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Abstract

In this investigation, an artificial neural network model with feed forward topology and back propagation algorithm was
developed to predict the toughness (area underneath of stress-strain curve) of high strength low alloy steels. The inputs of
the neural network included the weight percentage of 15 alloying elements and the tensile test results such as yield strength,
ultimate tensile strength and elongation. Developing the model, 118 different steels from API X52 to X70 grades were used.
The developed model was validated with 26 other steels from the data set that were not used for the model development.
Additionally, the model was also employed to predict the toughness of 26 newly tested steels. The predicted values were in
very good agreement with the measured ones indicating that the developed model was very accurate and had the great
ability for predicting the toughness of pipeline steels.
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1. Introduction

HSLA steels are low-carbon steels (< 0.2 wt%
C) containing up to 1.5 wt% manganese (Mn) to
produce solid solution strengthening of the ferrite
and small amounts (usually < 0.5 wt%) of other
alloying elements such as copper (Cu), titanium
(Ti), vanadium (V), niobium (Nb), aluminum (Al),
silicon (Si), calcium (Ca) and molybdenum (Mo) to
provide strengthening and control sulfide and oxide
inclusion sizes and to improve the formability [1,
2]. HSLA steels are also strengthened by special
rolling and cooling techniques [3, 4]. The chemical
compositions of specific HSLA steels may vary for
different product requirements to meet the desired
mechanical properties. Typically, this group of
steels has a microstructure consisting mainly of
ferrite and pearlite with highlighted tensile
characteristics. Their yield strength is in the range
of 275-550 MPa, while their tensile strength ranges
from 379 to 620 MPa. Their high strength is
obtained by microalloying, grain refinement,
controlling the shape of the inclusions, manganese
content, and controlled rolling [5, 6]. In order to
prevent failures in pipelines, it is important to have
high impact toughness and high strength. This is a
big challenge for the HSLA steels since it is
difficult to keep both strength and impact toughness

high at the same time. Any increase in strength is
usually accompanied by a decrease in toughness.

Due to their high strength and toughness, HSLA
steels are used mostly in large welded structures
such as trains, bridges, buildings, storage tanks,
high pressure vessels, ships and submarines [7, 8].
In recent years, most of the oil and gas
transportation pipelines are made of HSLA steel
grades such as X65 and X70. They have high yield
and toughness which enables using them in high
gas pressure pipelines with tight safety margins [9,
10].

Recently, artificial neural networks (ANNs)
have been widely used for investigating the
correlation between final mechanical properties
and the chemical composition and/or processing
parameters of different steel types [11-17]. In this
paper the effects of chemical compositions
(containing 15 variables) and tensile strength
parameters on the toughness (area underneath of
stress-strain curve) of API pipeline steels were
modeled using ANN approach.

2. Material and methods

Tensile test procedure conformed to the
requirements of API 5L standard [18]. Flat test
samples were cut in hoop orientation parallel to the
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direction of maximum stress while base metal
specimens had gauge length of 50 mm. A 600 kN
Zwick tensile testing machine with hydraulic clamps
and computer data logger was used for testing in this
research. All tensile experiments were conducted at
room temperature under displacement control with
ram displacement speed of 0.05 mm s-1. In each test,
the applied load and specimen elongation were
measured. An extensometer with 50.8 mm gauge
length was used to monitor specimen axial strains.
The computer software gave yield strength (YS) at
0.5% total elongation according to API 5L, ultimate
tensile strength (UTS), and specimen elongation
percentage in 50.8 mm gauge length at fracture point
for each test.

In total, 170 tensile data were obtained from
tensile testing. The YS, UTS and specimen elongation
were obtained from base metal experiments according
to tested standard recommendations [19]. Table 1
listed the statistical parameters of the data used for
modeling procedure. 

Alloy compositions (containing C, Si, Mn, P, S,
Cu, Ni, Cr, Mo, Ti, V, Nb, Ca, Al, B elements) and
tensile test results (YS, UTS, elongation) were the 18
independent input parameters and toughness (the area
underneath of stress-strain curve) was the output
parameter. 170 datasets from API X52, X60, X65 and
X70 steels were randomly divided into 118 and 26
groups and were used for training, validating and
testing the results, respectively.

3. Results and discussion
3.1. Statistical considerations of tensile data

Tensile test data, like other statistical quantities,
can be described by their mean, standard deviation
and distribution type. Meanwhile, the probability
density is defined as the number of occurrences
divided by the total sample number. If the tensile test
data are given in the form of Gaussian or normal
distribution, the probability density function (PDF),
for each set, is calculated as follows [20]:

(1)

where SD is the standard deviation of test data in each
set, x is the measured strength (in MPa), and mean is
the average strength (in MPa) in each dataset. 

Table 2 listed all the 104 test results from tension
examinations together with target values given in API
5L for X70 steel that are used in modeling. As can be
seen, the material’s tensile properties fulfilled the API
specifications (485 < YS < 635 and 570 < UTS < 760
MPa) for API X70 steel grade. 

Fig. 1 demonstrates the frequency distribution of
YS and UTS values for base metals. Accordingly, the

most occurrences of YS (37 %) and UTS (38 %) were
associated with strength ranges 520-540 MPa and
620-640 MPa, respectively. These were close to the
obtained YS and UTS average values of 521 (SD = ±
22) MPa and 619 (SD = ± 18) MPa for API X70,
respectively. 

In Fig. 2 and Fig. 3, the cumulative probability and
PDF of material’s strength are demonstrated,
respectively.

3.2. Correlation between yield and tensile strength

Fig. 4 demonstrates a linear relationship between
tensile and yield strength of API steels with relatively
low scatter (R2 = 0.92). It shows rising trend in tensile
strength with an increase in material’s YS, as
expected. Fig. 5 shows the variation of toughness
versus Charpy impact energy at -10 °C (J) for API
X52, X60, X65 and X70 steel grades. The graph
shows a linear relationship of area underneath of
stress-strain curve with impact toughness with low
correlation coefficient (R2 = 0.75) indicating relative
scattering. As can be seen from the plot, the scatter
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Figure 1. Repetition frequency of (a) yield strenght and
(b) ultimate tensile strenght in API X70 steel 



in the measured data made it difficult to derive a
linear correlation, as is common for steel
specimens, between material’s area underneath of
stress-strain curve and Charpy impact energy. The
Charpy impact data were in the range of 56-353 J
with an average value of 253 J (all of which
conformed with API 5L). On the other hand, area
underneath of stress-strain curve fell in the range
of 323-786 MPa with an average value of 642
MPa (all of which conformed to API 5L).
However, the Charpy impact data for pipe base
metals had different values even for the same area
underneath of stress-strain curve level. The
probable reason for this inconsistency is that
tensile test measurement was carried out on full-
thickness flat strip specimens in hoop direction.
The thick tensile specimen could accurately
capture the average tensile strength of the bulk
material. However, Charpy impact test
measurement was conducted on standard
specimen (10×10×55 mm from the same pipe), cut
transverse to the rolling axis in accordance to API
standard from an area free of defects. Moreover,
Charpy values for each pipe are the algebraic
average of three discrete measurements.
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Table 1. Statistical parameters of input and target data

Statistical
parameter

Chemical composition (wt%)

C Si Mn P S Cu Ni Cr Mo Ti V Nb Ca Al B

Minimum 0.02594 0.14068 0.92814 0.00567 0.00008 0.01147 0.01236 0.01174 0.0001 0.00161 0.00001 0.00033 0.00033 0.02117 0.00001

Maximum 0.16161 0.28466 1.48408 0.01777 0.00526 0.04597 0.19698 0.14107 0.12388 0.03606 0.00001 0.04195 0.00406 0.04896 0.00039

Average 0.078966 0.196312 1.362982 0.009874 0.001454 0.019807 0.105665 0.08742 0.079378 0.010938 0.00001 0.032759 0.001527 0.033782 0.000133

Standard
deviation

0.018532 0.031498 0.150217 0.002352 0.000861 0.008589 0.065271 0.048841 0.050261 0.006346 2.21E-20 0.008521 0.000556 0.003946 5.55E-05

Skewness 1.311188 1.223.797 -1.60413 0.914372 2.152257 1.346321 -0.36942 -0.45433 -0.92393 1.157939 -1.00892 -1.9138 2.266478 -0.15077 2.294315

Kurtosis 6.497443 0.518024 1.443024 0.70609 5.952727 1.064898 -168769 -1.74196 -1.08382 2.914537 -2.02395 3.81659 7.247511 1.451936 7.380276

Statistical
parameter

Mechanical properties
Yield at 0.5 UTS Elongation Toughness

(MPa) (MPa) (%) (J.m−3.104)
Minimum 314.74 415.41 30 323
Maximum 570.78 684.79 43 786.6
Average 493.4892 590.6762 35.42353 642.5911
Standard
deviation 46.46229 46.67979 2.283859 190.7949

Skewness -1.17966 -1.26752 0.51924 -0.8454
Kurtosis 2.445306 1.919458 0.671398 -1.17095

Table 1. continued

Figure 2. Cumulative probability of strenght in API X70
steel grade

Figure 3. Probability density function of strenght in API
X70 steel grade

Figure 4. Linear correlation between tensile and yield
strenght in API X52, X60, X65, and X70 steel
grades



3.3 Neural network training and testing

Levenberg-Marquardt feed-forward back-
propagation algorithms with sigmoid tangent function
were used for training the input data. For ANN
modelling, several trials were performed until a high
performance model with the highest coefficient of
determination (R2) and the lowest errors was obtained
in training, validating and testing phases. Schematic
illustration of the network used in this study for ANN
model is illustrated in Fig. 6. The input, output and
hidden layers were completely interconnected by
weights.

The performance of the models was assessed
based on R2, mean absolute error (MAE), root mean
square error (RMSE), relative absolute error (RAE),
root relative square error (RRSE) and mean absolute
percentage error (MAPE) according to the following
equations:

(2)                            

(3)

(4)

(5)

(6)

(7)

where ti is the target parameter, oi is the output
parameter and n is the number of datasets. The
reliability and robustness of a neural network depend
on many parameters including “learning constants”,
“activation function” and “random distribution of the
weights in the initiation of training process” and “the
number of nodes in the hidden layer”. The small
number of nodes in the hidden layer leads to low
fitting and the high number causes over fitting. Some
neural networks with 12 to 36 nodes in the hidden
layer were trained and the MAPE value for training
and testing datasets of these networks were
calculated. It was determined that the network with 20
nodes in the first hidden layer and 12 nodes in the
second hidden layer had the minimum MRE value for
the testing data. The increase in the number of these
nodes did not improve the network results for training
data. So, the network structure in the present work
was 18-20-12-1. 

Fig. 7 illustrates the results of training, testing and
validating phases for ANN model. From figures, the
proposed model is capable of predicting area
underneath of stress-strain curve. The model in all
phases has the R2 values more than 99 %. Therefore,
it is suggested that ANN model can be suitably used
for prediction of displacement. Generally, an ANN
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Property Minimum Maximum Mean PDF (%) Standard deviation
Base metal yield strength (MPa) 463 570 521 1.7 22

Target (MPa) 485 635 – – –

Base metal tensile strength (MPa) 568 685 619 2.1 18

Target (MPa) 570 760 – – –

Table 2. Tensile data of API X70 pipes examined on flat strip

Figure 5. Plot of Charpy impact energy at -10 °C (J) vs.
toughness in API X52, X60, X65 and X70 steel
grades
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model is of high performance when it has the highest
R2 and the lowest errors. However in complicated
models, when R2 in training phase increases, values of
testing and validating phases decrease. This is called
over fitting which must be avoided in artificial
intelligence modeling. Here, the difference between
R2 in training, testing and validating phases are not
high and therefore one may conclude that over fitting
has not been occurred in the proposed ANN model. 

Table 3 illustrates the different types of errors for
ANN model. Minimum values of MAE, RMSE,
RRSE, RAE and MAPE were in training phase and
maximum values were in testing phases, listed as
expected. 

Fig. 8 exemplifies that by increasing sum of
errors, R2 values were decreased. Another
performance evaluator can be represented in
accordance with Fig.9. Accordingly, errors
(differences between output and target values, i.e.
(ti-oi)) and percent errors are plotted versus percent
frequency. 

Figures show that ANN model had the high
performance.  72% of total numbers of datasets had errors
between -5 and +5, and 85% of total numbers of datasets
had error percents less than 1 %. Fig.10 illustrates that by

increasing the target values, output errors’ trend changed
from positive values to negative ones. 

4. Conclusion

Variations of mechanical properties in the base
metal of 104 test microalloyed steel pipes were
measured and compared to API 5L standard
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Figure 6. Structure of the ANN model 

Training Validating Testing

MAE 3.380508 3.769231 6.573077

RMSE 3.908953 4.70319 7.845013

RAE 0.019088 0.031085 0.039356

RRSE 0.019988 0.030514 0.041555

MAPE 0.532805 0.559455 1.053493

R2 0.999964 0.999956 0.999867

Table 3. Errors of ANN model

Figure 7. Results from ANN model in (a) training; (b)
validating and (c) testing phases 

Figure 8. R2 vs. sum of errors (MAE + RMSE + RAE +
RRSE + MAPE) in ANN model 



specification to qualify the steel performance under
design criteria. Standard full-thickness flat strips were
used for tensile testing from which yield strength,
tensile strength and maximum elongation were
determined for each pipe. The minimum, maximum,
mean and standard deviations of measured mechanical
properties were calculated for statistical variation and
difference of mean value in each pipe. All test data were
described by probability density function while the

zones with the largest variance were determined. In this
study, ANN model with two hidden layer were
developed to predict toughness in terms of area
underneath the stress-strain curve of pipeline.
Evaluation of the proposed model showed that ANN
model was capable of predicting toughness values
which were very close to the simulated results. A
comprehensive evaluation by means of R2, different
errors and values of training, testing and validating
phases was conducted. As a result, proposed model was
capable of predicting area underneath the stress-strain
curve with accuracy more than 99 %.
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Figure 9. Repetition frequency of (a) error and (b) error
percent 

Figure 10. Variation of output vs. target error values


