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Abstract

Two different numerical schemes, the standard explicit scheme and the time-elimination relaxation one, in the framework
of phase-field model with finite interface dissipation were employed to investigate the solute trapping effect in a Si-4.5 at.%
As alloy during rapid solidification. With the equivalent input, a unique solute distribution under the steady state can be
obtained by using the two schemes without restriction to numerical length scale and interface velocity. By adjusting
interface width and interface permeability, the experimental solute segregation coefficients can be well reproduced. The
comparative analysis of advantages and disadvantages in the two numerical schemes indicates that the time-elimination
relaxation scheme is preferable in one-dimensional phase-field simulation, while the standard explicit scheme seems to be
the only choice for two- or three dimensional phase-field simulation. Furthermore, the kinetic phase diagrams in the Si-As
system were predicted by using the phase-field simulation with the time-elimination relaxation scheme.
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1. Introduction

Rapid solidification technology represents an
important method for empoldering new materials.
With extremely high growth velocity, rapid
solidification helps to achieve non-equilibrium
microstructure, such as amorphous and quasicrystal,
which show completely different properties compared
with those in equilibrium or near equilibrium states
[1]. During rapid solidification, the solute may be
entrapped by the rapidly moving solid-liquid interface
with a quantity in concentrations that differ
significantly from those given by the equilibrium
phase diagram. This phenomenon in rapid
solidification is commonly referred as “solute
trapping” [2, 3]. Solute trapping can be characterized
by the velocity-dependent solute segregation
coefficient k(V) with V as the interface velocity. Due
to its theoretical and technological importance, the
feature of solute trapping has been studied extensively
in the literature, not only by means of experimental
investigations [4-6], but also by employing various
theoretical models, such as analytical models based
on a sharp interface hypothesis [7-14] or phase-field
simulations based on diffusion interface models
[15-23].

In the sharp-interface picture, there are two
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important analytical models for describing solute
trapping: (1) the continuous growth model (CGM)
[7, 8] and (2) local non-equilibrium model (LNM)
[9-14]. The CGM is formulated by assuming a flux
balance across a moving solid-liquid interface, giving
a good fit to the experimental solute segregation
coefficients at low and medium interface velocities.
The LNM is based on a similar approach as the CGM,
but makes use of a generalized Fick's law that
accounts for the finite relaxation time of the diffusion
flux into its steady state. With LNM, the complete
solute trapping (i.e. the solute segregation coefficient
equals to 1) at finite interface velocity can be nicely
predicted which means that the experimental solute
segregation coefficients over the entire range of
interface velocities can be well reproduced. Though
these sharp-interface analytical models can nicely
characterize the solute trapping phenomenon, the
microstructure evolution during rapid solidification
can be only simulated by using the phase-field
method, which has been widely utilized to describe
the non-equilibrium effect in phase transformations,
and especially in rapid solidification, for the past two
decades.

The phase-field model for describing the alloy
solidification was first developed by Wheeler et al.
[15-17], and later named as the Wheeler-Boettinger-
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McFadden (WBM) model. Based on the WBM
model, Danilov and Nestler [18] developed a
parabolic phase-field model, and investigated the
effect of non-equilibrium solute trapping in a binary
Si-As alloy during rapid solidification. The parabolic
phase-field model can reproduce the experimental
data at low and medium interface velocities, as does
by the CGM. In order to describe the complete solute
trapping at finite solidification velocity, Galenko and
his co-workers [19] developed a so-called hyperbolic
phase-field model by considering the inertial effects
within the interface based on the WBM model. As
claimed by Lebedev et al. [19], the hyperbolic phase-
field model is able to predict a sharp transition to
complete solute trapping, which is in good agreement
with the experimental observation. However, so far,
the hyperbolic phase-field model can only reproduce
the complete solute trapping and experimental data
with the nanometric width of the diffuse interface.

Very recently, a phase-field model with finite
interface dissipation has been developed for the
description of non-equilibrium phase transformations
[20, 21] on a mesoscopic scale in the framework of
multi-phase-field model [24-26]. At the mesoscopic
scale, the concentration field, is split into the phase
concentrations defined for the individual bulk phases
[27]. The solute redistribution at a moving phase
boundary is then considered by a local redistribution
flux between the phase concentration fields which
overlap at the interface. The key feature of this model
is that the two concentration fields are linked by a
kinetic equation which describes the exchange of the
components between the phases [20], instead of an
equilibrium partitioning condition. To adjust the
interface dissipation in this exchange, an interface
permeability, P, was introduced into the model [20].
By adjusting the interface permeability and interface
width simultaneously, the experimental solute
segregation coefficients can be nicely reproduced by
the phase-field simulation in the length scale of
micrometer [20], which provides a possibility of
three-dimensional (3-D) simulation of rapid
solidification in a large scale (~pm) [22, 23].

In order to apply the phase-field model with finite
interface dissipation to simulate the solute trapping in
target alloys during rapid solidification, especially for
the future 3-D large-scale simulation, an appropriate
numerical scheme needs to be chosen. In general,
there are two numerical schemes available in the
literature. The first scheme is the standard explicit
scheme, which is usually adopted in the previous one-
dimensional (1-D) simulations [20, 22, 23] using the
phase-field model with finite interface dissipation. In
the standard explicit scheme, the temporal and spatial
partial differential equations are solved directly by
using the classic explicit scheme. If the initial alloy
composition and a temperature are given, the solute

distribution and solid-liquid interface velocity in the
steady state can be predicted. The second scheme is to
eliminate temporal effect in the evolution equations of
phase field and concentration by introducing a
reference of moving frame, z = x-V#, which is moving
with a constant velocity V at the centre of the
interfacial zone given by ¢ = 1/2 at z = 0 [18, 19].
With the input of interface velocity and initial alloy
composition, the solute distribution and temperature
at the front of solid-liquid interface can be predicted
on the basis of the relaxation resolution [18, 19]. In
order to differentiate from the standard explicit
scheme, the second method is named as "the time-
elimination relaxation scheme" here.

According to the previous publications [20, 22,
23], the standard explicit scheme is easily coded, but
its numerical convergence to the steady state seems to
be slow when the interface velocity is low or the
simulation is in large-scale. While for the time-
elimination relaxation scheme, its numerical
convergence to the steady state is efficient, but the
reliability for its application in the length scale of
micrometer needs to be validated. Consequently, it is
necessary to perform a comparative analysis of these
two numerical schemes in the framework of phase-
field model with finite interface dissipation, from
which an appropriate numerical scheme is expected to
be proposed for simulating solute trapping and
microstructure evolution in a rapid solidified alloy. In
order to achieve this goal, a Si-4.5 at.% As alloy is
chosen as the target in the present work due to
available experimental data in this binary alloy [6].
1-D phase-field simulations of the solute trapping
effect in Si-4.5 at.% As alloy during rapid
solidification are thus performed in the present work
using both standard explicit scheme and time-
elimination relaxation scheme in the framework of
phase-field model with finite interface dissipation.

2. Phase-field model with finite interface
dissipation

According to Refs. [20, 21], a binary system with
only an a-f transition can be described by the phase
field ¢, that varies between 0 (not phase o) and 1
(phase a), its complement ¢, = 1 - ¢_and the overall
composition ¢ of solute As (unit: mole/cm?). The
standard assumption is made that the molar volume
for both phase a and g is independent of the
composition and remain constant during phase
transformation. In the phase-field model with finite
interface dissipation, the separate phase concentration
fields ¢, and ¢, are introduced and the overall
concentration ¢ 1s given by a mixture rule varying
with location x and time #:

c(x,t)zca (x,t)¢a(x,t)+cﬂ (x,t)¢ﬂ(x,t) @)
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During solidification, the total free energy F can be
divided into the interfacial part / and the chemical
part £ [20]:

F= .[Q {fintf + fchem} (2)
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Where 7 is the interface width, and o, the
interfacial energy. In Eq. (4), the Lagrange multiplier
A is introduced to ensure solute conservation, and its
expression is proposed as [20]:
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Where P has the dimension of an inverse action
density (cm*/Js). In fact, P is the rate constant
controlling the interface dissipation, and it can be
estimated as:

Minter
P=r(n)5 (©)
atom
Where 6 _ is the atomic interface width, while

atom

M™er is the atomic mobility over the interface as a
mixture from the chemical mobility in each phase.
f(n) is a function of the numerical interface width
nwith the dimension [m™], and has been set to be
8/n as a first approximation in [20] and inversely
with 1 %% in [22], respectively.
Based on the above free energy functional, the
evolution equations for phase concentrations, ¢, and
can be expressed as:

ﬂ’
[3)
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Where D and D, are the chemical diffusivities in
the a and f phases, respectively, which can be
experimentally measured [28, 29] or calculated from
the atomic mobility databases [30, 31]. The second
part in Egs. (7) and (8) describes the flux of solute
between the phases due to a difference in the diffusion
potentials /I, =0f;, /0c, andfiz =dfj /ocs. The third term
represents the change of the phase concentrations due
to phase change In fact, the summation of Egs. (7)
and (8) gives the standard evolution equation of
overall concentration, ¢ =V (¢, D, Ve, )+V(¢ﬂ DgVep).

However, the nontrivial pomt is that this suspends
the need to employ an extra condition to fix the
concentrations for each phase. Instead, one can use
the separated concentration evolution equations of

each phase for the iteration, which is applicable for
arbitrary initial conditions, ranging from the
equilibrium state to strongly non-equilibrium state.

According to Steinbach et al. [20], the evolution
equation for the phase field ¢, is given by:

¢.oc = K{Gaﬁ [V 2¢a 2 (¢a 7)] - 7\j¢a (1 ¢0¢ Agphl} (9)
Where the chemical dr1V1ng force, Agap is expressed as:

ALY = foy = 5 + By +9pi15)(cp—c4) (10)

K in Eq. (9) is a modified interface mobility given by:

8PT].”a/3

K= 2, .2
8PN+ popm”(cu—Cp)

(1)
Where pt 8 is the physical interface mobility.

3. Numerical schemes
3.1 Standard explicit scheme

Following the previous work [20, 22, 23], the
simulations using the standard explicit numerical
scheme in the framework of the phase-field model
with finite interface dissipation are performed under
isothermal conditions with different temperatures
below or slightly above the solidus temperature of the
Si-4.5 at.% As alloy. With these settings, the steady-
state solidification growth can be reached during the
simulation, and the interface velocity as well as the
solute segregation coefficient can be determined.

In this standard explicit scheme, 1-D explicit
phase-field simulations are performed by
simultaneously solving the phase concentration
evolution equations (7) and (8) and the phase-field
evolution equation (9). The left and right boundaries
for phase field are set as insulation conditions. As for
the concentrations, an insulation condition is used for
the left boundary, while the concentration at the right
boundary is fixed at the initial alloy concentration, i.e.
Si-4.5 at.% As. A moving frame is used to determine
the interface velocity. The interface velocity and
solute segregation coefficient vary simultaneously as
the simulation temperature changes continuously. The
interface permeability P is estimated to be 2.5x10*
cm?/(Js) for the first simulation. In addition, the total
simulation size is large enough to keep a length of 10
times the diffusion length of the liquid profile when a
lower interface velocity is used.

3.2 Time-elimination relaxation scheme

The time-elimination relaxation scheme is started
by introducing a reference of moving frame:

(12)

z=x-Vt
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Table 1. Materials  parameters for the phase-field
simulation of the solute trapping in Si-4.5 at.% As

Parameter Symbol Value Reference
Grid spacing Ax 9.375x10” cm present
work
Interface width | 17 | 1.875x107cm | PO
work
Interface energy O, | 4.77 X107 J/cm? [32]
Interface mobility | K, 2.56 cm*/Js [20]
Chemical
diffusivity of solid | Dy 3.0x10° cm?¥s [6]
phase
Chemical
diffusivity of liquid| D, 1.5%10° cm?¥s [6]
phase
Melting T 1685 K [32]
temperature
Liquidus slope m, -400 K/at.% [18]
Equilibrium
partitioning k, 0.3 [6]
coefficient
Molar volume of
vV 3
solid/liquid phase | " 12 em*/mol 1 [18]

Propagating at a constant velocity » and
coincident with the center of the interface given by
¢ ,=1/2atz=0. Egs. (7) to (9) then become:
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The simulation temperature is resolved by the
Gibbs-Thomson equation:

(16)

Where «is the curvature term, while Ag is the
chemical driving force which depends on the
simulation temperature and compositions. In 1-D
steady-state simulation, one can have the curvature
k = 0 and the kinetic coefficient K in the phase-field
model with finite interface dissipation is used to
describe the influence of finite diffusion and

V =pn{ox +Ag}

redistribution on the phase transition process. Thus,
equation (16) can be simplified as:

V=K-Ag (17)
The phase-field simulations using the time-
elimination relaxation scheme are conducted by
solving the concentration evolution equations (i.e.,
Egs. (13) and (14)), the phase-field evolution equation
(i.e., Eq. (15) and Eq. (17)). The initial boundary
conditions for phase field and concentrations and the
simulation size used in the standard explicit
simulation scheme are retained in the time-
elimination relaxation scheme. The spatial derivatives
are discretized using finite differences on the same
grid size with the explicit scheme. Starting from an
initial value (¢ ,.,(2), c,(2), ¢,.,(2), ¢4.,(2), T,), the
iterations (¢ , (z) c(z). c, n(z) cﬁ,”(z) T) for n>1
are computed unt1l the convergence criteria I ¢ ,
¢ .., N1<10%lc-c, ,1<107, and ||cln—c,., I\ <
10% 0 (z a or ﬁ) are reached, where | ¥l is theL -
norm of the finite difference representation of a
function ¥ (z).

4. Solute segregation coefficient

In the phase-field model with finite interface
dissipation, the individual phase concentrations are
utilized and each position over the interface can be
assumed to be a sharp interface. Thus, the solute
segregation coefficient is defined as [20]:

far-field concentration Cg

k(V)=—: — — =
maximun of the liquid concentration  max|c, |

~ cs (18)
¢ ($=0.9999)

The far-field concentration in the liquid is equal to
the concentration in the bulk solid under steady-state
condition and the maximum of the liquid
concentration across the interface is at the position
adjacent to the solid bulk region. For simplicity, the
maximum of the liquid concentration is assumed to be
the liquid concentration at ¢=0.9999. These
concentrations can be achieved in a typical steady-
state concentration profile during rapid solidification.

5. Results and discussion

Fig. 1 displays the flow chart for the comparative
analysis of two numerical schemes in the present 1-D
phase-field simulations of solute trapping in the Si-4.5
at.% As alloy during rapid solidification. With input
of the initial phase compositions ¢, c,, and
simulation temperature T, the phase- field simulations
using the standard exphclt scheme were performed
firstly, resulting in output of a set of interface velocity
V, solute segregation coefficient k (7) and solute
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Figure 2. Phase-field simulated concentration profiles
using two different phase-field schemes with
‘e c e different interface widths and interface
Gy D i Seh permeabilities: (a) n=1.875<107 cm, P =
Vo kn(V) T, kyV) ,

2.5%x10* em®/(Js), (b) n=1.875%x10° cm, P =
1.0X10° em?/(Js), (c) n=1.875%x107 cm, P= 70

cm?®/(Js). The solid lines denote the overall

Q=ing concentrations, while the dotted lines the liquid

concentrations due to the standard explicit

Figure 1. Flow chart of two different numerical schemes in scheme. Symbols represent the results due to the

the 1-D phase-field simulations of solute trapping time-elimination relaxation scheme (0 denotes

in the Si-4.5 at.% As alloy during rapid the overall concentration, while+  the liquid
solidification

concentration)
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equals to 1.875x107cm, as shown in Table 1. The
corresponding liquid concentration profiles are also
displayed in the figures. As can be seen in the figures,
under the steady state, the simulated concentration
profiles from the two numerical schemes reach an
ideal agreement over a wide range of interface
velocities. Moreover, the overall concentration profile
in the solid phase has a uniform value equal to the far-
field concentration c, in the liquid under the steady
state. The overall concentration increases in the
interface region due to the rejection of solute atoms by
the growing solid. In the liquid ahead of the interface,
a concentration boundary layer forms due to the
diffusive transport of the rejected solute atoms into
the liquid. As temperature decreases and interface
velocity increases, both maximum solute
concentration and spatial penetration of the liquid
concentration profile diminishes, which demonstrates
an increase of solute segregation at the interface and
an occurrence of the solute trapping. Additionally, it
can be further found that the numerical interface
width has also significant effect on the composition
distribution. As the interface width increases, the
maximum overall concentration and the range of
concentration boundary layer decreases, which
represents the extra solute trapping due to the part of
the interface width in numerical simulation that
exceeds the atomistic width.

Fig. 3 exhibits the relations between the interface
velocity V and the temperature 7 due to the phase-
field simulations of solute trapping in Si-4.5 at.% As
during rapid solidification via both standard explicit
scheme and time-elimination relaxation scheme with
different sets of interface widths (17) and
permeabilities (P). As shown in the figures, the
interface velocity varies monotonically with the
simulation temperature 7. Moreover, the V~T
relations due to the two different simulation schemes
are consistent with each other for different sets of
interface widths ( 17) and permeabilities (P)

The predicted velocity-dependent solute
segregation coefficients k(V) for different sets of
interface widths ( 17) and permeabilities (P) due to the
phase-field simulations via the standard explicit and
time-elimination relaxation simulation schemes are
presented in Fig. 4(a). As shown in the figure, the
predicted velocity-dependent solute segregation
coefficients due to the two different numerical
schemes are in reasonable agreement with each other.
It can be further observed in Fig. 4(a) that the
velocity-dependent solute segregation coefficient (V)
generally increases as interface velocity increases,
indicating the enhancement of the solute-trapping
effect. Specifically, the decrease in the interface
permeability P can noticeably enhance the solute-
trapping effect, which is attributed to the decrease of
the chemical partitioning process. Meanwhile, the

solute segregation coefficient can also be influenced
as the interface widths changes. As demonstrated in
references [20, 22], by adjusting 71 and P, the
experimental solute segregation coefficients can be

(a)

10.0
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O Time-elimination relaxation
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n=1.875-10" cm
P=2.5-10"cm’/(Js)
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0.1

1550 1600
Temperature(K)

1500 1650

~
=)
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10.0

1.0 | — Standard explicit scheme
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n=1.875-10"cm
P=1.0-10’ cm’/(Js)
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O Time-elimination relaxation
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n=1.875-10" cm
P=7.0-10" cm’/(Js)
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z

0.1 - -
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Temperature(K)
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Figure 3. Phase-field simulated interface velocity as a
function of temperature in the Si-4.5 at.% As
alloy due to different numerical schemes with
different interface widths: (a) n=1.875%<107 cm,
(b) n=1.875<10° cm, (c) n=1875x10" cm.
Lines denote the results by the standard explicit
scheme, while symbols denote those by the time-
elimination relaxation scheme
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well reproduced. The k(V) curves based on the
optimal set of interface width and the interface
permeability via both standard explicit scheme and
time-elimination relaxation scheme are plot in Fig.
4(b), compared with the experimental data from Kittl
et al. [6]. As presented in this figure, the experimental
data can be nicely reproduced by both standard
explicit simulation scheme and time-elimination
relaxation simulation scheme, which indicts the
reliability of the present simulation.

On the basis of Fig. 3 and Fig. 4, it can be
concluded that the phase-field model with finite
interface dissipation can be used to simulate the rapid
solidification process by using both standard explicit
and time-elimination relaxation simulation schemes.
With the same input, the same results can be obtained
by using the two schemes without restriction to
numerical length scale and interface velocity.
Moreover, the convergence of the standard explicit
scheme to the steady-state is very slow when the
undercooling is low (that is, the interface velocity is
low). By contrast, with the time-elimination
relaxation scheme, the steady concentration
distribution can be quickly acquired due to the
elimination of temporal effect in the evolution
equations. Therefore, for a 1-D simulation of rapid
solidification in a target alloy using the phase-field
model with finite interface dissipation, the time-
elimination relaxation scheme is recommended.
However, it should be also pointed out here that such
a time-elimination relaxation scheme is not suitable
for the future 3-D phase-field simulations of
microstructure evolution during rapid solidification,

(a)
1.00 —
—Seheme @ PIA 1_9375.10%em
Time-elimination™ p_y 2.10%'cm’,
A relaxation scheme P=2-5'10°cm’/(Js)
0.90 | .
sSctla:gglaerd explicit 1=9.375-10%cm 08,

" oL — o’a
Time-elimination P=1,0-10°cm’,
O relaxation scheme P=1.0-10em’/(3) -8
0.80 F

0.70

0.60

Solute Segregation Coefficient

0.50 o Standard explicit "
02 ““scheme I n=9.37510%m
Time-elimination  P=7.0-10'em’/(Js
,@0 ° relaxation scheme )
0.40 L
0.10 1.00 10.00

Interface Velocity (m/s)

which can be described by the standard explicit
numerical scheme.

What's more, kinetic phase diagram is a useful
guidance to predict the phase concentrations at the
target solidification velocity in industry design of new
materials. According to the above discussion, both
numerical schemes in the phase-field simulation can
be applied to obtain kinetic phase diagram. For the
standard explicit scheme, by adjusting the
solidification temperature and initial alloy
concentration, the solute segregation coefficient at a
specific interface velocity, from which the kinetic
phase diagram can be constructed, can be in principle
predicted. However, the simulation process with the
standard explicit scheme is numerical inefficient.
While for the time-elimination relaxation scheme,
with input of the fixed interface velocity and the
varied initial alloy concentrations, the corresponding
kinetic phase diagram can be easily acquired. Thus,
the time-elimination relaxation scheme is used here to
build the kinetic phase diagrams in the Si-As system.
Fig. 5 illustrates kinetic phase diagrams of the Si-As
system for different interface velocities based on the
present phase-field simulation using the time-
elimination relaxation scheme. In addition, the
comparison with the equilibrium phase diagram of the
Si-As system (i.e., V approaches to 0 m/s, denoted by
solid lines) is also made in Fig. 5. The results show
that the gap between liquidus and solidus gradually
reduces as the interface moving velocity V increases,
which demonstrates an occurrence of solute trapping
and the tendency to diffusionless solidification.
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Figure 4. (a)Model-predicted solute segregation coefficients k,(V) as a function of the interface velocity in the Si-0.045 As
alloy due to 1-D phase-field simulation using two different numerical schemes with different sets of interface
widths and interface permeabilities. Lines denote the results by the standard explicit scheme, while symbols
denote those by the time-elimination relaxation scheme. (b) Model-predicted solute segregation coefficients in the
Si-0.045 As alloy due to the phase-field simulation using two different numerical schemes with the optimal
interface width and interface permeability, compared with the experimental data from Kittl et al. [6]
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Figure 5. Model-predicted kinetic phase diagrams (dash
lines) of the Si-As system at different interface
velocities due to the 1-D phase-field simulation
using the time-elimination relaxation scheme: (a)
V=0.1 m/s, (b) V=1.0 m/s, (c) V=2.5 m/s. Solid
lines represent the equilibrium phase diagram of
the Si-As system

6. Conclusion

A comparative analysis of two different numerical
schemes, the standard explicit scheme and the time-
elimination relaxation scheme, in the framework of
phase-field model with finite interface dissipation was
performed by applying to investigate the solute
trapping effect in a Si-4.5 at.% As alloy during rapid
solidification. It was found that with the equivalent
input, both numerical schemes can give the unique
solute distribution. Moreover, the solute trapping
phenomenon was nicely described, and the
experimental solute segregation coefficients can be
well reproduced with an optimal set of interface width
and interface permeability. Based on a comprehensive
analysis of advantages and disadvantages of the two
numerical schemes, the time-elimination relaxation
scheme was highly recommended for one-
dimensional phase-field simulation of rapid
solidification process. As for the future two- or three
dimensional phase-field simulation, the standard
explicit scheme might be the only choice. In addition,
the technically important kinetic phase diagrams of
the Si-As alloys were also predicted by using the one-
dimensional phase-field simulation with the time-
elimination relaxation scheme.
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