H.(da/d?) 1)

where H is the reaction enthalpy change
corresponding to the amount of sample we obtain the
eq.19) but in the form

-dg/de=-(K/C )q + (1-C/C) p+H (dovdt)/C+AK(T)/C, (22)
so that after the differentiation we have
- d’q/dr’ = -(K/C) (dg/dt) + (H/C ) (d*a/dF’). (23)

For the extreme of a DTA peak, T , (dg/dt =0) we
find

(C/K) ($q/dP) = - (H/K) (Pa/dr)
b da/dr= -(C./H) (dq/dP) (24)

and for the inflection points (d’q/d*= 0) of a DTA
peak we similarly determine from eq.(23) relation

Po/d= (K/H) (dg/dt), (25)

explicitly showing the misfit between, T _ and
broadly implemented value of the DTA apex, T [5-
19].

The difference between temperature of extreme of
a DTA peak and the temperature of a maximum
reaction rate was already noted e.g. by Chen and
Kirsh [41], Boerio-Goates and Callen [42], and
exclusively shown in our recent paper [39]. A
portrayal of such a DTA peak assessment is
schematically exemplified in Fig 1.

Despite a long lasting history of kinetic evaluation
it is clear that such an important part of DTA peak
analysis has been overlooked at everyday
applications. It is possibly caused by the obvious
methods simplicity, which provides easy publishable
values of activation energies. It is surprising that
anybody who evolved various alternatives of the
Kissinger method [6-19] did not find any reasons for
its criticism.

7. Conclusion

The widespread application for an uncomplicated
kinetic data resolution by the famous Kissinger
method [4, 5], which received as many as 4461
responses [21], includes, however, a key error already
rooted in the equation original derivation [5] omitting
the factual effect of heat inertia [37-39]. This crucial
mistake affecting the true temperature of maximum
reaction rate has been lengthily put into everyday
operation by various scientists who are not cognizant
that such a widely used characteristic value for the
maximum of reaction rate, T , is not identical with the
maximum of DTA peak deviation, T,. Associated
application apparently results in changes of the
numerical values of resulting activation energies,
which misfit has no impact on the paper publication
capability as the unchallenging value of activation
energy has, in reality, no particular meaning [2, 28,
30]. Thus we are not convinced that our notification of
this error will be accepted with a supporting applaud

peak apex misfit

—

e ——

corrected \
(rectified)
DTA peak \

measured

/ DTA peak

thermal inertia
amendment curve

Figure 1. lllustrative evaluation of advanced analysis of a DTA peak when incorporating the impact of thermal inertia of
the sample showing the discrepancy between positions of the resulting peak maxima. A schematic portrayal of
DTA peak (thin line) monitored by standard measurement obtained under heating for the separate cells is shown
in contrast with its rectified form (thick line) obtained after the application of DTA correction (see text) for the
sample thermal inertia, the effect of which is revealed at bottom as the s-shaped curve. Shaded sections display
the difference on the gradual built up (left) and subsequent extinction (right) of the peak shape, the areas of which
are identical in their final account (s-shape curve is symmetrical) thus affecting kinetics (gradual grows-reaction

degree) but not calorimetry (total area-enthalpy).
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because it factually means that copious articles so far
published cover incorrect data.
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