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Abstract: Vibration suppression of a beam-type acoustic metamaterial with periodic cavities filled by a 

viscoelastic membrane that supports a hollow mass still filled by a viscoelastic membrane that supports a 

local resonator is investigated. First, the proposed beam-type acoustic metamaterial is modeled as a one-

dimensional mass-in-mass-in-mass (MMM) lumped parameter chain with structural damping, and then 

a mass-in-mass (MM) lumped parameter chain with structural damping is also given for comparison. For 

the two chains, the influence of structural damping on band structures are considered, and the loss factors 

associated with all propagating Bloch modes are compared. Finally, as an example, the beam-type 

metamaterials based on MM model with structural damping and MMM model with structural damping 

are designed to suppress vibration, respectively. The viscoelastic membranes act as structural damping. The 

finite element method based on Kirchhoff’s plate theory is developed to capture dynamic displacement fields 

of different metamaterials. Structural frequency response is calculated for different configurations of 

cantilevered structures when disturbance is considered. The results show that the proposed beam-type 

acoustic metamaterial based on MMM model with structural damping has higher dissipation and display 

high damping and does not sacrifice stiffness than MM model with structural damping. 
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1. Introduction 

At present, the research on the propagation characteristics of elastic waves in periodic 

structural materials is very popular, mainly because the propagation of elastic waves in periodic 

structural materials will generate band gaps (Hussein et al., 2014; Nouh et al., 2016; Galich, et al., 

2017; Muhammad & Lim, 2019; An et al., 2020; Cinefra et al., 2021; Zhou et al., 2021). Elastic wave 

bandgap materials, also known as phononic crystals, block the propagation of elastic waves in 

specific frequency bands due to the periodic distribution of elastic constants and densities. This 

specific performance makes elastic wave bandgap materials have significant application 

prospects in vibration and noise reduction, guided wave, acoustic control device design and other 

aspects (Benchabane et al., 2006; Li et al., 2018; Suobin et al., 2019; Gao et al., 2019). Phononic 

crystals are based on Bragg scattering, so the lattice constant of the phononic crystals must be 

large enough to from a band gap.  

The appearance of locally resonant phononic crystals changes the understanding that only 

large size structures can have low frequency band gap effect. The physical mechanism of band 

gap generation in locally resonant phononic crystals is different from Bragg scattering, which is 

determined by the resonant characteristics of local resonant units. By proper adjustment of the 

microstructure, the rapid attenuation of low frequency vibration energy can be realized in a small 

number of periodic microstructures (Zhu et al., 2011; Li et al., 2020). This periodic materials and 

structures are called metamaterials with local resonances, with a high level of dissipation while 

having high stiffness (Liu et al., 2000). The vibrational properties of acoustic metamaterials with 

periodic local resonances have been extensively studied. Acoustic metamaterials can be classified 

into intrinsic metamaterials and inertial metamaterials (Fok et al., 2008). Intrinsic acoustic 

metamaterials need inclusions with low phase velocity (Ding et al., 2007). Inertial acoustic 

metamaterials employ mass-spring-damper subsystems as local resonant and the inertial forces 

of the subsystems under resonance work against the excitation and attenuate the vibration (Peng 

et al., 2015). Hussein and Frazier (2013) derived the dispersion relation of a locally resonant 

metamaterial with viscous damping. Broadband vibration attenuation needs to satisfy both the 

two basic conditions for the presence of local resonance elements and the components capable of 

exhibiting damping in the metamaterial components. It is proved that a damping phenomenon 

called “metadamping” occurs and that damping is a necessary factor for attenuation of 

propagation modes outside the stop band ranges (Pai, 2010; Sun et al., 2010; Pai et al., 2014; 

Raghavan et al., 2013; Cenedese, 2021). Nouh et al. (2014) presented the characteristics of 

metamaterial beams manufactures of assemblies of periodic cells with built-in local resonances 

based on this kind of acoustic metamaterial design principle. Wang et al. (2016) presented a kind 

of metamaterial plate employing mass-spring-damper subsystems for the purpose of suppressing 

flexural wave propagation. Li et al. (2017) demonstrate the low frequency broadband elastic wave 

attenuation and vibration suppression by using plate-type elastic metamaterial employing mass-

spring-damper subsystems. Zhong et al. (2021) proposed a composite under- water honeycomb-

type acoustic metamaterial (rubber-steel-rubber) plate and studied the formation of its local 

resonance band gap (Huang et al., 2010; Chen et al., 2016). However, to our knowledge, no work 
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on the acoustic metamaterial design for elastic wave attenuation and vibration suppression with 

structural damping has been published. 

This paper is aimed to design a beam-type acoustic metamaterial for elastic wave attenuation 

and vibration suppression with structural damping. The acoustic metamaterial is modeled as a 

one-dimensional MMM lumped parameter chain with structural damping, and then a typical 

MM lumped parameter chain with structural damping is also given for comparison. The MMM 

lumped parameter chain exhibits higher dissipation. So an acoustic metamaterial design principle 

is presented, and four kind of different beam-type acoustic metamaterials with high damping 

and high stiffness are designed based on this paradigm. 

This organizational structure of this paper is as follows. In Section 2, the beam-type acoustic 

metamaterials are designed, which metamaterial has periodic cavities filled by viscoelastic 

membrane that supports a hollow mass still filled by a viscoelastic membrane that supports a 

local resonator. The metamaterial is modeled as a one-dimensional MMM lumped parameter 

chain with structural damping. In Section 3, an energy-based approach finite element model is 

presented based on Kirchhoff’s plate theory, and then used to derive the governing equations of 

motion of the acoustic metamaterial in transverse vibration. In Section 4, numerical simulation is 

presented. Frequency responses of different beam prototypes are analyzed and shown. The 

Section 5 is the conclusion. 

2. MMM model and MM model of the beam-type acoustic metamaterials 

By considering lumped masses, springs, and damper elements, the designed beam-type 

acoustic metamaterial is modeled as a one-dimensional MMM lumped parameter chain with 

structural damping, and for comparison a typical MM lumped parameter chain with structural 

damping is also given. The motion equations and dispersion relation of the two chains are derived, 

and the damping ratios corresponding to all propagating Bloch modes are compared. 

Accordingly, the beam-type acoustic metamaterials are designed based on these results. 

 

Figure 1. Schematic diagram of the beam-type acoustic metamaterial 
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Figure 2. Unit cells of (a) MMM model and (b) MM model 

The beam-type acoustic metamaterial in question has periodic cavities. The cavity is filled 

with a viscoelastic membrance (structural damping) to support the hollow mass. The hollow mass 

is still filled with a viscoelastic film (structural damping) that supports a local resonator.Fig.1 

provides a schematic of a beam-type acoustic metamaterial. Fig. 2(a) and (b) are the cells of two 

models, respectively.  

2.1. MMM model 

Considering unit cell periodicity, motion equations of MMM model is obtained as follows                 

𝑚1𝑢̈1
𝑛 + 𝑘1(2𝑢1

𝑛 − 𝑢1
𝑛−1 − 𝑢1

𝑛+1) + 𝑘3(𝑢1
𝑛 − 𝑢3

𝑛) + 𝑐1(𝑢̇1
𝑛 − 𝑢̇3

𝑛) = 0 ,          (1a)           

𝑚3𝑢̈3
𝑛 + 𝑘3(𝑢3

𝑛 − 𝑢1
𝑛) + 𝑘4(𝑢3

𝑛 − 𝑢4
𝑖 ) + 𝑐1(𝑢̇3

𝑛 − 𝑢̇1
𝑛) + 𝑐2(𝑢̇3

𝑛 − 𝑢̇4
𝑛) = 0 ,      (1b)                                      

𝑚4𝑢̈4
𝑛 + 𝑘4(𝑢4

𝑛 − 𝑢3
𝑛) + 𝑐2(𝑢̇4

𝑛 − 𝑢̇3
𝑛) = 0 ,                        (1c) 

where 
n

lu  is the displacement of mass l  in an arbitrary nth unit cell.  

By applying Bloch’s theorem, we assume a plane wave solution          

𝑢𝑙
𝑛 = 𝑈𝑙𝑒𝑥𝑝(𝑖(𝑘𝑥 + 𝑛𝑘𝑎) + 𝜆𝑡) = 𝑞𝑙(𝑡)𝑒𝑥𝑝(𝑖(𝑘𝑥 + 𝑛𝑘𝑎)),              (2) 

where𝑈𝑙 , 𝑘, 𝑥  and 𝑡 denote wave amplitude, wave number, position and time, respectively. 

Particularly, λ = 𝑖𝜔 when damping is neglected. 

For the case of viscous damping, dispersion relation of MMM model has been analyzed [30]. 

We only consider relation with structural damping here.  

When structural damping is considered, dissipation force 𝑓 = c𝑢̇ = 𝑖𝜂𝑘𝑢 , where 𝜂 is loss 

factor, 𝑘  is stiffness coefficient, and 𝑢  denotes displacement. Eq. (1a), (1b) and (1c) can be 

rewritten as      

𝑚1𝑢̈1
𝑛 + 𝑘1(2𝑢1

𝑛 − 𝑢1
𝑛−1 − 𝑢1

𝑛+1) + 𝑘3(𝑢1
𝑛 − 𝑢3

𝑛) + 𝑖𝜂1𝑘3(𝑢1
𝑛 − 𝑢3

𝑛) = 0 ,            (3a)       

𝑚3𝑢̈3
𝑛 + 𝑘3(𝑢3

𝑛 − 𝑢1
𝑛) + 𝑘4(𝑢3

𝑛 − 𝑢4
𝑖 ) + 𝑖𝜂1𝑘3(𝑢3

𝑛 − 𝑢1
𝑛) + 𝑖𝜂2𝑘4(𝑢3

𝑛 − 𝑢4
𝑛) = 0,            (3b) 

      𝑚4𝑢̈4
𝑛 + 𝑘4(𝑢4

𝑛 − 𝑢3
𝑛) + 𝑖𝜂2𝑘4(𝑢4

𝑛 − 𝑢3
𝑛) = 0,                                  (3c) 

Combining Eq. (3a), (3b), (3c) and (2), we have 

Mq̈+iK1q+Kq=0                                (4) 
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Where 𝑴 = [

𝑚1 0 0
0 𝑚3 0
0 0 𝑚4

], K1= [

η
1
k3 -η

1
k3 0

-η
1
k3 η

1
k3+η

2
k4 -η

2
k4

0 -η
2
k4 η

2
k4

] , 

𝑲 = [
2𝑘1 + 𝑘3 − 𝑘1𝑒𝑖𝑘𝑎 − 𝑘1𝑒−𝑖𝑘𝑎 −𝑘3 0

−𝑘3 𝑘3 + 𝑘4 −𝑘4

0 −𝑘4 𝑘4

]. 

Let 
1 2/   ，Then coefficient matrices of Eq. (4) can be rewritten  

𝑴 =
1

𝜔|𝑟|
2 [

𝑚̅ 0 0
0 𝑚̃ 0
0 0 1

]，𝑲1 = 𝜂2 [
𝜂̅𝑘̃ −𝜂̅𝑘̃ 0

−𝜂̅𝑘̃ 𝜂̅𝑘̃ + 1 −1
0 −1 1

]，𝑲 = [
2𝑘̅(1 − 𝑐𝑜𝑠𝑘𝑎) + 𝑘̃ −𝑘̃ 0

−𝑘̃ 𝑘̃ + 1 −1
0 −1 1

] (5) 

where 
1 4/m m m , 

3 4/m m m ， 1 4/k k k , 3 4/k k k . 

Upon introducing the state vector𝑿(𝑡) = [𝑞𝑇 𝑞̇𝑇]𝑇, Eq. (4) is rewritten in state-space form as  

𝑿(𝑡) = 𝑨2𝑿(𝑡)                                   (6) 

where 𝑨2 = [
𝟎 𝑰

−𝑴−𝟏(𝒊𝑲𝟏 + 𝑲) 𝟎
]. 

So we can obtain the standard eigenvalue equation of MMM model with viscous damping or 

structural damping            

|𝜆𝑰 − 𝑨𝑖| = 0,   𝑖 = 1,2.                                (7) 

The characteristic equation is obtained        

𝜆6 + 𝑎𝜆5 + 𝑏𝜆4 + 𝑐𝜆3 + 𝑑𝜆2 + 𝑒𝜆 + 𝑓 = 0,                       (8) 

The root of Eq. (8) is calculated as   

𝜆𝑠(𝑘) = 𝑅𝑒(𝜆𝑠)+𝑖𝐼𝑚(𝜆𝑠)，𝑠 = 1,2,3，                     (9) 

where damping ratio 𝜉𝑠 = 𝑅𝑒(𝜆𝑠)/𝐴𝑏𝑠(𝜆𝑠)，and s represents the branch number.  

In this paper, the Young’s modulus of viscoelastic material is complex, the viscoelastic 

membranes act as structural damping. Numerical example only for structural damping is 

provided, correspondingly.  

2.2. MM model 

For comparison, motion equations of MM model is yielded as follows          

𝑚1𝑢̈1
𝑛 + 𝑘1(2𝑢1

𝑛 − 𝑢1
𝑛−1 + 𝑢1

𝑛+1) + 𝑘2(𝑢1
𝑛 − 𝑢2

𝑛) + 𝑐0(𝑢̇1
𝑛 − 𝑢̇2

𝑛) = 0,          (10a)                   

𝑚2𝑢̈2
𝑛 + 𝑐0(𝑢̇2

𝑛 − 𝑢̇1
𝑛) + 𝑘2(𝑢2

𝑛 − 𝑢1
𝑛) = 0.                 (10b) 

For the case of viscous damping, dispersion relation of MM model has been analyzed [18]. 

We only consider relation with structural damping here.  

When structural damping is considered, dissipation force 𝑓 = c𝑢̇ = 𝑖𝜂𝑘𝑢, Eq. (10a) and (10b) 

can be rewritten as        
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𝑚1𝑢̈1
𝑛 + 𝑘1(2𝑢1

𝑛 − 𝑢1
𝑛−1 − 𝑢1

𝑛+1) + 𝑘2(𝑢1
𝑛 − 𝑢2

𝑛) + 𝑖𝜂(𝑘2𝑢1
𝑛 − 𝑘2𝑢2

𝑛) = 0,        (11a)                           

𝑚2𝑢̈2
𝑛 + 𝑖𝜂(𝑘2𝑢2

𝑛 − 𝑘2𝑢1
𝑛) + 𝑘2(𝑢2

𝑛 − 𝑢1
𝑛) = 0.                 (11b) 

Substituting Eq. (2) into Eq. (11a) and (11b), we have      

𝑴̂𝒒̈ + 𝑖𝜂𝑲̂1𝒒 + 𝑲̂𝒒 = 0，                                 (12) 

Where 𝑴̂ = [
𝑚1 0
0 𝑚2

]，𝑲̂1 = [
𝑖𝜂𝑘2 −𝑖𝜂𝑘2

−𝑖𝜂𝑘2 𝑖𝜂𝑘2
]，𝑲̂ = [

2𝑘1 + 𝑘2−𝑘1𝑒𝑖𝑘𝑎−𝑘1𝑒−𝑖𝑘𝑎 −𝑘2

−𝑘2 𝑘2
]， 

 𝒒 = [
𝑞1(𝑡)

𝑞2(𝑡)
] = [𝑞1(𝑡) 𝑞2(𝑡)]𝑇. 

  Let 𝑚1 𝑚2 = 𝑚̂, 𝑘1 𝑘2 = 𝑘̂,⁄⁄  𝑘2 𝑚2 = 𝜔𝑙𝑟2
2⁄ , coefficient matrices of Eq. (12) can be rewritten 

as   

  𝑴̂ =
1

𝜔𝑙𝑟2
2 [

𝑚̂ 0
0 1

] , 𝑲̂1 = [
1 −1

−1 1
] , 𝑲̂ = [2𝑘̅ + 1 − 𝑘̅𝑒𝑖𝑘𝑎 − 𝑘̅𝑒−𝑖𝑘𝑎 −1

−1 1
] .            （13）  

Upon introducing the state vector 𝑿(𝑡) = [𝑞𝑇 𝑞̇𝑇]𝑇, Eq. (12) is rewritten in state-space form 

as 

  𝑿̇(𝑡) = 𝑨3𝑿(𝑡),                                        (14) 

where 𝑨3 = [
𝟎 𝑰

−𝑴̂−𝟏(𝒊𝑲̂𝟏 + 𝑲̂) 𝟎
]. 

So we can obtain the standard eigenvalue equation of MM model considering structural 

damping              

|𝜆𝑰 − 𝑨3| = 0.                                        (15) 

  The characteristic equation is obtained          

𝜆4 + 𝑎𝜆3 + 𝑏𝜆2 + 𝑐𝜆 + 𝑑 = 0.                            (16) 

The roots of Eq. (16) may be expressed as  

𝜆𝑠(𝑘) = 𝑅𝑒(𝜆𝑠)+𝑖𝐼𝑚(𝜆𝑠), 𝑠 = 1,2.                             (17)  

For numerical simulations, some parameters are introduced for MM model and MMM model:  

𝑘̅ = 𝑘̃ = 𝑘̂ = 1 ,  𝑘1 𝑘4 = 𝑘̅⁄  , 𝑘3 𝑘4 = 𝑘 ̃ ,⁄  𝜔𝑙𝑟1 = 𝜔𝑙𝑟2 = 100 , 𝑚̅ = 19  , 𝑚̃ = 5  , 𝑚̂ = 19 6⁄  

(𝑚2 = 𝑚3 + 𝑚4). The influence of structural damping on frequency band structure and damping 

ratio band structure are analyzed.  
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Figure 3(a). Frequency band structure and (b) band gap as a function of structural damping for 

the MM model 

Fig. 3(a) displays the frequency band structure of the MM model with structural damping. 

Acoustic branches are represented by solid lines and optical branches by dot lines. Fig. 3(b) shows 

relations of the relative size of the band gap with structural damping, and it can be observed that 

although the value of structural damping is finite, the relative size of the band gap increases with 

the increase of structural damping. It is different from viscous damping. The results of damping 

ratio band structure for 1   and 2  are shown in Fig. 4. 
s

  means the sum of values for 

the acoustic and optical branches, i.e., 
1 2s     for the MM model. It is clear that damping 

ratio increase with increasing of the structural damping for the acoustic and optical branches 

from Fig. 4(a) and 4(b). 

 
Figure 4. Damping ratio band structure corresponding to (a) 1   and (b) 2   for the MM 

model 
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Figure 5. Frequency band structure considering the influence of structural damping  (a) 
1

  

and (b) 
2

  for the MMM model 

In Fig. 5, Fig. 6 and Fig. 7, the first optical branch and second branch are represented by dash 

line and dot lines respectively, and acoustic branch is represented by the solid line. The influences 

of structural damping 
1  and 2  on band structure and damping ratio are considered. It is 

observed that the second optical branch is more affected by 
1  than the second optical branch 

and acoustical branch from Fig. 5(a), and damping ratio of the second optical branch increases 

more rapidly than that of the first optical branch and acoustical branch from Fig. 6.  As 
1  

increases, the band gap will narrow between the first optical branch and the second optical branch, 

and the band gap will wide between the second optical branch and the acoustical branch. Fig. 5(b) 

shows the first optical branch is more affected by 2  than the second optical branch and the 

acoustical branch. As 2  increases, the band gap will wide between the first optical branch and 

the second optical branch.  

 

Figure 6. Damping ratio band structure for the MMM model 
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Figure 7(a). Frequency band structure and (b) damping ratio band structure for MM model and 

MMM model when 
1 2

1      

Fig. 7(a) shows the frequency band structure of two models. The results show that there are 

two band gaps in the MMM model, and band gap of MMM model might be bigger than that of 

MM model in width through adjusting 
1

  and 
2

 . Fig. 7(b) displays the damping ratio band 

structure of two models. 
s

  means the sum of values for the acoustic and optical branches, i.e., 

1 2 3s       for the MMM model.
s

  is represented by the dash-dot line here. It can be 

concluded that MMM model exhibits higher damping ratio across the entire Brillouin zone for 

total damping ratio 
s

 . Next, the beam-type metamaterials based on MM model and MMM 

model are designed to prove the effectiveness of this conclusion. 

3. Finite element model of the proposed beam-type acoustic metamaterial 

The metamaterial beams are divided into four-node rectangular finite plate bending elements 

with 3 degrees of freedom per node as shown in Fig. 8. The beam based on the MM model is 

modeled with 567 four-noded rectangular elements with 640 nodes as shown in Fig. 8(a), the 

beam based on the MMM model is modeled with 630 four-noded rectangular elements with 704 

nodes as shown in Fig. 8(b). The two models have the same length, width and thickness. The mass 

of local resonator in MM model is close to the sum of mass of local resonator and hollow mass in 

MMM model. The two models have the same lattice constant. For each node i , the degrees of 

freedom are the transverse displacement in the z -direction and the corresponding angular 

deflections in the x  and y  directions, as shown in Fig. 8(c). The finite element method based 

on Kirchhoff’s plate theory from Ref [25] is adopted.    
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Figure 8. Finite element mesh of a four-node rectangular finite metamaterial beam (a) for MM 

model, (b) for MMM model and (c) a schematic diagram of a single element of the finite element 

model 

It is necessary to point out that modulus for viscoelastic materials E  is complex, which is 

expressed as           

𝐸 = 𝐸′ + 𝐸′′𝑖 = 𝐸′(1 + 𝜂𝑖),                           (18) 

where 𝐸′is storage modulus and 𝜂 is known as the loss factor. Complex modulus embodies 

the elastic and dissipative properties of viscoelastic materials. Modulus for viscoelastic materials 

is dynamically identical to complex stiffness of spring in MM and MMM models. So the 

viscoelastic materials act as structural damping, not viscous damping.  

4. Frequency response of the beam-type acoustic metamaterials 

  The computation of the frequency response is carried out on four different beams 

prototypes cantilevered from the left hand side, as shown in Fig. 9. A typical metamaterial beam 

consisting of periodic resonators surrounded by a rubber membrane embedded in aluminum 

matrix based on MM model is shown in Fig. 9(a). An aluminum beam has periodic cavities filled 

by a viscoelastic membrane that supports a hollow mass filled by a rubber membrane that 

supports a local resonator (as shown in Fig. 9(b)), an aluminum beam has periodic cavities filled 
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by a rubber membrane that supports a hollow mass filled by a viscoelastic membrane that 

supports a local resonator (as shown in Fig. 9(c)), and an aluminum beam with periodic cavities 

filled by a viscoelastic membrane that supports a hollow mass frame filled by a viscoelastic 

membrane that supports a local resonator (as shown in Fig. 9(d)) is designed based on MMM 

model. Four different beams prototypes are cantilevered from the left hand side ,which is 37.8cm 

in length, 5.4cm in width, and 0.15cm in thick. The material properties are listed in Table 1. Table 

2 lists the first five natural frequencies of four different beams prototypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Structural models of the different configurations of beams. (a) beam 1, (b) beam 2, (c) 

beam 3, (d) beam 4 

 

Table 1. Material properties 

Materials        Yong’s modulus E ( Gpa )    poisson’s ratio      Density  ( 3kg / m ) 

Aluminum              70                       0.30                 2700 

Rubber                0.195                     0.50                 1300 

Polyurea             0.02(1+0.4i)                 0.49                 1018 

 

Table 2. The first five natural frequencies of four different beams prototypes (Hz) 

Prototypess  1st frequency  2nd frequency  3rd frequency  4th frequency  5th frequency 

Beam 1           5.8            36.5          102.9          202.7          288.2 

Beam 2           5.6            35.3          99.2           195.4          288.2 

Beam 3           5.6            36.9          103.6          203.1          315.9 

Beam 4           6.0            35.1          100.0          195.8          290.6 
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Figure 10. Frequency responses 
r

w  over (a) 4000 Hz range and (b) 500 Hz range 

 

Figure 11. Frequency response under excitation frequencies at 280 Hz for (a) beam 1 and (b) 

beam 4 

Fig. 10(a) and (b) display the magnitude of the transfer function 𝑤𝑟 𝑤𝑎⁄ between response 𝑤𝑟 

at point (𝑥𝑟 , 𝑦𝑟) and response 𝑤𝑎  at point (𝑥𝑎 , 𝑦𝑎) for all beams (black stars in Fig. 9(a)).  

𝑥𝑟 = 0.378𝑚 and 𝑦𝑟 = 0.054𝑚 . The excitation force with amplitude of 1N is applied at 𝑥𝑎 =

0.004𝑚 and𝑦𝑎 = 0𝑚. The effectiveness of four beams in attenuating vibration is presented. Beam 

2 and 4 clearly increases average vibration attenuation over the considered frequency range. 

Compared with beam 2, beam 4 shows clearly vibration attenuation at some frequency range, 

such as between 1178 Hz and 1280 Hz, between 2800 Hz and 3000 Hz. Beam 3 shows some 

attenuation at higher frequencies. It can be seen from Fig. 7 and 10 that The proposed 

metamaterial beam 4 based on the MMM model has the best vibration attenuation characteristics 

over the considered frequency range, and exhibits higher damping ratio across the considered 

frequency range.  
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Compared with beam 1 based on the MM model, it can be observed that beam 4 shows 

distinct stop bands along the considered frequency range, such as frequency range from 272 Hz 

to 280 Hz, from 1178 Hz to 1280 Hz. Vibration attenuation of beam 4 is also achieved particularly 

at low frequencies. 𝑤𝑟 𝑤𝑎⁄ at the second bending mode for beam 1 is 24dB, 𝑤𝑟 𝑤𝑎⁄ at the same 

mode for beam 4 is 22.5 dB. So vibration attenuation is increased by 6%. It can be calculated that 

the attenuation of the third bending mode is increased by 8%, and the attenuation of the fifth 

bending mode is increased by 10%. Fig. 11(a) and (b) show frequency response of beam 1 and 4 

under excitation frequencies at 280 Hz. The force excitation position is same as Fig. 10. Significant 

vibration attenuation is observed for beam 4 because the excitation frequency falls into the 

distinct stop band. 

Conclusions 

A one-dimensional mass-in-mass-in-mass (MMM) model with structural damping is given, 

and then a typical mass-in-mass (MM) model with structural damping is also given for 

comparison. The MMM model exhibits higher damping and dissipation, resulting in elastic wave 

attenuation. A beam-type acoustic metamaterial with periodic cavities filled by a viscoelastic 

membrane that supports a hollow mass still filled by a viscoelastic membrane that supports a 

local resonator is designed based on MMM model with structural damping.  

Flexural vibration of the designed beam-type acoustic metamaterial is studied theoretically 

as well as numerically. Another kind of beam-type acoustic metamaterial of same size and weight 

based on MM model with structural damping is presented for comparing to the designed 

metamaterial. It is found that the designed metamaterial is more effective in suppressing 

structural vibration. The base structure represents about 73% of the metamaterial structure’s area 

and about 93% of the beam’s weight is aluminum. In comparison to typical acoustic metamaterial 

of same size and weight, designed metamaterial structure has higher dissipation during the 

whole frequency range. 
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