ANALYSIS OF VARIATION OF SERUM CEA, SCC, CYFRA21-1 IN PATIENTS WITH LUNG CANCER AND THEIR DIAGNOSTIC VALUE WITH EBUS-TBNA

ANALIZA VARIJACIJE SERUMA CEA, SCC, CYFRA21-1 KOD PACIJENATA SA KARCINOMOM PLUĆA I DIJAGNOSTIČKA VREDNOST UZ PRIMENU EBUS-TBNA

YanJia Du, Ya Wen, JieYu Huang

Department of Respiratory and Critical Care Medicine, Meizhou People’s Hospital, Meizhou City, Guangdong Province, 514000, China

Summary
Background: To explore the variation of serum carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and squamous cell carcinoma (SCC) antigen in patients with lung cancer (LC) and their diagnostic value with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA).

Methods: This study examined the diagnostic value of serum tumor marker testing and EBUS-TBNA joint detection for LC in 150 patients with suspected LC.

Results: Compared to benign patients, the serum levels of CYFRA21-1, SCC, and CEA in LC were higher (P<0.05). In patients with squamous cell carcinoma (LSCC), small cell lung cancer (SCLC), and lung adenocarcinoma, lung adenocarcinoma had higher serum CEA levels (P<0.05). In comparison, LSCC patients had higher serum SCC and CYFRA21-1 levels (P<0.05). As compared to each index detected alone, the AUC of combined detection of each index to diagnose LC and identify pathological types of LC was elevated.

Conclusions: The clinical significance of serum CYFRA21-1, SCC, and CEA conjugated with EBUS-TBNA is demonstrated for diagnostic purposes and identification of LC pathological types.

Keywords: lung cancer, carcinoembryonic antigen, cytokeratin 19 fragment, squamous cell carcinoma antigen, ultrasound-guided transbronchial needle aspiration, joint diagnosis, diagnostic value, pathological type

Kratak sadržaj
Uvod: Cilj istraživanja je da se ispitaju varijacije serumskog karcinoembrionskog antigena (CEA), citokeratin 19 fragmenta (CYFRA21-1) i antigena skvamoznih čelija (SCC) kod pacijenata sa karcinomom pluća (KP) i njihov dijagnostički značaj u vezi sa ultrazvučno vodenom transbronhijalnom aspiracijom iglom (EBUS-TBNA).

Metode: Ovo istraživanje je ispitivalo dijagnostički značaj testiranja tumorskih markera u serumu i zajedničko otkrivanje EBUS-TBNA za KP kod 150 pacijenata sa sumnjom na KP.

Rezultati: U poređenju sa benignim pacijentima, nivoi CYFRA21-1, SCC i CEA u serumu kod KP su bili viši (P<0,05). Kod pacijenata sa karcinomom skvamoznih čelija (LSCC), karcinomom malih čelija pluća (SCLC) i adenokarcinomom pluća, adenokarcinom pluća je imao vići nivo CEA u serumu (P<0,05). Sa druge strane, pacijenti sa LSCC su imali više nivoa SCC i CYFRA21-1 u serumu (P<0,05). U poređenju sa svakim indeksom koji se detektuje pojedinačno, AUC kombinovanog otkrivanja svakog indeksa radi dijagnoze KP i identifikacije patoloških tipova KP je bio povećan.

Zaključak: Pokazan je klinički značaj serumskih markera CYFRA21-1, SCC i CEA u vezi sa EBUS-TBNA u dijagnostičke svrhe i identifikaciju patoloških tipova KP.

Ključne reči: karcinom pluća, karcinoembrionalni antigen, citokeratin 19 fragment, antigen skvamoznih čelija, ultrazvučno vodeno transbronhijalna aspiracija iglom, zajednička dijagnoza, dijagnostički značaj, patološki tip
Introduction
Lung cancer (LC) is a malignant tumor with a high mortality rate in China and a pyramidal increase in morbidity. Studies have manifested that early diagnosis and effective treatment can prolong their lives and improve their quality of life (1). Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a major diagnostic method for LC. However, its diagnostic accuracy is nearly proportional to the focus size. Tiny lesions are hard to sample and have an impact on diagnostic accuracy. In clinical operations, ultrasound highlights masses with abundant blood vessels for puncture, which is supposed to result in bleeding (2–3). Consequently, exploring an early diagnostic method with convenient operation and supernal repeatability is vital. In the past few years, tumor markers have been broadly applied in the clinical diagnosis and prognostic assessment of LC. Squamous cell carcinoma (SCC) antigen, cytokeratin fragment 19 (CYFRA21-1), and serum carcinoembryonic antigen (CEA) are nearly concerned in LC (4). LC has no distinct specificity at its onset, but the relevant serum tumor markers are altered to varying degrees in patients with the disease (5), implying that LC is supposed to be diagnosed by testing variations of serum tumor markers. Accordingly, this study was to explore variations of CYFRA21-1, SCC, and CEA and the diagnostic value of EBUS-TBNA in patients with LC and offer a reference for the early diagnosis of the disease.

Materials and Methods
Clinical data
From February 2018 to May 2021, 150 patients with suspected lung malignant lesions were selected. The LC group (n = 118) and the benign group (n = 32) were divided based on pathology and laboratory diagnosis. LC met the diagnostic criteria issued by the Chinese Medical Association Guidelines (Edition 2018) (6).

Inclusion criteria: patients with complete clinical data, patients with explicit pathological examination results, 18 years old or more.

Exclusion criteria: patients who received radiotherapy and chemotherapy prior to sampling, patients with other malignant tumor diseases, patients with a history of lung surgery, patients with severe liver and kidney system diseases, patients with respiratory malformations.

This study involved 68 cases of adenocarcinoma, 18 cases of small cell lung cancer (SCLC), and 11 cases of other types of cancer. No differences were shown in general data between the two groups (P>0.05), as presented in Table I.

Methods
Serum tumor marker test: After obtaining 5 mL fasting venous blood, centrifugation was carried out on a Beckman Coulter high-speed centrifuge, and the supernatant was collected. Serum CEA and CYFRA21-1 were tested by Roche E170 automatic chemiluminescence immunoassay analyzer and corresponding kits. The normal reference value for CEA is 0–10 ng/mL and 0–3.3 ng/mL for CYFRA21-1. SCC was examined by an I2000SR chemiluminescence analyzer (Abbott, USA). Normal reference values are manifested in the instructions and relevant guidelines.

EBUS-TBNA: Before surgery, patients were fasting and water-deprived, and venous access was established after entering the operating room.

Table I Comparison of general data between the LC group and the benign group.

<table>
<thead>
<tr>
<th>Classification</th>
<th>The LC (n=118)</th>
<th>The benign (n=32)</th>
<th>2/t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender: Male (cases)</td>
<td>97</td>
<td>12</td>
<td>0.080</td>
<td>0.778</td>
</tr>
<tr>
<td>Age (years)</td>
<td>63.72±10.19</td>
<td>59.90±8.12</td>
<td>1.957</td>
<td>0.052</td>
</tr>
<tr>
<td>Smoking history (cases)</td>
<td>34</td>
<td>9</td>
<td>0.006</td>
<td>0.939</td>
</tr>
<tr>
<td>Drinking history (cases)</td>
<td>27</td>
<td>5</td>
<td>0.790</td>
<td>0.374</td>
</tr>
<tr>
<td>Complicated with underlying diseases (cases)</td>
<td>31</td>
<td>6</td>
<td>0.766</td>
<td>0.381</td>
</tr>
<tr>
<td>Systolic pressure (mmHg)</td>
<td>129.64 ± 10.30</td>
<td>128.13 ± 9.76</td>
<td>0.744</td>
<td>0.458</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>86.19 ± 5.04</td>
<td>85.73 ± 5.19</td>
<td>0.455</td>
<td>0.650</td>
</tr>
<tr>
<td>Heart rate (times/min)</td>
<td>81.25 ± 4.07</td>
<td>80.71 ± 4.92</td>
<td>0.636</td>
<td>0.526</td>
</tr>
<tr>
<td>EBUS-TBNA (cases,%)</td>
<td>75(63.56)</td>
<td>27(86.49)</td>
<td>6.926</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Conventional electronic bronchoscopes were used for airway examination, and ultrasound bronchoscopes (Japan Olympus company, BF-UC260FW type) were inserted through the mouth or nose. According to CT results, EBUS-TBNA test was performed on the affected subsegment bronchi or enlarged lymph nodes. The specimens were collected using disposable needles or biopsy forceps (in some patients, endobronchial ultrasound with a guide sheath was used to collect specimens) and placed in a solution containing 10% formaldehyde.

Observation indexes

(1) Serum CYFRA21-1, SCC, CEA, CYFRA21-1, and EBUS-TBNA test results in benign LC patients were compared to analyze the diagnostic value of the combined test of each indicator. (2) Serum CYFRA21-1, SCC, CEA, and EBUS-TBNA test results in patients with different pathological types of LC were compared to analyze the value of combined detection.

Statistical processing

Data were processed using SPSS24.0 software, enumeration data were represented as percent, and the differences between groups were compared using χ² test. Measurement data were shown as (x±s) after the normal test. Comparisons between groups were made using the t-test. The receiver operator characteristic (ROC) curve was utilized to analyze the value of serum CYFRA21-1, SCC, CEA, and EBUS-TBNA to diagnose LC and identify pathological types. AUC values were analyzed by the Z test. Significant differences were accepted at P<0.05.

Results

Comparison of serum CEA, SCC, CYFRA21-1 and EBUS-TBNA test results

Compared to the benign group, LC patients had higher levels of serum CEA, SCC, and CYFRA21-1 (P<0.05), as presented in Figure 1. EBUS-TBNA examination accuracy in LC was 65.25% (77/118), which was 84.38% (27/32) in the benign group (P<0.05).

Diagnostic value of serum CEA, SCC, CYFRA21-1 conjugating with EBUS-TBNA in LC

We adopted the ROC curve and AUC values to assess the diagnosis value of the model. Although serum CEA, SCC, CYFRA21-1, and EBUS-TBNA each had diagnostic value for LC, the sensitivity and AUC of combined diagnosis were higher than that of single diagnosis, indicating a higher diagnostic value (P<0.05), as manifested in Table II and Figure 2.

![Figure 1](Comparing serum biomarker concentrations between the LC group and the benign group, (A) serum CEA levels, (B) serum SCC levels, (C) serum CYFRA21-1 levels. *P < 0.05.)

<table>
<thead>
<tr>
<th>Indexes</th>
<th>Cut-off values</th>
<th>AUC</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA</td>
<td>21.06 μg/L</td>
<td>0.895*</td>
<td>0.026</td>
<td>0.845~0.946</td>
</tr>
<tr>
<td>SCC</td>
<td>0.95 ng/mL</td>
<td>0.645*</td>
<td>0.075</td>
<td>0.498~0.793</td>
</tr>
<tr>
<td>CYFRA21-1</td>
<td>5.07 ng/mL</td>
<td>0.891</td>
<td>0.049</td>
<td>0.796~0.987</td>
</tr>
<tr>
<td>EBUS-TBNA</td>
<td>0.726*</td>
<td>0.078</td>
<td>0.573~0.879</td>
<td></td>
</tr>
<tr>
<td>Combined detection</td>
<td>0.961</td>
<td>0.029</td>
<td>0.905~1.000</td>
<td></td>
</tr>
</tbody>
</table>

*Vs. the combined test, *P < 0.05.
Serum CEA, SCC, CYFRA21-1, and EBUS-TBNA results in patients with different types of LC

In contrast to patients diagnosed with LSCC and SCLC, those with lung adenocarcinoma exhibited elevated levels of serum CEA. However, when compared to patients with lung adenocarcinoma and SCLC, individuals diagnosed with LSCC demonstrated higher concentrations of serum SCC and CYFRA21-1 (P<0.05), as presented in Figure 3. The diagnostic accuracy rate of EBUS-TBNA for lung adenocarcinoma, LSCC, and SCLC was 67.90% (55/81), 57.14% (8/14), and 61.90% (13/21), respectively, showing no statistical differences (P>0.05).
Analysis of serum CEA, SCC, CYFRA21-1 conjugating with EBUS-TBNA to identify LSCC and lung adenocarcinoma

The diagnostic efficacy of serum biomarkers and EBUS-TBNA in LSCC and lung adenocarcinoma was assessed using ROC curves and AUC analysis. The findings indicated that the combined diagnosis of serum CEA, SCC, CYFRA21-1, and EBUS-TBNA had a higher diagnostic value (AUC = 0.929) compared to the individual diagnostic approach (P < 0.05), as presented in Table III and Figure 5.

Table III Analysis of serum CEA, SCC, CYFRA21-1 conjugating with EBUS-TBNA to examine the identified value of LSCC and lung adenocarcinoma.

<table>
<thead>
<tr>
<th>Indexes</th>
<th>Cut-off values</th>
<th>AUC</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA</td>
<td>29.16 µg/L</td>
<td>0.738</td>
<td>0.083</td>
<td>0.576–0.900</td>
</tr>
<tr>
<td>SCC</td>
<td>1.39 ng/mL</td>
<td>0.878</td>
<td>0.057</td>
<td>0.768–0.989</td>
</tr>
<tr>
<td>CYFRA21-1</td>
<td>7.06 ng/mL</td>
<td>0.600</td>
<td>0.073</td>
<td>0.459–0.746</td>
</tr>
<tr>
<td>EBUS-TBNA</td>
<td></td>
<td>0.715</td>
<td>0.076</td>
<td>0.566–0.864</td>
</tr>
<tr>
<td>Combined detection</td>
<td></td>
<td>0.929</td>
<td>0.047</td>
<td>0.837–1.000</td>
</tr>
</tbody>
</table>

Vs. the combined test, *P < 0.05.

Figure 4 The diagnostic value of ROC curve analysis to discriminate LSCC patients from lung adenocarcinoma patients, (A) serum CEA levels, (B) serum SCC levels, (C) serum CYFRA21-1 levels, (D) EBUS-TBNA, (E) serum CEA, SCC, CYFRA21-1 combined with EBUS-TBNA.
Analysis of serum CEA, SCC, CYFRA21-1 conjugating with EBUS-TBNA to identify LSCC and SCLC

Next, we evaluated the diagnostic value of serum biomarkers and EBUS-TBNA for LSCC and SCLC. The results suggested that the combined diagnosis of serum CEA, SCC, CYFRA21-1, and EBUS-TBNA had a higher diagnostic value (AUC=0.931) compared to the individual diagnostic approach (P<0.05), as shown in Table IV and Figure 5.

Table IV Analysis of serum CEA, SCC, CYFRA21-1 combined with EBUS-TBNA to examine the identified value of LSCC and SCLC.

<table>
<thead>
<tr>
<th>Indexes</th>
<th>Cut-off values</th>
<th>AUC</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA</td>
<td>30.51 μg/L</td>
<td>0.805*</td>
<td>0.059</td>
<td>0.689–0.921</td>
</tr>
<tr>
<td>SCC</td>
<td>1.19 ng/mL</td>
<td>0.745*</td>
<td>0.055</td>
<td>0.637–0.853</td>
</tr>
<tr>
<td>CYFRA21-1</td>
<td>6.54 ng/mL</td>
<td>0.740*</td>
<td>0.058</td>
<td>0.626–0.853</td>
</tr>
<tr>
<td>EBUS-TBNA</td>
<td></td>
<td>0.715*</td>
<td>0.064</td>
<td>0.589–0.841</td>
</tr>
<tr>
<td>Combined detection</td>
<td></td>
<td>0.931</td>
<td>0.028</td>
<td>0.876–0.986</td>
</tr>
</tbody>
</table>

Vs. the combined test, *P < 0.05.

Figure 5 The diagnostic value of ROC curve analysis to discriminate LSCC patients from SCLC patients, (A) serum CEA levels, (B) serum SCC levels, (C) serum CYFRA21-1 levels, (D) EBUS-TBNA, (E) serum CEA, SCC CYFRA21-1 combined with EBUS-TBNA.

Analysis of serum CEA, SCC, CYFRA21-1 conjugating with EBUS-TBNA to identify LSCC and SCLC

Finally, we also evaluated the diagnostic value of these serum biomarkers and EBUS-TBNA for lung adenocarcinoma and SCLC. The results were following what we expected. The combination of serum biomarkers and EBUS-TBNA had a higher diagnostic value (AUC=0.925) (P<0.05), as shown in Table V and Figure 6.
Table V Analysis of serum CEA, SCC, CYFRA21-1 conjugating with EBUS-TBNA to examine the identified value of lung adenocarcinoma and SCLC.

<table>
<thead>
<tr>
<th>Indexes</th>
<th>Cut-off indexes</th>
<th>AUC</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA</td>
<td>5.39 μg/L</td>
<td>0.643</td>
<td>0.093</td>
<td>0.460–0.826</td>
</tr>
<tr>
<td>SCC</td>
<td>0.82 ng/mL</td>
<td>0.718</td>
<td>0.093</td>
<td>0.535–0.901</td>
</tr>
<tr>
<td>CYFRA21-1</td>
<td>3.05 ng/mL</td>
<td>0.864</td>
<td>0.070</td>
<td>0.727–0.956</td>
</tr>
<tr>
<td>EBUS-TBNA</td>
<td></td>
<td>0.655</td>
<td>0.096</td>
<td>0.466–0.843</td>
</tr>
<tr>
<td>Combined detection</td>
<td></td>
<td>0.925</td>
<td>0.044</td>
<td>0.840–0.998</td>
</tr>
</tbody>
</table>

Vs. the combined test, *P < 0.05.

Figure 6 The diagnostic value of ROC curve analysis to discriminate lung adenocarcinoma patients from SCLC patients, (A) serum CEA levels, (B) serum SCC levels, (C) serum CYFRA21-1, (D) EBUS-TBNA, (E) The joint detection.

Discussion

In cancer cells, tumor markers are substances released into body fluids or tissues characteristic of malignant tumors (7). CEA and CYFRA21-1 are nearly associated with the occurrence of multiple malignant tumors. CEA is a tumor-associated antigen extracted from colon cancer and embryonic tissues. It is an acid glycoprotein with a specific human embryonic antigen on the cancer cell surface (8). The CYFRA21-1 polypeptide is found primarily in lung tumor epithelial cytoplasm, and it can either be degraded by proteases or released into the blood in the form of dissolved fragments after cell death (8). Relevant studies have testified that CYFRA21-1 has high sensitivity and specificity in diagnosing LSCC (9, 10). SCC is an antigenic element separated from cervical squamous cells. Furthermore, serum SCC in patients with SCC is distinctly elevated (11, 12). The results indicated that serum CYFRA21-1, SCC, and CEA in the LC group were elevated versus in the benign group.

A growing number of Chinese patients are diagnosed with LC each year. Still, no typical clinical symptoms and manifestations in the early stages lead to a
References


4. Yuan J, Sun Y, Wang K, Wang Z, Li D, Fan M, et al. Development and validation of reassigned CEA, diagnosis delay. Hence, early detection and treatment of LC are critical (13, 14). EBUS-TBNA involves transbronchial transmural needle aspiration guided by ultrasound bronchoscope for puncture sampling as a prevalent method of lung disease examination. Nevertheless, this method has limitations; for instance, when the focus diameter is small, it will be challenging to position and clip the tissue accurately, which will result in missed diagnoses and misdiagnosis (15). The study manifested that the diagnostic accuracy of EBUS-TBNA examination for LC is 60.67%, which is slightly lower than the result of a previous study (16). Meanwhile, it is supposed to be associated with the population size in this study. Therefore, the sample size should be expanded for further analysis. Serum tumor markers of patients with LC were elevated versus patients with benign lung diseases. Therefore, the author claims that EBUS-TBNA combined diagnosis should improve diagnostic accuracy by detecting serum tumor markers. Additionally, the AUC of serum CYFRA21-1, SCC, and CEA conjugating with EBUS-TBNA to diagnose LC was augmented compared to single detection.

SCLC, LSCC, and lung adenocarcinoma are prevalent pathological types of LC. Adenocarcinoma is abundant in blood vessels and prone to local invasion and hematological metastasis. In SCC, the progression is dilatory, and late metastasis occurs. After surgery, most SCC patients have a good prognosis. As the most malignant LC, SCLC progresses rapidly and invades more deeply. It is uncertain when distant metastases will occur, and surgical treatment has a low probability (17, 18). Identifying the pathological types of LC early to implement later therapeutic measures is beneficial. The results elucidated that serum CEA of patients with lung adenocarcinoma was augmented versus patients with LSCC and SCLC, and serum SCC and CYFRA21-1 in patients with LSCC were elevated versus patients with lung adenocarcinoma and SCLC. It is primarily linked to: CEA is mainly released from epithelial tumors, LC originates from the bronchial mucosal epithelium, and SCC is an antigen generated and secreted by LSCC (19, 20). In the meantime, a relevant report also declares that CYFRA21-1 in patients with LSCC is elevated versus patients with lung adenocarcinoma (21).

Furthermore, it is feasible to distinguish the pathological type of LC by examining serum markers. Nonetheless, corresponding reports have clarified that the specificity of monitoring tumor markers alone to distinguish different pathological types of LC is reduced (22, 23). Accordingly, this study used a combination of serum indices and EBUS-TBNA examination for diagnosis. The results elucidated that AUC of serum CYFRA21-1, SCC, and CEA conjugating with EBUS-TBNA to distinguish SCLC, lung adenocarcinoma, and LSCC was elevated versus single detection of each index, manifesting that combined test was valuable to identify pathological types of LC.

In short, patients with LC show increased serum CYFRA21-1, SCC, and CEA, and joint test of serum tumor marker and EBUS-TBNA examination has diagnostic value for LC and can distinguish pathological types of LC.

Acknowledgments. Not applicable.

Funding

Not applicable.

Data availability

The article includes the figures and tables used to support this study’s findings.

Authors’ contributions

YanJia Du designed the research study. Ya Wen performed the research. JieYu Huang provided help and advice on the experiments. YanJia Du analyzed the data. YanJia Du, Ya Wen, and JieYu Huang wrote the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Conflict of interest statement

All the authors declare that they have no conflict of interest in this work.

References


Received: June 17, 2023
Accepted: October 03, 2023