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Abstract: Beetle antennae search (BAS) algorithm is a newly proposed single-solution based metaheuristic 

technique inspired by the beetle preying process. Although BAS algorithm has shown good search abilities, 

it can be easily trapped into local optimum when it is used to solve hard optimization problems. With the 

intention to overcome this drawback, this paper presents a population-based beetle antennae search (PBAS) 

algorithm for solving integer programming problems.  This method employs the population's capability to 

search diverse regions of the search space to provide better guarantee for finding the optimal solution. The 

PBAS method was tested on nine integer programming problems and one mechanical design problem. The 

proposed algorithm was compared to other state-of-the-art metaheuristic techniques. The comparisons show 

that the proposed PBAS algorithm produces better results for majority of tested problems.   
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1. Introduction 

A discrete optimization problem where all the variables are restricted to integer values is an 

integer programming problem.  This problem can be stated as (Tawhid et al., 2019):  

𝑚𝑖𝑛 𝑓(𝑥), 𝑥 ∈ 𝑆 ⊆ 𝑍𝑛 ,                      (1) 

where S is the feasible region, while Z is the set of integers.  
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Solving integer programming problems is a difficult task since these problems are known to 

be NP-hard. High computational cost is significant drawback of the exact optimization techniques 

when they are used to solve large-scale optimization problems.  On the other hand, metaheuristic 

techniques are global optimization algorithms which can be adjusted to suit specific problem 

requirements. These techniques can usually reach quality solutions with less computational 

work.  

Two important classes of metaheuristics are single-solution based and population based 

algorithms. Single-solution based metaheuristic methods, such as simulated annealing or recently 

proposed beetle antennae search (BAS) algorithm focus on enhancing a single potential solution. 

Methods which maintain and enhance multiple candidate solutions are population-based 

approaches. These methods use population features to lead the search and can investigate 

exceptionally large spaces of candidate solutions. Some of the most popular population-based 

metaheuristics are particle swarm optimization (PSO) (Kennedy & Eberhart, 1995), gravitational 

search algorithm (GSA) (Wang et al., 2021), artificial bee colony (ABC) (Karaboga, 2005), cuckoo 

search (CS) (Yang, 2008) and whale optimization algorithm (WOA) (Mafarja & Mirjalili, 2017). 

Recently, a lot of metaheuristic algorithms are being proposed and employed to solve problems 

from diverse fields (Brajević & Stanimirović, 2018; Brajević & Ignjatović, 2019;  Brajević  et al., 

2020; Brajević  2021; Du et al. 2020; Wang et al. 2020). 

The BAS is a novel population-based metaheuristic method that mimics the beetle preying 

process. In this algorithm, when the beetle preys, two antennae of the beetle can feel the intensity 

of the odor released by the food (Wu et al., 2019; Khan et al., 2021). According to the diverse 

information of antennas, the beetle updates the flight direction and potentially reaches the food. 

This method is mostly applied to the optimization of single-objective problems, and it has local 

optimization performance (Zhang et al., 2021). However, when BAS is employed to solve 

multidimensional and multimodal problems, it can easily fall into a local optimum.  

No single metaheuristics is suitable for solving all optimization problems as it is stated in no 

free lunch theorem (Brajević & Ignjatović, 2019). To find out which method has the best 

performance on which type of problems, metaheuristic methods have been modified to enhance 

their search abilities. The BAS algorithm is recently developed metaheuristic method which has 

shown good performance for solving certain optimization problems. To our knowledge, the BAS 

is not tested to solve integer programming problems. Therefore, proposing proper modifications 

to improve its global search capability to avoid local optimums and to solve this class of problems 

is a research problem. The main contribution of this study is development of a population-based 

beetle antennae search (PBAS) algorithm for solving integer programming problems. The PBAS 

employs the population's capability to search different regions of the search space. This method 

was tested on nine well-known integer programming problems and one mechanical design 

problem.  

The paper is organized as follows.  Section 2 presents beetle antennae search algorithm. The 

proposed PBAS is described in Section 3. Section 4 describes benchmark functions, while Section 

5 presents analysis of the achieved results.  

2. Beetle antennae search algorithm 

The BAS algorithm is inspirited by searching behavior of beetles with two antennae (Jiang & 

Li, 2018).  This algorithm considers the surrounding natural ambience as the search region. The 

algorithm leads the beetles forward with the odor concentration in the air. Most of beetles have 

two long antennae and use them as signal receivers.  Basic functions of these antennae are to bind 
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to odor of prey. A beetle investigates neighbor region randomly employing both antennae. In 

addition, when the antennae in one side discover a higher concentration of odor, the beetle would 

spin in the direction of the same side. In other case, the beetle would focus on the other side. 

This behavior could be expressed so that it is related to an objective function. The BAS 

algorithm employs two rules, searching behavior and detecting behavior of beetles.  Since the 

beetle searches randomly to investigate search space, a random direction of searching is described 

using the following equation:  
 

�⃗�  =  
𝑟𝑛𝑑(𝑘,1)

‖𝑟𝑛𝑑(𝑘,1)‖
 (2) 

where k is the dimensions of position and rnd(.) denotes a random function. Also, the 

searching behaviors of right-hand and left-hand sides mimic the actions of the beetle’s antennae. 

These behaviors are described as follows: 
 

𝑥𝑟 = 𝑥𝑡  +  𝑑𝑡𝑏,⃗⃗⃗      

𝑥𝑙 = 𝑥𝑡  +  𝑑𝑡𝑏,⃗⃗⃗   
(3) 

where d is the sensing length of antennae, 𝑥𝑟  is a position in the searching region of right-

hand side, while 𝑥𝑙  denotes that of the left-hand side. This value should be large enough to exploit 

a suitable searching region. The following equation is used to update the beetle position: 

x  = x + 𝛿 ∗ �⃗� ∗  𝑠𝑖𝑔𝑛(𝑓(𝑥𝑟)  −  𝑓(𝑥𝑙), 

 

 (4) 

where 𝛿 is the step size of searching and sign() is the sign function. The BAS algorithm uses 

the step size 𝛿 to control the convergence speed. The antennae length d and the step size 𝛿 are 

updated through the search as follows:  

𝑑𝑡 = 0.95𝑑𝑡−1  +  0.01,    

𝛿𝑡 = 0.95𝛿𝑡−1, 
(5) 

where t is the current iteration number. 

Algorithm 1. Pseudo code of the BAS algorithm  

Initialize algorithm's parameters MNI, 𝑑, 𝛿;  

Initialize solution xi randomly in the search space and evaluate it; 

t = 1; 

while (t <= MNI) do 

       Create the direction vector �⃗�  by Eq. (2); 

       Provide search with two kinds of antennae by Eq. (3); 

       Update the beetle position by Eq. (4); 

       Update the best solution obtained so far; 

       Update parameters d and 𝛿 according to Eq. (5); 

        t = t + 1; 

end while 

The main steps of this method are presented as Algorithm 1 (Jiang & Li, 2018). 
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3. The proposed algorithm: PBAS 

In the beetle antennae search technique only one beetle is used for the optimization. The left 

and right antennas enable the beetle to pick up the information and to improve toward the global 

optimum.  However, if the BAS method is employed to optimize some hard optimization 

problems, it will easily get stuck into the local minimum. To solve integer programming 

problems, the population-based BAS (PBAS) algorithm is proposed. The proposed PBAS method 

reaches quality solutions by iteratively choosing and integrating solutions from the population. 

In the optimization process, those beetles not only learn their own optimal experience, but also 

learn the experience of the other individuals in the population.  

Algorithm 2. Pseudo code of the PBAS algorithm 

Initialize algorithm's parameters SP, MNI, 𝑑, 𝛿;  

Initialize population of search solutions xi , i = 1, 2, …, SP randomly in the search 

space; 

Evaluate xi , i = 1, 2, …, SP; 

t = 1; 

while (t <= MNI) do 

   for i = 1 do SP do 

       Create a potential new solution 𝑣𝑖 by Eq. (6) and evaluate it; 

       Apply greedy selection process between 𝑥𝑖 and 𝑣𝑖; 

   end for 

   Update the parameters of 𝑑 and 𝛿; 

   Update the best solution obtained so far; 

   t = t + 1; 

end while 

Motivated by the strong ability to generate solutions with plenty of diversity of mutation 

strategies used in the ABC (Karaboga, 2005; Zhu and Kwong, 2010), the search strategy used in 

the PBAS is given as follows:  

𝑣ij = {
𝑥𝑖𝑗  + φ

ij
(𝑥ij − 𝑥kj) + 𝛿 ∗ 𝑏𝑗 ∗  𝑠𝑖𝑔𝑛(𝑓(𝑥𝑟)  −  𝑓(𝑥𝑙)), if 𝑅𝑗 ≤ 0.5

𝑥𝑖𝑗  + φ
ij
(𝑥ij − 𝑥kj) + ωij(𝑦𝑗 − 𝑥kj)  + 𝛿 ∗ 𝑏𝑗 ∗  𝑠𝑖𝑔𝑛(𝑓(𝑥𝑟)  −  𝑓(𝑥𝑙)), otherwise

        (6) 

Where φij is randomly picked real number in range (-1, 1), xk  is a randomly picked solution 

that is different from xi , 𝛿 is the step size control parameter, d is the antennae length, b is direction 

vector, sign() is the sign function, yj is the jth element of the global best solution, wij  is a uniform 

random number in range (0, 1.5),  Rj is a randomly picked real number in range (0,1), i ∈ {1, 2, … 

, SP} and SP is the size of population,  j ∈ {1, 2, … , D} and D is dimension of the problem. The 

greedy selection process between 𝑥𝑖 and 𝑣𝑖 is then performed to decide whether the solution will 

be updated. Algorithm 2 presented the pseudo code of the PBAS technique. 

According to Eq. (6), if Rj is less or equal to 0.5 the first equation is performed, otherwise the 

second one is executed. The first equation has a good ability to investigate diverse regions of a 

search space due to its second term. On the other hand, the second equation integrates the 

information of the global best solution which enhances the ability of the algorithm to search in 

the regions of formerly investigated quality solutions. It follows that the exploration and 

exploitation abilities of the PBAS method are well balanced which is of great significance to reach 
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good performance. It is also important to note that the proposed approach has simple 

implementation.   

The disadvantage of the proposed PBAS, as in many other metaheuristics, is in finding a 

proper combination of parameter settings.  These settings have crucial influence on the algorithm 

performance. The parameter settings which generate quality solutions for specific problem, might 

not produce good solutions for other problems. A possible way for overcoming this lack is to 

extend the PBAS with self-adaptive control parameters. 

4. Benchmark problems 

To examine the performance of the PBAS method nine integer optimization problems and 

one mechanical design problem often used in the literature are used (Akay & Karaboga, 2009). 

These problems are presented as follows: 

Test Problem 1. This problem is defined by:  

 

, 

with x = (x1, x2, …, xD), where D is the dimension.  The solution is xi*= 0, i=1, 2,…, D. The global 

minimum is F1(x*) = 0.   

Test Problem 2. This problem is defined by: 

, 

with x = (x1, x2, …, xD), where D is the dimension. The solution is xi*= 0, i=1, 2,…, D. The global 

minimum is F2(x*) = 0. 

Test Problem 3. This problem is defined by: 
 

 
 

The best known solutions are x*= (0 , 11 , 22 , 16 , 6)  or  x*= (0 , 12 , 23 , 17 , 6)  and F3(x*)  = -

737. 

Test Problem 4. This problem is defined by: 

 

The global minimum is F4(x*) = 0 at x*= (1, 1).  

Test Problem 5. This problem is defined by: 

 

  
 

The global minimum is F5(x*) = 0 at x* = (0, 0, 0, 0).   

Test Problem 6. This problem is defined by: 

     Dx++x=xF 11

   


















D

D

T

x

x

xxx==xxF 

1

12

F3(x)= − (15 27 36 18 12)x+x
T(

35 −20 − 10 32 −10

− 20 40 − 6 − 31 32
− 10 −6 11 −6 −10

32 − 31 − 6 38 −10

− 10 32 − 10 − 20 31
)x.

F4(x)= (9x1
2+2x2

2− 11)2+(3x1
2+4x2

2− 7)2.

F5(x)= (x1+10x2)
2+5(x3− x4)

2+(x2− 2x3)
4+10(x1− x4)4 .
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The global minimum is F6(x*) = -6 at x*= (2, -1).   

 

Test Problem 7. This problem is defined by: 
 

𝐹7(𝑥) = −3803.84 − 138.08𝑥1  −  232.92𝑥2 + 123.08𝑥1
2  +  203.64 𝑥2

2  +  182.25 𝑥1𝑥2. 
 

The global minimum is F7(x*) = − 3833.12 at x*= (0, 1).   

Test Problem 8. This problem is defined by: 

 

𝐹8(𝑥) = (𝑥1
2  +  𝑥2 −  11) 2 + (𝑥1  +  𝑥2

2   −  7) 2 
 

The global minimum is F7(x*) = 0 at x*= (3, 2).   

Test Problem 9. This problem is defined by: 

𝐹9(𝑥) = 100(𝑥2  −  𝑥1
2 ) 2 + (1 −  𝑥1

2 ) 2 
 

The global minimum is F7(x*) = 0 at x*= (1, 1).   

For each test problem the solutions were constrained in [−100, 100]D,  where D is the 

dimension of the corresponding problem.  For problems F1 and F2, the dimension D is set to 5. 

To further test the performance of the proposed algorithm, the gear train design problem is 

employed. The goal of this problem is to minimize the cost of the gear ratio of the gear train. The 

design of this problem is shown in Figure 1 (Akay & Karaboga, 2012).  

 

Figure 1. The gear train design 

The gear ratio is defined as: 

𝑔𝑒𝑎𝑟 =
𝑛𝐵𝑛𝐷

𝑛𝐹𝑛𝐴

 

Let us denote design variables of the problem nA, nB, nD, nF as x1, x2, x3, x4 respectively.  Each 

variable must take an integer value between 12 and 60. The problem is formulated as:  

𝑚𝑖𝑛 𝑓(𝑋)  = (
1

6.931
 −  

𝑥3𝑥2

𝑥1𝑥4

)2 

The global optimum for this problem is 2. 700857E−12. 

 

 

 

 

 

F6(x)= 2x1
2+3x2

2+4x1x2− 6x1− 3x2.
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5. Experimental analysis 

The proposed PBAS and ABC are implemented in Java programming language. Both 

algorithms were tested to solve nine integer programming benchmark problems.  

Table 1. Comparative results achieved by the PSO, ABC, CS, GSA, WOA and PBAS for the F1–

F9 integer programming problems (best results bold). 

Prob. Stats PSO ABC CS GSA WOA PBAS 

F1 Mean 20,000 1118.4 11,880.15 2020 18,436.36 1383.2 

 Std 0.00 133.61 623.41 112.45 568.47 153.12 

 SR NA 50/50 NA NA NA 50/50 

F2 Mean 17,540.17 1385.6 7176.23 1060 10,134.53 1436.8 

 Std 1054.56 219.78 637.75 78.69 483.25 139.73 

 SR NA 50/50 NA NA NA 50/50 

F3 Mean 20,000 18036.2 6400.25 5160 2946.63 9678.4 

 Std 0.00 2976.58 819.94 214.25 24.25 1802.09 

 SR NA 21/50 NA NA NA 50/50 

F4 Mean 16,240.36 288.05 4920.35 1680 9255.42 412.0 

 Std 1484.96 182.42 247.19 89.41 857.36 113.84 

 SR NA 50/50 NA NA NA 50/50 

F5 Mean 13,120.45 5409.12 7540.38 7250 6272.47 4811.2 

 Std 1711.83 1882.33 440.82 425.36 925.35 919.91 

 SR NA 50/50 NA NA NA 50/50 

F6 Mean 1340.14 410.5 4875.35 1520.23 18,420.18 392.8 

 Std 265.21 248.36 865.11 231.56 869.25 155.01 

 SR NA 50/50 NA NA NA 50/50 

F7 Mean 1220.46 388.82 3660.45 1100.24 9248.12 484.8 

 Std 177.19 201.12 383.23 85.23 962.35 134.73 

 SR NA 50/50 NA NA NA 50/50 

F8 Mean NA 537.02 NA NA NA 485.6 

 Std NA 331.70 NA NA NA 159.85 

 SR NA 50/50 NA NA NA 50/50 

F9 Mean NA 1187.56 NA NA NA 942.0 

 Std NA 1490.51 NA NA NA 481.65 

 SR NA 50/50 NA NA NA 50/50 

Additionally, to reveal the effectiveness of the PBAS, it is also compared to four 

metaheuristics that were previously applied to solve the first seven benchmarks. These 

metaheuristics are the basic particle swarm optimization (PSO), standard cuckoo search (CS), 

gravitational search algorithm (GSA) and whale optimization algorithm (WOA). The results of 

the PSO, CS, GSA, and WOA are taken from (Tawhid et al., 2019).   

In the PBAS the SP is set to 20, while the maximum number of function evaluations 

(MaxNFEs) was set to 20,000.  Techniques used for comparison with the PBAS also performed the 

same MaxNFEs of 20,000. In Table 1, the mean, standard deviation values and success rate values 

of the PSO, ABC, CS, GSA, WOA and PBAS methods are presented. From Table 1 the PBAS 

achieved better mean results on most test problems in comparison with its rivals. Concretely, the 

PBAS is better than PSO, ABC, CS, GSA and WOA in seven, five, six, five and six benchmarks, 

respectively. On the other hand, the PBAS is outperformed by the PSO, ABC, CS, GSA and WOA 

in zero, four, one, two and one test problems, respectively. 
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Also, the SR values show that the PBAS obtained a 100% success rate for each problem. 

Compared with ABC, the PBAS can produce better performance in terms of success rate for the 

benchmark F3. For the other eight benchmarks the PBAS and ABC reached the same SR values. 

Figure 2 shows four representative convergence graphs obtained by the PBAS of the selected test 

problems. 

To solve gear train problem, in the PBAS method the SP was set to 10, while the MaxNFEs 

was set to 5000.  The statistical results of the PBAS method and five other metaheuristic 

techniques: unified particle swarm optimization (UPSOm) (Parsopoulos & Vrahatis, 2005), 

artificial bee colony (ABC) (Akay & Karaboga, 2012), improved accelerated particle swarm 

optimization (IAPSO) (Guedria, 2016), mine blast algorithm (MBA) (Sadollah et al., 2013) and CS 

(Gandomi et al., 2013) are presented in Table 2.  

  
(a) (b) 

 
 

(c) (d) 

Figure 2. The convergence curve obtained by the PBAS: (a) F2, (b) F5, (c) F8, (d) F9. 

 

Table 2. Comparative results achieved by the UPSOm, ABC, IAPSO, MBA, CS and the PBAS for 

gear train problem (best results bold). 

Algorithm Best Mean Worst SD NFEs 

UPSOm 2.70085E−12 3.80562E−8 NA 1.09631E−07 100,000 

ABC 2.700857E-12 3.641339E-10 NA 5.525811E-10 60 

IAPSO 2.700857E−12 5.492477E−09 1.827380E−08 6.36E−09 800 

MBA 2.700857E−12 2.471635E−09 2.062904E − 08 3.94E−09 1120 

CS 2.7009E−12 1.9841E−09 2.3576E−09 3.5546−09 5000 

PBAS 2.700857E−12 2.986882E−10 1.361649E−9 4.2851E−10 5000 
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The results of the UPSOm, ABC, IAPSO, MBA and CS were taken from their respective 

literature. In Table 2, the mark NA means that the results are not presented in the corresponding 

paper. The results presented in Table 2 showed that each method can achieve the same best 

solution. The reached best solution is equal to the global optimum. The PBAS has achieved the 

smallest mean and standard deviation values among all compared algorithms.  

Conclusion 

In this paper, a population-based beetle antennae search (PBAS) technique for solving integer 

programming problems is proposed.  The PBAS approach achieves quality solutions by 

iteratively choosing and combining solutions from a population.  The PBAS algorithm was tested 

on nine integer programming problems and one mechanical design problem. The proposed 

approach was compared to several prominent metaheuristic algorithms. These algorithms 

showed a good performance when they were applied to the same benchmark integer 

programming problems.  Reached results confirmed that the PBAS performs better than the other 

algorithms in most benchmark problems. Compared with five other metaheuristics, the PBAS 

achieved competitive performance for solving the mechanical design problem. Therefore, it can 

be concluded that the proposed PBAS method is an encouraging approach for tackling integer 

programming problems. 

Future work will encompass several directions. Including ideas from opposition-based 

learning in the proposed population-based beetle antennae search algorithm with the intention 

to enhance its efficiency will be investigated. To efficiently solve hard constrained optimization 

problems, incorporating different constraint handling methods are important problems for 

further investigation. Also, proposing suitable modifications of the proposed algorithm for 

solving more complex optimization problems should be explored. 
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