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Abstract 

Computational thermodynamics provides essential information for materials design. The CALPHAD (CALculation of 
PHAse Diagrams) method based on thermodynamic databases can be used for thermodynamic optimization and for 
calculating phase diagrams and thermodynamic properties in multicomponent systems. This article reviews the algorithms 
implemented in software for optimizing thermodynamic parameters. These software tools offer strong support for 
developing accurate thermodynamic databases. Recent advances in algorithms for thermodynamic parameter optimization 
are summarized, and their respective characteristics and potential limitations are analyzed. Finally, the development trends 
of software and algorithms for thermodynamic parameter optimization are discussed. This review will help interested 
readers understand the principles of thermodynamic optimization and contribute to the advancement of related algorithms. 
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Introduction1.

Thermodynamics is the science of the state of 
systems, involving the relationships among 
temperature, heat, work and the state of the system [1, 
2]. Phase diagrams are the roadmap for understanding 
the conditions under which phases form or transform 
in any material system caused by changes in 
temperature, composition, pressure, or any other state 
variable [3-5]. With advances in thermodynamics and 
computer technology, the computational 
thermodynamic method known as CALPHAD 
(CALculation of PHAse Diagrams) [6-8] was 
developed. The CALPHAD method achieves the 
prediction of phase equilibrium and properties for 
multicomponent systems by constructing an accurate 
thermodynamic database. It significantly accelerates 
the research and development process of new 
materials being one of the cornerstone methods in the 
field of materials science and engineering [9]. Olson 
[10] among many others established a strategy for 
material design based on the CALPHAD method and 
designed high-performance materials. In recent years, 
an increasing number of high-performance materials 
have been developed using the CALPHAD method 
[11-13]. The flow chart of the CALPHAD method and 
its application is shown in Figure 1. Based on 
CALPHAD method, appropriate thermodynamic 

models were selected to describe each phase, 
thermodynamic parameters describing Gibbs energy 
of each phase were constructed, and an accurate 
thermodynamic database was then established [15, 
16]. The advantage of CALPHAD is that the Gibbs 
energy of each phase can be modeled hierarchically, 
which allows for generalizing from simple systems to 
multicomponent systems.  

The thermodynamic database can be used to 
calculate fundamental thermodynamic properties of 
multiple phases as well as phase diagrams of 
multicomponent systems. The CALPHAD database is 
now widely used in the development of alloy systems 
[17-24], oxide systems [25-31], and other systems 
[32-37]. The construction of a thermodynamic 
database relies critically on the development of 
optimization algorithms implemented in software. 
Since the 1970s, software for thermodynamic 
calculations and optimization have been developed. 
Such software includes the Lukas program [38], 
CATCalc [39], MTDATA [40], Thermo-Calc [41], 
Pandat [42], FactSage [43], OpenCalphad [44], 
ESPEI [45], ICALPHAD [46], Kunselman’s method 
[47] among others. This article systematically reviews 
the latest advancements in thermodynamic parameter 
optimization methods and algorithms, analyzes the 
advantages and disadvantages of different 
approaches, and outlines future development trends. 
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Algorithms developed to optimize 2.

thermodynamic parameters 
 
Once the Gibbs energy model of each phase is 

determined, the degrees of freedom of these models 
and their associated optimization parameters must be 
calibrated based on available thermodynamic 
properties and phase equilibrium data. Therefore, 
parameter fitting constitutes a multi-objective 
optimization problem. This section focuses on the 
widely used thermodynamic parameter optimization 
software and algorithms. 

 
Gradient-free methods 2.1.

 
The most popular fitting method currently used in 

thermodynamic parameter optimization is the 
weighted nonlinear least-squares method, which 
employs gradient-free techniques to iteratively solve 
the normal equations. Lukas program [38], CATCalc 
[39], MTDATA [40], Thermo-Calc [41], Pandat [42] 
and OpenCalphad [44] utilize this approach. The 
NOMAD (Nonlinear Optimization by Mesh Adaptive 
Direct Search) method used in FactSage [48] and the 
Bayesian parameter estimation ensemble Markov 
Chain Monte Carlo (MCMC) method used in ESPEI 
[45] demonstrate that black-box methods are 
becoming increasingly popular in thermodynamic 
optimization. Brief introductions to these software 
programs and their optimization algorithms are 
presented in the following sections. Few publications 
are available regarding the optimization algorithms 
used in CATCalc [39], MTDATA [40] and 
OpenCalphad [44]. Therefore, this work does not 
elaborate on them extensively. The objective function 
is constructed using expressions such as equation (1) 
or similar formulations. 

 
(1)  

 
 
where n is the total number of experimental 

values, and weighti is the weight factor associated 
with i experimental value. The calculated value is 
obtained from the current thermodynamic parameters, 

and estimated uncertainty is the experimental error. 
 

Lukas program 2.1.1.
 
BINGSS is a program designed for least-squares 

optimization of thermodynamic parameters based on 
phase equilibrium and thermodynamic data [49]. 
Quasi-binary systems can usually be treated by 
BINGSS in a manner similar to binary systems. 
BINGSS is the earliest program for the optimization 
of thermodynamic parameters. For ternary systems, a 
counterpart program named TERGSS is available. 

In the Lukas program, the Marquardt method [50] 
is adopted to optimize the loss function. The 
Marquardt method is an algorithm that interpolates 
between the Newton-Raphson method and the 
steepest-descent method. If the Marquardt parameter 
is large and the correction corresponds to the steepest 
descent step, where the length of the vector is the 
reciprocal of the Marquardt parameter. If the 
Marquardt parameter is small, the iterative step is 
close to the Newton-Raphson step. The main steps of 
this method are as follows: the first step involves the 
iterative adjustment of coefficients using the Gaussian 
normal equations, while the second step is 
programmed to minimize the sum of squared errors. 

 
Thermo-Calc 2.1.2.

 
Thermo-Calc is a thermodynamic calculation 

software package developed by the Royal Institute of 
Technology in Sweden [14, 41]. Based on the 
CALPHAD method, it supports phase diagram 
calculation and optimization, phase equilibrium 
analysis and thermodynamic prediction of 
multicomponent systems. It is widely used in a variety 
of material systems. The typical phase diagrams of 
different systems optimized and calculated by 
Thermo-Calc are shown in Figure 2. 

Optimization in Thermo-Calc is implemented in 
the PARROT module [55], which is used to fit 
thermodynamic/kinetic model parameters to 
experimental data. The PARROT module makes use 
of the GES module for modeling the various phases 
formed in a multicomponent system, as well as the 
POLY module for storing and calculating complex 
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Figure 1. Evaluation and optimization steps for the CALPHAD method [14]

(
(experimental value) ( )

(
iweight
calculated value

estimated
i 

uncerta ii

n

inty)
)




1

2



equilibria. Equation (1) is used to construct the loss 
function and weighted least squares is used for 
iterative optimization. The Levenberg-Marquardt 
(LM) [50, 56] algorithm is used in optimization. 

 
PANDAT 2.1.3.

 
PANDAT is a thermodynamics calculation 

software package for multicomponent materials 
developed by CompuTherm [42, 57, 58], supporting 
phase diagram calculation and optimization, phase 
transition simulation and materials design for alloys, 
ceramics and other systems. PanOptimizer is an 
optimization engine in PANDAT Software [42]. The 
PANDAT software offers two optimization methods, 
rough search and normal optimization. 
(1) Rough search 

PANDAT proposes a “rough search”: a set of 
model parameters with the best fit to the experimental 
phase boundary data will be found by minimizing the 
difference in chemical potentials between the two 
specified phases at equilibrium, as shown in Figure 3, 
and the least squares problem will be the following 
equation: 

 
(2) 

 

where wk is a weighting factor reflecting the 
measurement uncertainty of equilibrium k, i and j 
denote any two phases in the kth equilibrium, and u 
denotes the chemical potential. 
(2) Normal optimization 

According to the maximum likelihood principle, 
assuming that the differences between the calculated 
and experimental values of the model are independent 
and that the same distribution is a normal distribution 
function, a set of model parameters that best fits the 
given experimental data can be obtained by 
minimizing the sum of squares (least squares). In the 
actual modeling process, the experimental data may 
come from different subpopulations for which 
independent estimates of the error variance are 
available. In this case, the sum of squares can be 
written as: 

 
(3) 

 
 

where ej is the experimental measurement, m is the 
total number of measured values.  Φ is the model 
function. T is the temperature, x is the alloy 
composition, and p is the parameter vector in the 
thermodynamic model. The idea is to assign to each 
observation a weighting factor wj that reflects the 
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Figure 2. The phase diagrams of different systems were optimized and calculated using Thermo-Calc [51-54]
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measurement uncertainty. The validity and reliability 
of the method are demonstrated in the actual modeling 
process. 

 
FactSage 2.1.4.

 
FactSage, launched in 2001, integrates the 

FAC*T/FACT-Win and ChemSage thermochemical 
software packages [59, 60]. It is renowned for its 
ability to calculate thermochemical properties, 
including thermodynamic functions and phase 
diagrams [43]. 

The embedded OptiSage module employs the 
CALPHAD approach, linking thermodynamics with 
phase diagrams and other experimental data. By 
scanning the parameter space and evaluating the error 
sum for each parameter combination, the optimizer 
evaluates the solution space and strives towards 
improvements [48]. The optimization algorithm is 
iterative, involving continuous comparison between 
experimental and calculated results. The optimization 
settings offer two algorithms reported in the literature: 
NOMAD  and the Chain of Gaussian Processes [48]. 
NOMAD is specifically designed for black-box, 

nonlinear, and derivative-free problems with 
constraints [61]. It utilizes an adaptive mesh to search 
the parameter space, effectively identifying promising 
solutions and avoiding local minima in complex 
thermodynamic error landscapes. The error sum in the 
NOMAD optimizer is defined as follows. 

 
(4) 

 
where the ΔVE,i is the difference between the 

calculated (CVE,i) and measured (MVE ) values of 
experiment E at each evaluation i of the optimization, 
and WFE is the corresponding weight factor.  

Generally speaking, thermodynamic properties 
and phase equilibria exhibit different sensitivities to 
thermodynamic parameters when calculating ΔVE,i. 
As a result, the optimizer may encounter challenges 
such as plateau regions, local minima, and failed 
evaluations. As an alternative, the Chain of Gaussian 
Processes performs sequential optimizations using the 
Gaussian process optimizer from the scikit-optimize 
Python library [62]. This approach leverages 
Bayesian optimization to find the global optimum of 
an unknown, costly, and noisy objective function with 
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Figure 3. Schematic of rough search optimization in PANDAT [42]
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a minimal number of evaluations. The error sum in the 
Chain of Gaussian Processes optimizer, which is 
particularly advantageous for phase balance 
optimization, is expressed as follows. 

 
(5) 

 
where the ΔGE,i is the driving forces  calculated 

using the corresponding activity α, temperature T and 
gas constant R with the expression RTlnα. The 
introduction of the driving forces leads to improved 
convergence and optimization speed. Figure 4 shows 
the comparison of the sum of errors between the 
traditional method and the driving force method and 
the Pd-Sn system optimized by the driving force 
method. 

 
ESPEI 2.1.5.

 
ESPEI (Extensible Self-optimizing Phase 

Equilibria Infrastructure) is an open source, Python-
based software for evaluating thermodynamic model 
parameters [45, 63, 64]. The parameters obtained 
from ESPEI are used by PyCalphad [65, 66] to 
calculate thermodynamic properties and phase 
diagram. The phase diagram optimized by ESPEI and 
the uncertainty quantification are shown in Figure 5. 

ESPEI consists of two main steps: parameter 
generation and MCMC optimization. It employs a 
linear fitting strategy to parameterize the single-phase 
Gibbs energy function based on thermochemical data 
and subsequently refines the model parameters using 
phase equilibrium data through Bayesian parameter 
estimates within a Markov chain Monte Carlo 
machine learning method [68, 69].  

MCMC optimization employs Bayesian parameter 
estimation to optimize the thermodynamic 
parameters, and realizes the function of the 
thermodynamic parameters iteration and inconsistent 
optimization considering all data at the same time. 
MCMC optimization not only obtains the optimal 
parameters but also estimates the uncertainty 
associated with these parameters by analyzing the 
distribution of the sampled parameters. This enables 
ESPEI to provide confidence intervals for parameter 
estimates and additional information for the 
robustness of the model. Because MCMC 
optimization considers more degrees of freedom, and 
the initial parameters are often not close to the global 
optimal solution, a more general method is needed to 
obtain better initial parameters. The method 
implemented by ESPEI is similar to the rough search 
method implemented in PanOptimizer software [42]. 
Its expression is as follows: 
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Figure 4. The comparison of the sum of errors of different optimization methods and the optimized Pd-Sn system by 
FactSage [48]
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(6) 

 
where Gϕ is the single-phase, composition-

constrained minimum Gibbs energy conditioned on 
the composition at the ϕ phase vertex, ūi is the 
chemical potential of component i defining the target 
hyperplane, x̄ϕi is the composition of component i at 
the ϕ phase vertex. 

Theoretically, the MCMC optimization in ESPEI 
is applicable to multicomponent, multiphase systems 
with arbitrary degrees of freedom. However, in 
practice there is a challenge that most MCMC 
samplers assume that the model parameters are 
uncorrelated, while the parameters of each phase in 
CALPHAD are correlated. ESPEI solved this problem 
with an ensemble sampler proposed by Goodman and 
Weare [69].  

This ensemble sampler integrates Markov chains 
to generate the proposal distribution of the 
parameters, ensuring the proposal remain unchanged 
under affine transformations. This approach solves the 
problem of scaling the proposal length and different 
parameter sizes in multidimensional parameter space. 

 
Analytical gradient-based methods 2.2.

 
The analytical gradient-based methods can 

significantly reduce the computational cost of 
parameter optimization and improve efficiency. Most 
recently, Zhang et al. [46] used the gradient descent 
method to optimize the Ag-Pd and La-C systems. 
Kunselman et al. [47] employed the conjugate 
gradient (CG) method to optimize thermodynamic 
parameters of four binary alloy systems. 

 
ICALPHAD 2.2.1.

 
A new algorithm ICALPHAD for optimizing 

thermodynamic parameters is proposed by Zhang et 
al. [46]. This algorithm formulates a multi-objective 
optimization for various types of experimental data 
and employs the weighted sum method to convert the 
multi-objective optimization problem into a single-
objective optimization.  

Subsequently, the single-objective optimization is 
solved using the Barzilai-Borwein (BB) method [70]. 
The algorithm has been applied to optimize the 
thermodynamic parameters in the Ag-Pd and La-C 
systems, as shown in Figure 6.  

The optimization of thermodynamic parameters 
can be formulated as a multi-objective optimization, 
as defined by Eq.(7). 

 
(7) 
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Figure 5. Phase diagram optimized using ESPEI and uncertainty quantification [45, 67]
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where L1 (Θ), L2 (Θ, x̄), L3 (Θ) are the vectors of 
loss functions corresponding to thermodynamic 
properties, two-phase equilibria, and invariant 
equilibria in the binary systems, respectively. 

For thermodynamic properties, the loss function 
(8) is formulated by the least-squares method, 
combining the calculated values with the 
experimental data. This loss function is typically 
optimized at the initial stage of the overall 
optimization process because certain unknown 
parameters can be evaluated independently and 
directly, so that their approximate range can be 
determined. 

 
(8) 

 
where Θ is the thermodynamic parameters of all 

the phases in a system. M is the number of 
thermodynamic properties. 

For two-phase and invariant equilibrium, the loss 
functions are derived using the common tangent rule, 
as described mathematically in Eq.(9) and shown in 
Figure 6. This requires knowledge of the temperature 
and components mole fractions of each phase in the 
phase equilibrium. For invariant equilibrium, these 
values are known; however, for two-phase 
equilibrium, the components of one phase may be 
unknown, which would prevent the optimization from 

continuing. The algorithm overcomes this issue by 
optimizing the unknown components and using the 
Sigmoid transformation, as shown in Eq.(10) to 
remove the constraints on these unknown 
components. Furthermore, the algorithm accounts for 
certain special cases in phase equilibrium. For 
instance, when a pure element is present in a two-
phase equilibrium, the Gibbs energy at the 
equilibrium temperature corresponds to a point, then 
the loss function can be derived using only one of the 
equations in Eq. (9). This is analogous to the 
treatment of invariable equilibria. 

 
 
 
 

(9) 
 
 
 
 

(10) 
 

where α and β are phases in a two-phase 
equilibrium, x is mole fraction, and Θ is the 
thermodynamic parameters of all the phases in a 
system. 

Hence, the algorithm then employs the sum 
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Figure 6. Loss function construction and optimization system by Zhang et al. [46]
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weighted method to transform the multi-objective 
optimization (7) into a single-objective optimization, 
which is subsequently solved using the Barzilai-
Borwein (BB) method [70] in combination with the 
Zhang & Hager line search rule [71]. The weights for 
the weighted sum method [72] are given by Eq. (11). 

 
(11) 

 
where Lmax is the maximum among the sub-

objective functions, and  indicates the preferences 
assigned to the loss functions. This algorithm offers 
several advantages: (i) It exhibits a very weak 
dependence on initial value for thermodynamic 
parameters to be optimized; (ii) In the case that a 
phase equilibrium cannot be calculated with the given 
parameter, the algorithm can still optimize the 
parameters. And the optimization can continue even if 
the composition of one of the phases in the phase 
equilibrium is unknown; (iii) The introduction of the 
Sigmoid transformation can remove the constraints of 
compositions associated with previous algorithms.  

 
Kunselman’s method 2.2.2.

 
With the support of the ESPEI software, 

Kunselman et al. utilized the recently formally 
established Jansson derivative technique to analytic 
gradient-based optimization for the parameters of the 
CALPHAD model [47]. In this formulation, the 
model parameters θ are treated as external potentials, 
enabling the gradient of the objective (log-likelihood) 
function to be directly calculated using the following 
equation (12). The Jansson derivative is obtained 
through a strict analytical linearization derivation of 
the Gibbs energy minimization problem within the 
framework of thermodynamic equilibrium solution 
[73]. This analytical approach allows all equilibrium 
sensitivities to be computed directly from a single 
converged state, avoiding repeated minimization as 
required in finite-difference methods and thereby 
improving both computational efficiency and 
numerical stability. 

 
(12) 

 
 

where θ is model parameters and the term 
∂Xi

model/∂θj is obtained analytically via the Jansson 
derivative. 

The framework provides unified derivative 
expressions for multiple experimental data types, 
including equilibrium thermochemical data, activities, 
and zero-phase-fraction (ZPF) residual driving forces. 
The framework employs a conjugate gradient (CG) 
optimizer with line search and Jacobi-like 
preconditioning for efficient parameter updates. 

Comparative studies on several binary systems (Cu–
Mg, Fe–Ni, Cr–Ni, and Cr–Fe) demonstrated that the 
analytical gradient approach achieves one to three 
orders of magnitude faster convergence than finite-
difference or MCMC-based methods, while 
maintaining smooth and stable optimization near 
phase boundaries. The study operationalizes the 
Jansson derivative within a practical optimization 
framework, marking a theoretical shift in CALPHAD 
methodology from numerical equilibrium searches to 
differentiable thermodynamic modeling. It also lays 
the groundwork for automated, high-dimensional, 
gradient-driven thermodynamic database 
development. 

 
Discussion 3.

Discussion of software development 3.1.
 
The various software packages for thermodynamic 

parameter optimization possess distinct 
characteristics. BINGSS is arguably the earliest 
thermodynamic parameter optimization program. It 
constructs the objective functions to be optimized 
based on thermodynamic principles, offering good 
theoretical interpretability. However, it was not 
further developed since the publication in 1982 [49]. 
The Thermo-Calc software was extended and 
developed based on the BINGSS program, which uses 
a traditional loss function constructed by the least 
squares method, and has been widely used up to now 
[14, 41].  

The utility of the classical least squares method 
(Equation 1) for thermodynamic parameter 
optimization has been well documented over the 
years. However, a key limitation of this method is that 
if the initial parameters are poorly chosen, the 
measured phase equilibrium may not correspond to 
the stable phase equilibrium calculated using these 
parameters, making it impossible to obtain the 
calculated values needed for subsequent 
optimizations. The result is that optimizers need 
extensive experience in thermodynamics and 
optimization, which greatly raises the bar for 
thermodynamic optimization. A few problematic 
characteristics of the error sum function are shown in 
Figure 7 as plateau regions (b) , local minima (c) and 
failing evaluations (d) which are to be compared to a 
favorable error sum (a), which provides guidance 
towards a global minimum. 

To address these challenges, several research 
groups have focused on developing more robust 
optimization methods that are less dependent on 
expertly chosen initial parameters. For example, the 
use of driving forces in Calphad optimization has 
received increasing attention [42, 45, 73-76]. For 
instance: 

The PANDAT software has developed a “rough 
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search” method to quickly find better initial values 
when starting optimization [42].  

ESPEI uses Bayesian parameter estimation 
ensemble MCMC method for simultaneous Bayesian 
optimization of all model parameters, featuring an 
uncertainty quantification [45]. The methodology 
implemented in ESPEI is similar to the coarse search 
methodology implemented in PanOptimizer [42], 
where the residuals are the driving forces between the 
target equilibrium and the current hyperplane.  

Calphad Optimizer version 2 in FactSage solves 
the problem that traditional methods cannot optimize 
by introducing a driving force so that Gibbs energy 
directly acts on the sum of errors [48].  

ICALPHAD constructs the loss function by Gibbs 
energy curve and solves the multi-objective 
optimization problem by using a combination of the 
weighted sum method and the BB method, which 
achieves the optimization iteration automatically even 
if the initial values are randomly given [46]. 

Kunselman et al. [47] provided ideas for 
parameter optimization of CALPHAD models based 
on analytical gradients, so that more gradient-based 
optimization algorithms can be implement in 
thermodynamic parameter optimization. 

 
Discussion of optimization algorithms 3.2.

 
Gradient-free algorithms primarily encompass the 

LM algorithm [50, 56], the NOMAD method [61], 
and Bayesian parameter estimation ensemble MCMC 
method [68, 69]. The LM method [50, 56] adaptively 
switches between gradient descent and the Gauss-
Newton method, achieving relatively fast local 
convergence while maintaining numerical stability. 
However, as a local optimization method, it is highly 
sensitive to initial parameter values and prone to 
being trapped in local minima. Moreover, the first-
order derivatives required for the Jacobian matrix in 
the normal equations often lack analytical expressions 
in practical applications and must be approximated 
using numerical differentiation or other techniques, 
which significantly increases the computational cost. 

The NOMAD method [61] is a derivative-free 
optimization algorithm based on the Mesh Adaptive 
Direct Search (MADS) framework, making it 
particularly suitable for black-box or non-smooth 
objective functions. Consequently, it has been adopted 
for CALPHAD parameter optimization when reliable 
gradient information is unavailable. Its main 
limitations, however, are its relatively slow 
convergence rate and high computational cost in high-
dimensional parameter spaces. The Bayesian 
ensemble MCMC method [68, 69] offers a key 
advantage: the systematic quantification of parameter 
uncertainty. Instead of yielding a single deterministic 
parameter set. It generates posterior probability 
distributions, thereby providing a theoretical basis for 
assessing uncertainty in thermodynamic predictions. 
However, this approach is computationally intensive, 
strongly dependent on prior distribution choices, and 
expensive to implement for complex models. 

Analytical gradient-based optimization algorithms 
mainly include ICALPHAD [46] and Kunselman’s 
method [47]. ICALPHAD [46] employs the Barzilai-
Borwein (BB) method [70] combined with a 
nonmonotone line search criterion [71], which 
essentially belongs to the gradient descent family. Its 
advantages include reduced sensitivity to initial 
parameters, a high degree of automation, and minimal 
reliance on expert knowledge. However, it requires 
the computation of first-order derivatives of the 
objective function and is thus not applicable to 
complex models where analytical derivatives are 
unavailable. Kunselman’s method [47] employs the 
recently formalized Jansson derivative technique to 
enable analytical gradient-based optimization of 
CALPHAD parameters, followed by solution via the 
conjugate gradient method. By computing gradients 
analytically, this approach ensures high accuracy. 
Moreover, the conjugate gradient method offers fast 
convergence and high memory efficiency. Analytical 
gradient-based methods are currently only applied to 
relatively simple binary systems, and their 
applicability to complex binary and ternary systems 
remains to be verified. 
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Figure 7. Possible characteristics of the error sum as a function of parameter values: a) shows the desired case, while b) 
to d) showcase problematic error-sum dependencies, which inhibit the optimizer from finding the best possible 
solution [48]



Future development of algorithm to 4.
optimize thermodynamic parameters 
 
In the future, algorithms and software for 

thermodynamic parameter optimization are expected 
to evolve significantly, driven by advances in 
computational power, data availability, and cross-
disciplinary methodologies. The evolution will likely 
focus on the following key directions: 
a) Development of more intelligent algorithms and 
processes: future thermodynamic optimization 
algorithms will further enhance their autonomy and 
intelligence, with the core focus on reducing reliance 
on manual intervention. By incorporating new 
techniques, algorithms can automatically adjust 
optimization parameters (such as step size, 
convergence criteria, weight distribution, etc.) based 
on different system characteristics and dynamically 
optimize iteration paths. Simultaneously, the 
synergistic mechanism between global optimization 
and local search will mature further. By integrating 
heuristic algorithms (such as genetic algorithms and 
particle swarm optimization) with deterministic 
methods (like gradient descent and Newton’s 
method), more efficient and stable parameter fitting 
will be achieved. Developments in this direction will 
significantly reduce the time costs for users in 
parameter tuning and step design, making the 
optimization process more automated and reliable. 
b) Deeper integration of AI and machine learning: 
Artificial intelligence and machine learning 
technologies will profoundly empower 
thermodynamic optimization processes, serving as the 
core engine for next-generation software. On one 
hand, potential function and state equation modeling 
based on neural networks can extract underlying 
patterns from vast experimental and first-principles 
data. On the other hand, reinforcement learning can 
guide the selection of optimization paths, enhancing 
search efficiency in multi-objective, high-dimensional 
parameter spaces. Furthermore, generative models 
hold promise in assisting the construction of initial 
thermodynamic parameters. 
c) Integration of multi-source data: First-principles 
calculations and molecular dynamics simulations can 
provide supplementary data, but seamlessly 
integrating them with experimental data and 
quantifying error propagation remains a challenge. 
Furthermore, first-principles calculations, 
experimental phase diagrams, and thermodynamic 
measurements may yield conflicting results, requiring 
algorithms to automatically identify reliability and 
perform weighted fusion. 
d) Enhanced user-friendliness and accessibility: 
Software interface design will increasingly prioritize 
user experience, evolving toward intuitive, graphical, 
and low-barrier approaches. Through visual 

programming modules, drag-and-drop workflow 
construction, and natural language interaction 
capabilities, users can effortlessly complete data 
import, model configuration, computation execution, 
and result analysis without requiring deep expertise in 
phase diagram thermodynamics or programming 
skills. The software will integrate intelligent prompts 
and an error diagnosis system to assist users in 
understanding parameter meanings, identifying data 
inconsistencies, and providing optimization 
suggestions. Output results will be presented through 
rich charts, dynamic phase diagrams, and interactive 
reports, supporting multidimensional data 
comparisons and one-click export, significantly 
enhancing research efficiency. 
e) Multi-physics field coupling algorithm: As 
materials research advances into the realm of multi-
physics coupling behavior, future thermodynamic 
optimization software will increasingly emphasize 
collaborative modeling with electrical, magnetic, and 
mechanical physical fields. The software will 
incorporate built-in or open interfaces supporting 
cross-physics coupling computational frameworks, 
enabling integrated prediction of material phase 
equilibrium, phase transitions, and physical properties 
under the combined effects of thermal, electrical, 
magnetic, and mechanical forces. 

 
Conclusion 5.

 
Accurate thermodynamic databases require 

efficient optimization software for thermodynamic 
evaluation. This paper reviews and evaluates 
thermodynamic parameter optimization software and 
algorithms. Widely used thermodynamic parameter 
optimization software and their corresponding 
algorithms are described. Smarter optimization 
algorithms, the introduction of machine learning, 
integration of multi-source data, more user-friendly 
interfaces and the coupling of multi-physical fields 
will guide future developments. The development of 
new optimization algorithms and the expansion of 
software with new features are now key research 
directions for thermodynamic optimization software. 
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Apstrakt 
 
Računarska termodinamika obezbeđuje ključne informacije za projektovanje materijala. Metoda CALPHAD (CALculation 
of PHAse Diagrams), zasnovana na termodinamičkim bazama podataka, može se koristiti za termodinamičku optimizaciju, 
kao i za proračun faznih dijagrama i termodinamičkih svojstava u višekomponentnim sistemima. U ovom radu dat je 
pregled algoritama implementiranih u softverskim paketima za optimizaciju termodinamičkih parametara. Ovi softverski 
alati pružaju snažnu podršku razvoju preciznih termodinamičkih baza podataka. 
U radu su sumirani najnoviji napreci u razvoju softvera i algoritama za optimizaciju termodinamičkih parametara, uz 
analizu njihovih osnovnih karakteristika i potencijalnih ograničenja. Na kraju su razmotreni razvojni trendovi softverskih 
rešenja i algoritama za optimizaciju termodinamičkih parametara. Ovaj pregledni rad ima za cilj da pomogne 
zainteresovanim čitaocima u razumevanju principa termodinamičke optimizacije i da doprinese daljem unapređenju 
odgovarajućih algoritama. 
 
Ključne reči: CALPHAD; Metode optimizacije, Računarska termodinamika; Baza podataka; Algoritam 
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