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Abstract

Computational thermodynamics provides essential information for materials design. The CALPHAD (CALculation of
PHAse Diagrams) method based on thermodynamic databases can be used for thermodynamic optimization and for
calculating phase diagrams and thermodynamic properties in multicomponent systems. This article reviews the algorithms
implemented in software for optimizing thermodynamic parameters. These software tools offer strong support for
developing accurate thermodynamic databases. Recent advances in algorithms for thermodynamic parameter optimization
are summarized, and their respective characteristics and potential limitations are analyzed. Finally, the development trends
of software and algorithms for thermodynamic parameter optimization are discussed. This review will help interested
readers understand the principles of thermodynamic optimization and contribute to the advancement of related algorithms.
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1. Introduction

Thermodynamics is the science of the state of
systems, involving the relationships among
temperature, heat, work and the state of the system [1,
2]. Phase diagrams are the roadmap for understanding
the conditions under which phases form or transform
in any material system caused by changes in
temperature, composition, pressure, or any other state
variable [3-5]. With advances in thermodynamics and
computer technology, the computational
thermodynamic method known as CALPHAD
(CALculation of PHAse Diagrams) [6-8] was
developed. The CALPHAD method achieves the
prediction of phase equilibrium and properties for
multicomponent systems by constructing an accurate
thermodynamic database. It significantly accelerates
the research and development process of new
materials being one of the cornerstone methods in the
field of materials science and engineering [9]. Olson
[10] among many others established a strategy for
material design based on the CALPHAD method and
designed high-performance materials. In recent years,
an increasing number of high-performance materials
have been developed using the CALPHAD method
[11-13]. The flow chart of the CALPHAD method and
its application is shown in Figure 1. Based on
CALPHAD method, appropriate thermodynamic
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models were selected to describe each phase,
thermodynamic parameters describing Gibbs energy
of each phase were constructed, and an accurate
thermodynamic database was then established [15,
16]. The advantage of CALPHAD is that the Gibbs
energy of each phase can be modeled hierarchically,
which allows for generalizing from simple systems to
multicomponent systems.

The thermodynamic database can be used to
calculate fundamental thermodynamic properties of
multiple phases as well as phase diagrams of
multicomponent systems. The CALPHAD database is
now widely used in the development of alloy systems
[17-24], oxide systems [25-31], and other systems
[32-37]. The construction of a thermodynamic
database relies critically on the development of
optimization algorithms implemented in software.
Since the 1970s, software for thermodynamic
calculations and optimization have been developed.
Such software includes the Lukas program [38],
CATCalc [39], MTDATA [40], Thermo-Calc [41],
Pandat [42], FactSage [43], OpenCalphad [44],
ESPEI [45], ICALPHAD [46], Kunselman’s method
[47] among others. This article systematically reviews
the latest advancements in thermodynamic parameter
optimization methods and algorithms, analyzes the
advantages and disadvantages of different
approaches, and outlines future development trends.
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Figure 1. Evaluation and optimization steps for the CALPHAD method [14]

2. Algorithms developed to
thermodynamic parameters

optimize

Once the Gibbs energy model of each phase is
determined, the degrees of freedom of these models
and their associated optimization parameters must be
calibrated based on available thermodynamic
properties and phase equilibrium data. Therefore,
parameter fitting constitutes a multi-objective
optimization problem. This section focuses on the
widely used thermodynamic parameter optimization
software and algorithms.

2.1. Gradient-free methods

The most popular fitting method currently used in
thermodynamic parameter optimization is the
weighted nonlinear least-squares method, which
employs gradient-free techniques to iteratively solve
the normal equations. Lukas program [38], CATCalc
[39], MTDATA [40], Thermo-Calc [41], Pandat [42]
and OpenCalphad [44] utilize this approach. The
NOMAD (Nonlinear Optimization by Mesh Adaptive
Direct Search) method used in FactSage [48] and the
Bayesian parameter estimation ensemble Markov
Chain Monte Carlo (MCMC) method used in ESPEI
[45] demonstrate that black-box methods are
becoming increasingly popular in thermodynamic
optimization. Brief introductions to these software
programs and their optimization algorithms are
presented in the following sections. Few publications
are available regarding the optimization algorithms
used in CATCalc [39], MTDATA [40] and
OpenCalphad [44]. Therefore, this work does not
elaborate on them extensively. The objective function
is constructed using expressions such as equation (1)
or similar formulations.

z (weight (experimental value), — (calculated value), X (1)
i=1

(estimated uncertainty),

where n is the total number of experimental
values, and weight, is the weight factor associated
with i experimental value. The calculated value is
obtained from the current thermodynamic parameters,

and estimated uncertainty is the experimental error.
2.1.1. Lukas program

BINGSS is a program designed for least-squares
optimization of thermodynamic parameters based on
phase equilibrium and thermodynamic data [49].
Quasi-binary systems can usually be treated by
BINGSS in a manner similar to binary systems.
BINGSS is the earliest program for the optimization
of thermodynamic parameters. For ternary systems, a
counterpart program named TERGSS is available.

In the Lukas program, the Marquardt method [50]
is adopted to optimize the loss function. The
Marquardt method is an algorithm that interpolates
between the Newton-Raphson method and the
steepest-descent method. If the Marquardt parameter
is large and the correction corresponds to the steepest
descent step, where the length of the vector is the
reciprocal of the Marquardt parameter. If the
Marquardt parameter is small, the iterative step is
close to the Newton-Raphson step. The main steps of
this method are as follows: the first step involves the
iterative adjustment of coefficients using the Gaussian
normal equations, while the second step is
programmed to minimize the sum of squared errors.

2.1.2. Thermo-Calc

Thermo-Calc is a thermodynamic calculation
software package developed by the Royal Institute of
Technology in Sweden [14, 41]. Based on the
CALPHAD method, it supports phase diagram
calculation and optimization, phase equilibrium
analysis and thermodynamic prediction of
multicomponent systems. It is widely used in a variety
of material systems. The typical phase diagrams of
different systems optimized and calculated by
Thermo-Calc are shown in Figure 2.

Optimization in Thermo-Calc is implemented in
the PARROT module [55], which is used to fit
thermodynamic/kinetic model parameters to
experimental data. The PARROT module makes use
of the GES module for modeling the various phases
formed in a multicomponent system, as well as the
POLY module for storing and calculating complex
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Figure 2. The phase diagrams of different systems were optimized and calculated using Thermo-Calc [51-54]

equilibria. Equation (1) is used to construct the loss
function and weighted least squares is used for
iterative optimization. The Levenberg-Marquardt
(LM) [50, 56] algorithm is used in optimization.

2.1.3. PANDAT

PANDAT is a thermodynamics calculation
software package for multicomponent materials
developed by CompuTherm [42, 57, 58], supporting
phase diagram calculation and optimization, phase
transition simulation and materials design for alloys,
ceramics and other systems. PanOptimizer is an
optimization engine in PANDAT Software [42]. The
PANDAT software offers two optimization methods,
rough search and normal optimization.

(1) Rough search

PANDAT proposes a “rough search™ a set of
model parameters with the best fit to the experimental
phase boundary data will be found by minimizing the
difference in chemical potentials between the two
specified phases at equilibrium, as shown in Figure 3,
and the least squares problem will be the following
equation:

_Zkl kz “ (l) u (])] ()

k

where w, is a weighting factor reflecting the
measurement uncertainty of equilibrium £, i and j
denote any two phases in the kth equilibrium, and u
denotes the chemical potential.
(2) Normal optimization

According to the maximum likelihood principle,
assuming that the differences between the calculated
and experimental values of the model are independent
and that the same distribution is a normal distribution
function, a set of model parameters that best fits the
given experimental data can be obtained by
minimizing the sum of squares (least squares). In the
actual modeling process, the experimental data may
come from different subpopulations for which
independent estimates of the error variance are
available. In this case, the sum of squares can be
written as:

15w Le-o(ri7.n)] ®

where e, is the experimental measurement, m is the
total number of measured values. ® is the model
function. 7 is the temperature, x is the alloy
composition, and p is the parameter vector in the
thermodynamic model. The idea is to assign to each
observation a weighting factor w; that reflects the
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Figure 3. Schematic of rough search optimization in PANDAT [42]

measurement uncertainty. The validity and reliability
of the method are demonstrated in the actual modeling
process.

2.1.4. FactSage

FactSage, launched in 2001, integrates the
FAC*T/FACT-Win and ChemSage thermochemical
software packages [59, 60]. It is renowned for its
ability to calculate thermochemical properties,
including thermodynamic functions and phase
diagrams [43].

The embedded OptiSage module employs the
CALPHAD approach, linking thermodynamics with
phase diagrams and other experimental data. By
scanning the parameter space and evaluating the error
sum for each parameter combination, the optimizer
evaluates the solution space and strives towards
improvements [48]. The optimization algorithm is
iterative, involving continuous comparison between
experimental and calculated results. The optimization
settings offer two algorithms reported in the literature:
NOMAD and the Chain of Gaussian Processes [48].
NOMAD is specifically designed for black-box,

nonlinear, and derivative-free problems with
constraints [61]. It utilizes an adaptive mesh to search
the parameter space, effectively identifying promising
solutions and avoiding local minima in complex
thermodynamic error landscapes. The error sum in the
NOMAD optimizer is defined as follows.

ErrorSum = Z (WF, * AVE’I.)2

E

“

where the AV ; is the difference between the
calculated (CV ) and measured (MVy ) values of
experiment E at each evaluation i of the optimization,
and WF,, is the corresponding weight factor.

Generally speaking, thermodynamic properties
and phase equilibria exhibit different sensitivities to
thermodynamic parameters when calculating AV ..
As a result, the optimizer may encounter challenges
such as plateau regions, local minima, and failed
evaluations. As an alternative, the Chain of Gaussian
Processes performs sequential optimizations using the
Gaussian process optimizer from the scikit-optimize
Python library [62]. This approach leverages
Bayesian optimization to find the global optimum of
an unknown, costly, and noisy objective function with
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Figure 4. The comparison of the sum of errors of different optimization methods and the optimized Pd-Sn system by

FactSage [48]

a minimal number of evaluations. The error sum in the
Chain of Gaussian Processes optimizer, which is
particularly advantageous for phase balance
optimization, is expressed as follows.

ErrorSum =" (WF,*AG,,)’ (5)

E

where the AGy; is the driving forces calculated
using the corresponding activity a, temperature 7" and
gas constant R with the expression R7Ina. The
introduction of the driving forces leads to improved
convergence and optimization speed. Figure 4 shows
the comparison of the sum of errors between the
traditional method and the driving force method and
the Pd-Sn system optimized by the driving force
method.

2.1.5. ESPEI

ESPEI (Extensible Self-optimizing Phase
Equilibria Infrastructure) is an open source, Python-
based software for evaluating thermodynamic model
parameters [45, 63, 64]. The parameters obtained
from ESPEI are used by PyCalphad [65, 66] to
calculate thermodynamic properties and phase
diagram. The phase diagram optimized by ESPEI and
the uncertainty quantification are shown in Figure 5.

ESPEI consists of two main steps: parameter
generation and MCMC optimization. It employs a
linear fitting strategy to parameterize the single-phase
Gibbs energy function based on thermochemical data
and subsequently refines the model parameters using
phase equilibrium data through Bayesian parameter
estimates within a Markov chain Monte Carlo
machine learning method [68, 69].

MCMC optimization employs Bayesian parameter
estimation to optimize the thermodynamic
parameters, and realizes the function of the
thermodynamic parameters iteration and inconsistent
optimization considering all data at the same time.
MCMC optimization not only obtains the optimal
parameters but also estimates the uncertainty
associated with these parameters by analyzing the
distribution of the sampled parameters. This enables
ESPEI to provide confidence intervals for parameter
estimates and additional information for the
robustness of the model. Because MCMC
optimization considers more degrees of freedom, and
the initial parameters are often not close to the global
optimal solution, a more general method is needed to
obtain better initial parameters. The method
implemented by ESPEI is similar to the rough search
method implemented in PanOptimizer software [42].

Its expression is as follows:
BY SA
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Figure 5. Phase diagram optimized using ESPEI and uncertainty quantification [45, 67]
. 4 significantly reduce the computational cost of
G'-) ux

(6)

where G’ is the single-phase, composition-
constrained minimum Gibbs energy conditioned on
the composition at the ¢ phase vertex, U, is the
chemical potential of component i defining the target
hyperplane, X7, is the composition of component 7 at
the ¢ phase vertex.

Theoretically, the MCMC optimization in ESPEI
is applicable to multicomponent, multiphase systems
with arbitrary degrees of freedom. However, in
practice there is a challenge that most MCMC
samplers assume that the model parameters are
uncorrelated, while the parameters of each phase in
CALPHAD are correlated. ESPEI solved this problem
with an ensemble sampler proposed by Goodman and
Weare [69].

This ensemble sampler integrates Markov chains
to generate the proposal distribution of the
parameters, ensuring the proposal remain unchanged
under affine transformations. This approach solves the
problem of scaling the proposal length and different
parameter sizes in multidimensional parameter space.

[t

2.2. Analytical gradient-based methods

The analytical gradient-based methods can

parameter optimization and improve efficiency. Most
recently, Zhang et al. [46] used the gradient descent
method to optimize the Ag-Pd and La-C systems.
Kunselman et al. [47] employed the conjugate
gradient (CG) method to optimize thermodynamic
parameters of four binary alloy systems.

2.2.1. ICALPHAD

A new algorithm ICALPHAD for optimizing
thermodynamic parameters is proposed by Zhang et
al. [46]. This algorithm formulates a multi-objective
optimization for various types of experimental data
and employs the weighted sum method to convert the
multi-objective optimization problem into a single-
objective optimization.

Subsequently, the single-objective optimization is
solved using the Barzilai-Borwein (BB) method [70].
The algorithm has been applied to optimize the
thermodynamic parameters in the Ag-Pd and La-C
systems, as shown in Figure 6.

The optimization of thermodynamic parameters
can be formulated as a multi-objective optimization,
as defined by Eq.(7).

Minimize L(®,%) =[L,(©), L,(0,%), L(®)] (1)
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Figure 6. Loss function construction and optimization system by Zhang et al. [46]

where L, (0), L, (0, X), L, (®) are the vectors of
loss functions corresponding to thermodynamic
properties, two-phase equilibria, and invariant
equilibria in the binary systems, respectively.

For thermodynamic properties, the loss function
(8) is formulated by the least-squares method,
combining the calculated values with the
experimental data. This loss function is typically
optimized at the initial stage of the overall
optimization process because certain unknown
parameters can be evaluated independently and
directly, so that their approximate range can be
determined.

1 & (calculated value), — (experimental value), .,
L(®)=1-
i=1

(®)

where O is the thermodynamic parameters of all
the phases in a system. M is the number of
thermodynamic properties.

For two-phase and invariant equilibrium, the loss
functions are derived using the common tangent rule,
as described mathematically in Eq.(9) and shown in
Figure 6. This requires knowledge of the temperature
and components mole fractions of each phase in the
phase equilibrium. For invariant equilibrium, these
values are known; however, for two-phase
equilibrium, the components of one phase may be
unknown, which would prevent the optimization from

(experimental value), * (relative error),

continuing. The algorithm overcomes this issue by
optimizing the unknown components and using the
Sigmoid transformation, as shown in Eq.(10) to
remove the constraints on these unknown
components. Furthermore, the algorithm accounts for
certain special cases in phase equilibrium. For
instance, when a pure element is present in a two-
phase equilibrium, the Gibbs energy at the
equilibrium temperature corresponds to a point, then
the loss function can be derived using only one of the
equations in Eq. (9). This is analogous to the
treatment of invariable equilibria.

Ga(xa T30,)=Gg(x,,T:0,)+
+0,G,(x,,T:0,)(x; —x,)=0

G,(x,,T:0,)~G,(x,.T;0,)+ ©)
+0,Gy(x5,T50,)(x, —x5) =0

X ! zeR
Cl+e (10)

where o and f are phases in a two-phase
equilibrium, x is mole fraction, and ® is the
thermodynamic parameters of all the phases in a
system.

Hence, the algorithm then employs the sum



392

Liang Zhang et al. / J. Min. Metall. Sect. B-Metall. 61 (3) (2025) 385 - 398

weighted method to transform the multi-objective

optimization (7) into a single-objective optimization,

which is subsequently solved using the Barzilai-

Borwein (BB) method [70] in combination with the

Zhang & Hager line search rule [71]. The weights for

the weighted sum method [72] are given by Eq. (11).
w

11
Lmax ( )

where L™ is the maximum among the sub-
objective functions, and indicates the preferences
assigned to the loss functions. This algorithm offers
several advantages: (i) It exhibits a very weak
dependence on initial value for thermodynamic
parameters to be optimized; (ii) In the case that a
phase equilibrium cannot be calculated with the given
parameter, the algorithm can still optimize the
parameters. And the optimization can continue even if
the composition of one of the phases in the phase
equilibrium is unknown; (iii) The introduction of the
Sigmoid transformation can remove the constraints of
compositions associated with previous algorithms.

ﬁ}:

2.2.2. Kunselman s method

With the support of the ESPEI software,
Kunselman et al. utilized the recently formally
established Jansson derivative technique to analytic
gradient-based optimization for the parameters of the
CALPHAD model [47]. In this formulation, the
model parameters 0 are treated as external potentials,
enabling the gradient of the objective (log-likelihood)
function to be directly calculated using the following
equation (12). The Jansson derivative is obtained
through a strict analytical linearization derivation of
the Gibbs energy minimization problem within the
framework of thermodynamic equilibrium solution
[73]. This analytical approach allows all equilibrium
sensitivities to be computed directly from a single
converged state, avoiding repeated minimization as
required in finite-difference methods and thereby
improving both computational efficiency and
numerical stability.

(12)

00,

J

aL B _Z (Ximodel _Xiexp) aXimadel
00, ; ol

where 0 is model parameters and the term
8Xim"del/69j is obtained analytically via the Jansson
derivative.

The framework provides unified derivative
expressions for multiple experimental data types,
including equilibrium thermochemical data, activities,
and zero-phase-fraction (ZPF) residual driving forces.
The framework employs a conjugate gradient (CG)
optimizer with line search and Jacobi-like
preconditioning for efficient parameter updates.

Comparative studies on several binary systems (Cu—
Mg, Fe—Ni, Cr—Ni, and Cr—Fe) demonstrated that the
analytical gradient approach achieves one to three
orders of magnitude faster convergence than finite-
difference or MCMC-based methods, while
maintaining smooth and stable optimization near
phase boundaries. The study operationalizes the
Jansson derivative within a practical optimization
framework, marking a theoretical shift in CALPHAD
methodology from numerical equilibrium searches to
differentiable thermodynamic modeling. It also lays
the groundwork for automated, high-dimensional,
gradient-driven thermodynamic database
development.

3. Discussion
3.1. Discussion of software development

The various software packages for thermodynamic
parameter optimization possess distinct
characteristics. BINGSS is arguably the ecarliest
thermodynamic parameter optimization program. It
constructs the objective functions to be optimized
based on thermodynamic principles, offering good
theoretical interpretability. However, it was not
further developed since the publication in 1982 [49].
The Thermo-Calc software was extended and
developed based on the BINGSS program, which uses
a traditional loss function constructed by the least
squares method, and has been widely used up to now
[14, 41].

The utility of the classical least squares method
(Equation 1) for thermodynamic parameter
optimization has been well documented over the
years. However, a key limitation of this method is that
if the initial parameters are poorly chosen, the
measured phase equilibrium may not correspond to
the stable phase equilibrium calculated using these
parameters, making it impossible to obtain the
calculated values needed for subsequent
optimizations. The result is that optimizers need
extensive experience in thermodynamics and
optimization, which greatly raises the bar for
thermodynamic optimization. A few problematic
characteristics of the error sum function are shown in
Figure 7 as plateau regions (b) , local minima (c) and
failing evaluations (d) which are to be compared to a
favorable error sum (a), which provides guidance
towards a global minimum.

To address these challenges, several research
groups have focused on developing more robust
optimization methods that are less dependent on
expertly chosen initial parameters. For example, the
use of driving forces in Calphad optimization has
received increasing attention [42, 45, 73-76]. For
instance:

The PANDAT software has developed a “rough



Liang Zhang et al. / J. Min. Metall. Sect. B-Metall. 61 (3) (2025) 385 - 398

393

a) b) ¢) d) \\
: : : : §.
: . & : -
W \ i ] 1 o \
\_ V VVV 2\
N
L Parameter 1 ’ Parameter 1 ’ Parameter 1 Parameter 1

Plateau regions
- No gradient to follow

Local minima
- Gradient wrong direction

Evaluation fails
- Gradient not computable

Figure 7. Possible characteristics of the error sum as a function of parameter values: a) shows the desired case, while b)
to d) showcase problematic error-sum dependencies, which inhibit the optimizer from finding the best possible

solution [48]

search” method to quickly find better initial values
when starting optimization [42].

ESPEI uses Bayesian parameter estimation
ensemble MCMC method for simultaneous Bayesian
optimization of all model parameters, featuring an
uncertainty quantification [45]. The methodology
implemented in ESPEI is similar to the coarse search
methodology implemented in PanOptimizer [42],
where the residuals are the driving forces between the
target equilibrium and the current hyperplane.

Calphad Optimizer version 2 in FactSage solves
the problem that traditional methods cannot optimize
by introducing a driving force so that Gibbs energy
directly acts on the sum of errors [48].

ICALPHAD constructs the loss function by Gibbs
energy curve and solves the multi-objective
optimization problem by using a combination of the
weighted sum method and the BB method, which
achieves the optimization iteration automatically even
if the initial values are randomly given [46].

Kunselman et al. [47] provided ideas for
parameter optimization of CALPHAD models based
on analytical gradients, so that more gradient-based
optimization algorithms can be implement in
thermodynamic parameter optimization.

3.2. Discussion of optimization algorithms

Gradient-free algorithms primarily encompass the
LM algorithm [50, 56], the NOMAD method [61],
and Bayesian parameter estimation ensemble MCMC
method [68, 69]. The LM method [50, 56] adaptively
switches between gradient descent and the Gauss-
Newton method, achieving relatively fast local
convergence while maintaining numerical stability.
However, as a local optimization method, it is highly
sensitive to initial parameter values and prone to
being trapped in local minima. Moreover, the first-
order derivatives required for the Jacobian matrix in
the normal equations often lack analytical expressions
in practical applications and must be approximated
using numerical differentiation or other techniques,
which significantly increases the computational cost.

The NOMAD method [61] is a derivative-free
optimization algorithm based on the Mesh Adaptive
Direct Search (MADS) framework, making it
particularly suitable for black-box or non-smooth
objective functions. Consequently, it has been adopted
for CALPHAD parameter optimization when reliable
gradient information is unavailable. Its main
limitations, however, are its relatively slow
convergence rate and high computational cost in high-
dimensional parameter spaces. The Bayesian
ensemble MCMC method [68, 69] offers a key
advantage: the systematic quantification of parameter
uncertainty. Instead of yielding a single deterministic
parameter set. It generates posterior probability
distributions, thereby providing a theoretical basis for
assessing uncertainty in thermodynamic predictions.
However, this approach is computationally intensive,
strongly dependent on prior distribution choices, and
expensive to implement for complex models.

Analytical gradient-based optimization algorithms
mainly include ICALPHAD [46] and Kunselman’s
method [47]. ICALPHAD [46] employs the Barzilai-
Borwein (BB) method [70] combined with a
nonmonotone line search criterion [71], which
essentially belongs to the gradient descent family. Its
advantages include reduced sensitivity to initial
parameters, a high degree of automation, and minimal
reliance on expert knowledge. However, it requires
the computation of first-order derivatives of the
objective function and is thus not applicable to
complex models where analytical derivatives are
unavailable. Kunselman’s method [47] employs the
recently formalized Jansson derivative technique to
enable analytical gradient-based optimization of
CALPHAD parameters, followed by solution via the
conjugate gradient method. By computing gradients
analytically, this approach ensures high accuracy.
Moreover, the conjugate gradient method offers fast
convergence and high memory efficiency. Analytical
gradient-based methods are currently only applied to
relatively simple binary systems, and their
applicability to complex binary and ternary systems
remains to be verified.
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4. Future development of algorithm to
optimize thermodynamic parameters

In the future, algorithms and software for
thermodynamic parameter optimization are expected
to evolve significantly, driven by advances in
computational power, data availability, and cross-
disciplinary methodologies. The evolution will likely
focus on the following key directions:

a) Development of more intelligent algorithms and
processes: future thermodynamic optimization
algorithms will further enhance their autonomy and
intelligence, with the core focus on reducing reliance
on manual intervention. By incorporating new
techniques, algorithms can automatically adjust
optimization parameters (such as step size,
convergence criteria, weight distribution, etc.) based
on different system characteristics and dynamically
optimize iteration paths. Simultaneously, the
synergistic mechanism between global optimization
and local search will mature further. By integrating
heuristic algorithms (such as genetic algorithms and
particle swarm optimization) with deterministic
methods (like gradient descent and Newton’s
method), more efficient and stable parameter fitting
will be achieved. Developments in this direction will
significantly reduce the time costs for users in
parameter tuning and step design, making the
optimization process more automated and reliable.

b) Deeper integration of Al and machine learning:
Artificial intelligence and machine learning
technologies will profoundly empower
thermodynamic optimization processes, serving as the
core engine for next-generation software. On one
hand, potential function and state equation modeling
based on neural networks can extract underlying
patterns from vast experimental and first-principles
data. On the other hand, reinforcement learning can
guide the selection of optimization paths, enhancing
search efficiency in multi-objective, high-dimensional
parameter spaces. Furthermore, generative models
hold promise in assisting the construction of initial
thermodynamic parameters.

c¢) Integration of multi-source data: First-principles
calculations and molecular dynamics simulations can
provide supplementary data, but seamlessly
integrating them with experimental data and
quantifying error propagation remains a challenge.
Furthermore, first-principles calculations,
experimental phase diagrams, and thermodynamic
measurements may yield conflicting results, requiring
algorithms to automatically identify reliability and
perform weighted fusion.

d) Enhanced user-friendliness and accessibility:
Software interface design will increasingly prioritize
user experience, evolving toward intuitive, graphical,
and low-barrier approaches. Through visual

programming modules, drag-and-drop workflow
construction, and natural language interaction
capabilities, users can effortlessly complete data
import, model configuration, computation execution,
and result analysis without requiring deep expertise in
phase diagram thermodynamics or programming
skills. The software will integrate intelligent prompts
and an error diagnosis system to assist users in
understanding parameter meanings, identifying data
inconsistencies, and providing optimization
suggestions. Output results will be presented through
rich charts, dynamic phase diagrams, and interactive
reports,  supporting  multidimensional  data
comparisons and one-click export, significantly
enhancing research efficiency.

e) Multi-physics field coupling algorithm: As
materials research advances into the realm of multi-
physics coupling behavior, future thermodynamic
optimization software will increasingly emphasize
collaborative modeling with electrical, magnetic, and
mechanical physical fields. The software will
incorporate built-in or open interfaces supporting
cross-physics coupling computational frameworks,
enabling integrated prediction of material phase
equilibrium, phase transitions, and physical properties
under the combined effects of thermal, electrical,
magnetic, and mechanical forces.

5. Conclusion

Accurate thermodynamic databases require
efficient optimization software for thermodynamic
evaluation. This paper reviews and evaluates
thermodynamic parameter optimization software and
algorithms. Widely used thermodynamic parameter
optimization software and their corresponding
algorithms are described. Smarter optimization
algorithms, the introduction of machine learning,
integration of multi-source data, more user-friendly
interfaces and the coupling of multi-physical fields
will guide future developments. The development of
new optimization algorithms and the expansion of
software with new features are now key research
directions for thermodynamic optimization software.
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Liang Zhang ?, Xinyi Zhang **, Yuling Liu **, Jiangxing Wang °, Taibai Fu ®, Shiyi Wen *, Bo Wang °,
Ziqing Xie ®, Yong Du *

@ Glavna drzavna laboratorija za metalurgiju prahova, Centralni juzni univerzitet, Cangga, Kina
® Glavna laboratorija za racunarstvo i stohasti¢ku matematiku (Ministarstvo obrazovanja), Hunan univerzitet,
Cangga, Kina
Apstrakt

Racunarska termodinamika obezbeduje kljucne informacije za projektovanje materijala. Metoda CALPHAD (CALculation
of PHAse Diagrams), zasnovana na termodinamickim bazama podataka, moze se koristiti za termodinamicku optimizaciju,
kao i za proracun faznih dijagrama i termodinamickih svojstava u visekomponentnim sistemima. U ovom radu dat je
pregled algoritama implementiranih u softverskim paketima za optimizaciju termodinamickih parametara. Ovi softverski
alati pruzaju snaznu podrsku razvoju preciznih termodinamickih baza podataka.

U radu su sumirani najnoviji napreci u razvoju softvera i algoritama za optimizaciju termodinamickih parametara, uz
analizu njihovih osnovnih karakteristika i potencijalnih ogranicenja. Na kraju su razmotreni razvojni trendovi softverskih
reSenja i algoritama za optimizaciju termodinamickih parametara. Ovaj pregledni rad ima za cilj da pomogne
zainteresovanim citaocima u razumevanju principa termodinamicke optimizacije i da doprinese daljem unapredenju
odgovarajucih algoritama.

Kljucne reci: CALPHAD; Metode optimizacije, Racunarska termodinamika; Baza podataka; Algoritam
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