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Summary

Background: As the most common primary malignant
intracranial tumor, glioblastoma has a poor prognosis with
limited treatment options. It has a high propensity for
recurrence, invasion, and poor immune prognosis due to
the complex tumor microenvironment.
Methods: Six groups of samples from four datasets were
included in this study. We used consensus ClusterPlus to
establish two subgroups by the EMT-related gene. The dif-
ference in clinicopathological features, genomic character-
istics, immune infiltration, treatment response and prog-
noses were evaluated by multiple algorithms. By using
LASSO regression, multi-factor Cox analysis, stepAIC
method, a prognostic risk model was constructed based on
the final screened genes.
Results: The consensusClusterPlus analyses revealed two
subtypes of glioblastoma (C1 and C2), which were charac-
terized by different EMT-related gene expression patterns.
C2 subtype with the worse prognosis had the more malig-
nant clinical and pathology manifestations, higher Immune
infiltration and tumor-associated molecular pathways
scores, and poorer response to treatment. Additionally, our
EMT-related genes risk prediction model can provide valu-
able support for clinical evaluations of glioma. 

Kratak sadr`aj

Uvod: Kao naj~e{}i primarni maligni intrakranijalni tumor,
glioblastom ima lo{u prognozu sa ograni~enim mogu}nosti-
ma le~enja. Ima visoku sklonost ka recidivu, invaziji i lo{u
imunolo{ku prognozu zbog kompleksnog mikrookru`enja
tumora.
Metode: U ovu studiju uklju~eno je {est grupa uzoraka iz
~etiri skupa podataka. Koristili smo konsenzus ClusterPlus da
uspostavimo dve podgrupe pomo}u gena povezanog sa
EMT. Razlika u klini~ko-patolo{kim karakteristikama, genom-
skim karakteristikama, imunolo{koj infiltraciji, odgovoru na
le~enje i prognozama je procenjena pomo}u vi{e algoritama.
Kori{}enjem LASSO regresije, multifaktorske Cok analize,
stepAIC metode, konstruisan je model prognosti~kog rizika
na osnovu finalnih skrining gena.
Rezultati: ConsensusClusterPlus analize su otkrile dva pod -
tipa glioblastoma (C1 i C2), koji su bili okarakterisani razli -
~itim obrascima ekspresije gena povezanih sa EMT. Podtip
C2 sa lo{ijom prognozom imao je malignije klini~ke i pato-
lo{ke manifestacije, ve}i rezultat imunolo{ke infiltracije i
molekularnih puteva povezanih sa tumorom i lo{iji odgovor
na le~enje. Pored toga, na{ model predvi|anja rizika gena
povezanih sa EMT mo`e pru`iti dragocenu podr{ku za
klini~ke procene glioma.
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Introduction 

The glioblastoma (GBM) accounts for nearly
half of all malignant brain tumors (1–3). The median
survival time of patients with glioblastoma is only 12–
14 months after a comprehensive treatment (1–5).
Because tumor cells differ greatly in terms of genetics
and epigenetics, treatment is challenging. At present,
strategies, such as surgical resection, postoperative
radiotherapy, and temozolomide chemotherapy, for
the treatment of glioma cannot fundamentally
improve the prognosis of patients with glioma (1, 2,
4). The interconnectedness of tumor cells and other
cells in the microenvironment plays a significant role
in promoting the development of glioblastoma.
Therefore, further exploration of the nosogenesis of
glioblastoma and the development of innovative
methods are urgently needed (6–9).

In recent years, significant progress has been
made in the field of cancer immunotherapy, and the
FDA has already licensed more than 50 indications of
chimeric antigen receptor transduced T cells, bi-spe-
cific T cell binding antibodies, and immune check-
point blocking antibodies for cancer treatment (10,
11). Although immunotherapy has shown great effec-
tiveness in various cancers, it has not achieved the
desired effect in treating gliomas. Multiple phase III
clinical studies of gliomas have failed (12, 13). In
recent studies, it has been found that cells undergoing
EMT can also regulate antitumour immunity. Cells
from the adaptive immune system exist in tumor-relat-
ed matrix, which can eliminate tumor cells, while cells
from mesenchymal cells resist this process.
Consequently, EMT-induced quasi-mesenchymal state
has significant implications for the field of clinical
oncology, as both chemotherapy and immunotherapy
are more difficult to treat when they exist (3, 6, 8).

In this study, we analyzed the different expres-
sion patterns of the related genes in the glioblastoma
EMT pathway through bioinformatic methods.
Subtypes with different survival outcomes, functional
characteristics, and clinical features were also identi-
fied. Differences in the abundance of immune cell
infiltrates, genes associated with immune check-
points, and cell stemness index among different sub-
type patients were analyzed to determine the effec-
tiveness of immunotherapy. Finally, we screened out
the prognosis-related genes involved in EMT pathway
in patients with glioblastoma and established a risk
model with good predictive efficacy and prospects

with clinical application. Our study aims to provide a
reference for the progress of precision therapy and
immunotherapy for patients from the perspective of
exploring tumor microenvironment heterogeneity in
glioblastoma.

Materials and Methods

Data sources and pre-processing

RNAseq or microarray expression profiles were
collected from TCGA (https://tcga-data.nci.nih.gov/
tcga/), CGGA (CGGA693 and CGGA325,
http://www.cgga.org.cn/), GEO (GSE4271 and
GSE7696, https://www.ncbi.nlm.nih.gov/geo/), and
Rembrandt (http://caintegrator-info.nci.nih.gov/rem-
brandt). Clinical follow-up information related to the
above four datasets was also downloaded. The
ComBat function of the sva package was used to
remove the batch effects among four data sets, that
is, TCGA, GSE4271, GSE7696 and Rembrandt (14).
Then they were combined into one data set, here-
inafter referred to as Array. The same method was
used to remove the batch effects among the two
RNA-Seq date sets of CGGA693 and CGGA325.
Then they were combined into one data set, here-
inafter referred to as RNASeq. The relevant clinical
information of the sample was listed in Table I. 

Consistency clustering analysis

We used the R package ConsensusClusterPlus (V
1.52.0) to select the optimal typing and type the
RNASeq cohort (15). We then analyzed whether the
survival curves (KM curves) differed between molecu-
lar subtypes. The t-distributed stochastic neighbor
embedding (t-SNE) method was used to verify the
subtype assignment using mRNA expression data
from the EMT gene described above. The same
approach was used to validate the isoform assignment
for the Array cohort. In addition, differences in the dis-
tribution of clinical features between the molecular
subtypes were compared. A chi-square test was per-
formed and P < 0.05 was considered significant.

Sample Gene Set Enrichment Analysis (ssGSEA)

Pathway gene features in h.all.v7.4.symbols.gmt
were assessed using the R package GSVA and

Conclusions: The assessment system and prediction model
displayed good performance in independent prognostic
risk assessment and individual patient treatment response
prediction. This can help with clinical treatment decisions
and the development of effective treatments.

Keywords: glioma, epithelial mesenchymal transition,
tumor microenvironment, immunotherapy, risk score

Zaklju~ak: Sistem procene i model predvi|anja su pokazali
dobre performanse u nezavisnoj prognosti~koj proceni rizika
i predvi|anju odgovora na tretman pojedina~nog pacijenta.
Ovo mo`e pomo}i u dono{enju odluka o klini~kom le~enju i
razvoju efikasnih tretmana.

Klju~ne re~i: gliom, epitelna mezenhimalna tranzicija,
tumorsko mikrookru`enje, imunoterapija, skor rizik.
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Table I The relevant clinical information of the sample.
Feature TCGA GSE4271 GSE7696 Rembrandt CGGA693 CGGA325
Event
Alive 77 62 15 9 40 13
Dead 447 15 65 137 197 124
Gender
Female 205 25 21 48 98 50
Male 319 52 59 74 139 87
NA 24
Age
>55 312 14 28 71 88 37
<=55 212 63 52 71 149 100
Unknown 4
Chemotherapy
NO 136
YES 388
NA
Radiotherapy
NO 2 32 32
YES 3 193 100
NX 519 12 5
TMZ
NO 27 34
YES 199 99
NA 11 4
IDH.status
Mutant 34 45 39
WT 375 182 98
NA 115 10
X1p.19q
Codel 2 3 12 7
non-codel 502 65 197 127
NA 20 28 3
KPS
20 2
40 13
60 80
70 4
80 231
90 5
100 57
NA 132
MGMT

Methylated 157 44 104 65
Unmethylated 191 34 89 70
NA 176 2 44 2
Original. Subtype

Classical 143
G-CIMP 39
Mesenchymal 155
Neural 83
Proneural 99
NA 5
Transcriptome. Subtype
CL 155
ME 173
NE 61
PN 107
NA 28



GSEABase (V1.50.1). Pathway scores were then com-
pared between subtypes using the rank-sum test. In
addition, based on previous studies, immune check-
points were selected for comparison between sub-
types.

Characterization of glioma subtypes

Differentially expressed genes (DEGs) between
glioma subtypes were analyzed and identified using
the R software package limma (16). Genes with
|log2FC|> 1 and false discovery rate (FDR) < 0.05,
were defined as DEGs. R software package
 cluster Profiler was used to perform Gene Ontology
(GO) functional annotation and KEGG pathway
enrichment analysis for differentially upregulated and
differentially downregulated genes, respectively, fil-
tered by a threshold of FDR < 0.05.

Analysis of GSEA between molecular subtypes

We used the GSEA function in clusterProfiler to
verify the function and plausibility of the subtypes by
using the enriched pathways of the h.all.v7.4.sym-
bols.gmt and c2.cp.kegg.v7.4.symbols.gmt pathway
gene set analysis subtype.

Immunological microenvironmental analysis of
molecular subtypes

We used five methods, including MCP-counter
(17), TIMER (18), ESTIMATE (19), ssGSEA (20), and
CIBERSORT (21) to assess immune infiltration in the
RNASeq and Array cohorts, and subsequently com-
pared the differences in immune cell scores between
different subtypes. The Kruskal-Wallis test was per-
formed for a difference analysis between subtypes.
Twenty-eight immune cell markers included in the
ssGSEA algorithm were obtained from a previous study.

Analysis of stem cell indices between subtypes

The stemness indices were calculated from pre-
vious studies, where mRNAsi is an index calculated
based on expression profile data and ranges from 0
to 1, with values closer to 1 indicating less differenti-
ated cells and stronger stem cell characteristics.
Differential analysis of mRNAsi between different iso-
forms was performed using the Kruskal-Wallis test
(22–25).

Predicting the efficacy of immunotherapy and
targeted therapies for each subtype

We used the TIDE algorithm to predict the effi-
cacy of subtype immune checkpoint blockade therapy
(26, 27). The Gene Pattern category mapping

(SubMap) was used to compare the similarity of gene
expression profiles between the available data of
immunotherapy patients and the two subtypes to indi-
rectly predict the efficacy of subtype immunotherapy
(28, 29). In addition, we used the R package
pRRophetic to predict the sensitivity of the IC50 of
the drugs cisplatin, paclitaxel, sorafenib, erlotinib,
crizotinib and temozolomide in our molecular sub-
types.

Construction and validation of prognostic models

Using RNASeq cohort as the training data set,
prognosis-related genes in the RNASeq and Array
cohort were used as targets for the study. The filtered
genes were further compressed using the least
absolute shrinkage and selection operator (LASSO)
regression to reduce the number of genes in the risk
model. The remaining genes were subjected to multi-
factor Cox analysis and the number was further
reduced using the stepAIC method. The final
screened genes were prognosis-associated, and the
prognostic risk model was calculated as follows:

where, coef (i) represents the coefficient of the
ith gene, and gene (i) represents the expression of the
ith gene. A RiskScore value was calculated for each
sample, using the median as the split point. The sam-
ples were then divided into two groups of high and
low risk. The Array cohort and TCGA dataset were
used as test sets, and the prognostic risk model pre-
diction performance was validated in the same way.
We also compared the differences in RiskScore
between the different clinical characteristic group-
ings.

Results

Two different vascular gene expression patterns
in glioma

Two hundred genes related to EMT were select-
ed from existing studies. The survival data were used
to conduct univariate Cox analysis. We selected
P<0.05 as the threshold value for filtering. There are
76 genes related to the prognosis in RNASeq. There
are 65 genes related to the prognosis in Array data.
The intersection of them was selected for cluster
analysis and 32 genes were obtained in total (Figure
1A and 1B).

Molecular typing was performed on the
RNASeq dataset using the R package Consensus -
ClusterPlus. The consensus matrix heat map main-
tained clear and sharp boundaries (Figure 1C) when k
= 2, indicating that the clustering of the samples was
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Figure 1 Expression of CTSA in glioma. (A) CTSA expression in different types of cancer was detected with TIMER database.
(B) Increased or decreased of CTSA in glioma cancer compared to normal tissues in the GEPIA database. (C) Expression level
of CTSA in glioma cancer was detected with UALCAN database. (D) Expression level of CTSA in glioma cancer tissues and
normal tissues were determined with TCGA database. 
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stable, robust, and consistent with the two-dimen-
sional t-SNE distribution pattern (Figure 1C).
Subsequently, the datasets of Array samples were
treated using the same method for cluster analysis,
and the same conclusion as the RNASeq dataset was

obtained (Figure 1C). It was shown that two subclass-
es of glioma molecules with different EMT gene
expression patterns existed and that subtype C1 had
the better prognosis and C2 had the worse (Figure
1D). 

Figure 2 Comparison of clinical information between subtypes. (A) Upper panel: Comparisons of clinical-pathological char-
acteristics among angiogenesis subtypes in the RNASeq cohort. Lower panel: Comparisons of event, age, gender, IDH status,
grade, 1p/19q codeletion status, and MGMT promoter status among angiogenesis subtypes in the RNASeq cohort. (B) Upper
panel: Comparisons of clinical-pathological characteristics among angiogenesis subtypes in the TCGA cohort. Lower panel:
Comparisons of event, age, gender, KPS, IDH status, and MGMT promoter status among angiogenesis subtypes in the TCGA
cohort.
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Figure 3 Pathway analysis of differentially expressed genes among different subtypes. (A) Differentially enriched pathways
analyses by GSEA of subtype C1 or C2 in the RNASeq and Array cohorts. (B) An ssGSEA algorithm was applied to quantify the
human signatures between Subtype C1 and C2 in the RNASeq and Array cohorts. (*represents P < 0.05, **represents P <
0.01, ***represents P < 0.001, ****represents P < 0.0001). 
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Clinical features of different subtypes

We compared the clinical differences among dif-
ferent molecular subtypes in RNASeq (Figure 2A).
The results were as follows: 1) The Dead rate in the
C2 subtype with the worse prognosis was higher; 2)
The proportions of Age, Gender, IDH, X1p19q, and
MGMT were different in different subtypes. The pro-
portion of wild-type IDH1 in C1 subtype with a better
prognosis was lower than that in C2, and the results
were in line with our expectations. It is suggested that
IDH1 mutant and wild-type tumor cells may exhibit
different phenotypes, during epithelial interstitial
processes. In addition, X1p19q co-deletion expres-
sion in C1 subtype is also higher, consistent with bet-
ter oligodendrocyte prognoses. It suggests that oligo-
dendrocytes show greater affinity for the C1 subtype
during EMT. In addition, the TCGA data set was char-
acterized by abundant clinical information and we
compared the distribution differences of the clinical
features among different subtypes in the TCGA data
set (Figure 2B).

Analysis of differentially expressed genes

We used the limma package to calculate the dif-
ferential genes of Array and RNASeq, respectively. We
took FDR < 0.05 and |FC| > 1.5 as the threshold
value to identify differential genes. We conducted
KEGG path analysis and GO functional enrichment
analysis on the differential genes among subtypes.
The results showed that Focal adhesion, TNF signal-
ing pathway, ECM−receptor interaction in the C2
subtype adhered to cells and migrated and the path
expression of tumor invasion had a rise. The GSEA
algorithm also confirmed these results (Figure 3A). In
order to further study the characteristics of the sub-
class, we used ssGSEA in the GSVA algorithm to
select and quantify 15 signs related to human signa-
tures (30, 31). We found the 15 signs also showed
significant differences among subtypes. The score of
the C2 subtype was significantly higher than that of
C1. The results were consistent in RNASeq and Array
(Figure 3B). 

Analysis of immune cell infiltration and treatment
response

To further analyze the differences in immune
microenvironment between subtypes, we used five
methods namely, MCP-counter, TIMER, ESTIMATE,
ssGSEA, and CIBERSORT to assess immune infiltra-
tion in the RNASeq and Array cohorts (Figure 4A) and
found that the C2 subtype with the worse prognosis
had the higher immune score, while the C1 subtype
with the better prognosis had the lower immune
score. The evaluation results of the different soft-
wares are consistent across datasets and with those of
our previous study. We found the genes related to

immune checkpoints from previous studies and com-
pared these genes’ expressions in different subtypes.
The results were as follows: 1) In RNASeq, 35
(81.4%) genes at 43 immune checkpoints had signif-
icant different expressions in subtypes. 2) In Array, 22
(62.9%) genes at 35 immune checkpoints had signif-
icant different expressions in subtypes. This suggest-
ed that there may be differences in immunotherapy
between subtypes. In addition, we found that the
expressions of most immune checkpoints were higher
in the C2 subtype, including CTLA4, PDCD1, IDO1,
and CD40 (Figure 4B). Then we analyzed the sample
distribution between C1, C2 subtypes and the existing
immune molecular subtypes (Original. Subtype and
Transcriptome. Subtype) (32). Both the G-CIMP sub-
type in Original. Subtype and the PN subtype in
Transcriptome. Subtype accounted for much higher
proportions in the C1 subtype than in the C2 subtype
(Figure 5A). We calculated mRNAsi based on the
data of the expression profile and compared them
among subtypes. The results showed that the
mRNAsi of the C2 subtype with the worse prognosis
was significantly lower than that of the C1 subtype
with the better prognosis in both RNASeq and Array
(Figure 5B). The TIDE algorithm was used to predict
the responsiveness of immunotherapy in glioma
patients in the two datasets by comparing the propor-
tion of treatment response and the TIDE scores in dif-
ferent subtypes. As shown in the Figure 6A: 1) In
RNASeq, the prognosis of the group which predicted
the response to treatment is better. The TIDE score
and Exclusion score of the C2 subtype were higher
than those of the C1 subtype. The Dysfunction score
of the C1 subtype was higher than that of the C2 sub-
type. There were significant differences in the
Responder results among subtypes. 2) The similar
results were obtained from Array. We compared the
expression profiles of the two GBM subtypes (C1 and
C2) with another published data set of GSE93157.
This data set included the patients that were treated
with NIVOLUMAB and PEMBROLIZUMAB. The C2
subtype in RNASeq was significantly correlated with
the expression profile of the NIVOLUMAB response
group, suggesting that patients in the C2 group had
a more promising response to NIVOLUMAB treat-
ment. At the same time, the C1 group was signifi-
cantly correlated with the expression profile of the
PEMBROLIZUMAB response group in the subtypes of
Array, suggesting that patients in the C1 group of
Array had a more promising response to PEM-
BROLIZUMAB treatment (Figure 6B). In addition, we
calculated the IC50 of Cisplatin, Paclitaxel, Sorafenib,
Erlotinib, Crizotinib, and Temozolomide. We com-
pared their differences among different subtypes and
found that the six drugs all showed significant differ-
ences among the subtypes in RNASeq and Array.
What’s more, they showed the consistent trend
among different subtypes. The C2 subtype was more
sensitive to these drugs (Figure 6B).
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Figure 4 Immune score and immune checkpoints. (A) The heat map of immune cell infiltration scores evaluated by four
immune evaluation software (MCP-counter, ESTIMATE, ssGSEA, EPIC) on angiogenesis subtypes in the RNASeq and Array
cohorts. Blue represents low enrichment scores, and orange represents high enrichment scores. (*represents P < 0.05, **rep-
resents P < 0.01, ***represents P < 0.001, ****represents P <0.0001). (B) Differential expression of immune checkpoint
molecules between Subtype C1 and C2 in the RNASeq (Upper panel) and Array cohorts (Lower panel).
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Figure 5 Difference in glioma immune subtype distribution and stemness score. (A) Upper left panel: Circle graph comparison
among subtypes (The outer layer is our molecular subtype, the second layer is the existing Original Subtype, the third layer is
the existing Transcriptome Subtype, and the fourth layer is the existing Pan Glioma RNA Expression Cluster). Upper right panel:
The distribution comparison of existing Original Subtype, Transcriptome Subtype, Pan Glioma RNA Expression Cluster in our
molecular subtype distribution comparison. Lower panel: Survival curve of subtypes of existing Original Subtype, Transcriptome
Subtype, Pan Glioma RNA Expression Cluster. (B) Comparisons of mRNAsi in EMT subtypes in the RNASeq and Array cohorts.
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Figure 6 TIDE analysis for treatment response and the sensitivity of different subtypes to chemotherapeutic drugs in the
RNASeq and Array cohorts. (A) left panel: K-M survival analysis of no responders and responders subtypes. Middle panel:
Comparisons of the proportions of no responders and responders to immunotherapy among C1 and C2 subtypes. Right panel:
Comparisons of TIDE, Dysfunction, and Exclusion score among EMT subtypes. (B) left panel: SubMap analysis for predicting
the immunotherapy data among different EMT subtypes. Right panel: The comparison of IC50 of different drugs among EMT
subtypes.
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Figure 7 Risk score calculation to predict prognosis (A) LASSO regression analysis. (B) Upper panel: Survival curve of high
and low RiskScore in the RNASeq, Array, and TCGA cohorts. Lower panel: ROC curves of the RiskScore in the RNASeq, Array,
and TCGA cohorts. (C) Comparisons of RiskScore between IDH status, 1p/19q codeletion status, MGMT promoter status,
TMZ, Cluster, Radiotherapy, gender, and age.



Model construction and application

The glmnet package of R software was adopted
to conduct LASSO logistic regression analysis on
RNASeq. The 10-fold cross-validation was adopted to
build a model (Figure 7A). The confidence interval of
each lambda was analyzed as shown. When lambda=
0.0419, the model was optimal, so 10 genes in this
case were selected for further analysis. Multivariate
Cox analysis was conducted on the 10 genes. At the

same time, the stepAIC method was used to reduce
the number of genes. Finally, four genes were used in
our model. Based on the calculation formula of
RiskScore, the risk score of each sample in the
RNASeq training data set was obtained. The samples
were divided into two groups based on the median,
that is, the high-risk group and the low-risk group.
There were significant differences in the survival
curves between the two groups (Figure 7B). After
Array data and TCGA data were validated, it was
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Figure 8 Clinical applications of the riskScore model. (A) Univariate and Multivariate (B) Nomogram. (C) Correction nomo-
gram. (D) Clinical characteristics and DCA of RiskScore.



found that there were also significant differences in
survival curves between the high-risk group and the
low-risk group. In addition, the 1-year, 3-year, and 5-
year ROC curves of RiskScore in the data set were
calculated and the AUC values were also good (Figure
7B).

Further analysis revealed that in the RNASeq
dataset, RiskScore was not significantly different
between the sex subgroups, but was significantly dif-
ferent between the IDH, X1p19q, MGMT, grade,
age, and molecular subtypes (P < 0.05) (Figure 7C).
RiskScore was significantly higher in the worse prog-
nosis C2 subtype than in the better prognosis C1 sub-
type (Figure 7C).

To identify the independence of the RiskScore
model in clinical applications, we analyzed the associ-
ated HR, 95% CI of HR, and P-value in the RNASeq
dataset using univariate and multifactorial Cox. We
systematically analyzed the patient’s age, sex, IDH,
X1p19q, MGMT, and RiskScore, and found that our
RiskScore was an independent prognostic factor
(Table II). Column line plots were then used to present
the risk model results visually and efficiently. The
independent prognostic factors in the RNASeq
dataset were used to construct the column line graph
model (Figure 8A), and the results showed that the
RiskScore feature had the greatest impact on survival
prediction (Figure 8B). This indicates that the four-
gene-based risk model can predict prognosis better.
The column line graphs (1-, 3-, and 5-year) were cor-
rected and presented in Figure 8C. The prediction
model was evaluated using DCA (Figure 8D). It was
demonstrated that RiskScore has good performance,
while weighted clinical features (nomogram) have
better results.

Discussion

The exogenous components and intrinsic mech-
anisms of tumor cells determine the immunosuppres-
sive state of the glioma microenvironment, which
greatly limits the efficiency of immunotherapy. The
data show that EMT is common before, during, and
after treatment. When EMT is caused by treatment, it

often leads to treatment resistance or recurrences of
cancer. The coexistence of EMT and immune
response has been shown to be emerging evidence in
recent years. Research on the interaction between
EMT and glioma immune escape, as well as their
impact on glioma tumor behavior, is lacking (1–3, 6,
33). Our study analyzed the relationships between
EMT-related genes and efficiency of immunotherapy
and chemotherapy and the prognosis in depth. The
study verified our assumption by using patient sam-
ples and clinical data from six public datasets, propos-
ing a method to distinguish glioma subtypes based on
EMT-related genes. We found two different EMT gene
expression patterns in glioma, in which significant dif-
ferences in molecular marker expression, tissue grade
ratio, immune infiltration, and treatment response
can be observed in prognosis, indicating that we can
identify glioma-related biological characteristics of
patients before treatment, then stratify and predict
treatment outcomes through the clustering of EMT-
related genes.

Considering the previous failure of the treatment
of patients with GBM through single drug
immunotherapy, an increasing number of combined
therapy strategies have been introduced into
immunotherapy research for glioma (1, 2, 33, 34).
There are studies indicating that EMT-related mole-
cules trigger the release of immune-regulatory
cytokines and chemokines by inducing autophagy in
target cells (6, 30). Furthermore, activating the EMT
program alters the formation of an immunological
synapse between tumor cells and T cells, thereby
dampening T cell priming. EMT not only reduces
MHC class I levels on carcinoma cells surfaces, but
induces PD-L1 expression which exhausts T cells
when it interacts with its cognate receptor (35, 36).

Our study also found different EMT-related
genes expression patterns in the therapeutic response
to PD-L1, and significant differences in the degree of
immune cell infiltration were observed between C1
and C2 subtype. In the C2 subtype with the highest
EMT score, a high abundance of CD4+ and CD8+ T
cell subsets, NK cells, monocytes, macrophages, and
neutrophils was observed. This indicates that consid-
ering the subtype classification methods of EMT-relat-
ed genes as an assessment reference for patient
grouping criteria and therapeutic evaluation can
improve the efficiency of drugs acting on Wnt or TGF
pathway combined with immunotherapy.

Moreover, we established a clinically-assisted
assessment system and risk prediction model based
on the molecular subtypes of EMT-related genes,
which is a useful tool for predicting independent
prognostic risk and treatment response of individual
patients, providing help for clinical treatment deci-
sion-making and developing effective treatment
methods. Among the four genes used for modeling,
The PLOD2 is an enzyme located in the rough endo-
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Table II The Risk factor and multi-factor Cox regression
analysis.

Gene Coef HR HR 
(lower, 0.95)

HR 
(upper, 0.95) P

SPP1 0.063 1.066 1.005 1.130 0.034 

SPOCK1 -0.112 0.894 0.826 0.968 0.005 

PLOD2 0.099 1.104 0.992 1.229 0.070 

CRLF1 -0.052 0.949 0.884 1.019 0.147
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plasmic reticulum of the cytoplasm that modifies col-
lagen post-translationally. Proteins of the rest three
genes are all Extracellular protein or located on cell
membrane. The Spp1 and SPOCK1 are glycoprotein
that constructs extracellular matrix. The CRLF1
mRNA is primarily expressed in fibroblasts and can be
increased by an inflammatory response. They all
show good correlation with prognosis, indicating that
by changing the way of EMT, extracellular matrix
remodeling and inflammatory reactions in tumors
may affect the prognosis of patients. PLOD2, Spp1,
SPOCK1 and CRLF1 can also serve as new targets for
anti-tumor microenvironment therapy of glioma.

However, this study has some limitations. To ver-
ify our results, we used samples from a public data-
base as the validation set to support the conclusions

of this study. In the future, we need to expand our
experiments to patients with complete clinical and
pathological data for clinical verification.

In conclusion, this study demonstrated a sub-
type classification method based on glioma EMT-
related genes, which can provide a new reference
and assessment method for fundamental mechanism
research and clinical treatment decision-making in
patients with glioma. This improves the precision of
tumor treatment with good potential for clinical appli-
cations.
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