
 

Journal of Process Management and New Technologies 
Vol. 11, Issue 1-2, 2023, pp. 141-151 

 

141 

 

OPTIMIZATION OF MYSQL DATABASE 

Ivan ŠUŠTER1*, Tamara RANISAVLJEVIĆ2 

1Faculty of Electronic Engineering, University of Niš, Niš, Serbia, ivansu995@gmail.com 
2WRPM, Belgrade, Serbia, tamara.ranisavljevic@gmail.com 

Abstract: The performance of MySQL, a well-known open-source relational database management 

system used in a variety of sectors, including e-commerce, finance, and healthcare, can be improved 

through the use of physical programming and data tuning. While data tuning involves refining the 

database to increase efficiency, physical programming involves optimizing the physical storage of data. 

This article gives a general introduction of MySQL and its architecture, looks at the many methods and 

tools used in physical programming and data tuning, and talks about the advantages of these techniques 

and how they affect MySQL's performance.  

Keywords: mysql, optimization, database, performance 

Professional paper 

Received: 11.05.2023. 

Accepted: 29.05.2023. 

Available online: 25.06.2023.  

1. Introduction 

A popular client-server RDBMS, MySQL is renowned for its performance, dependability, 

and scalability. To get the best performance, it is essential to configure the database and 

optimize the physical storage of data. The performance and scalability of the MySQL database 

are enhanced by physical programming and data optimization. In addition to discussing the 

significance of physical programming and data tuning in MySQL, this article goes into great 

detail about the methods and equipment employed in these procedures (Stjepanovic et al., 

2015). 

A relational database management system (RDBMS) noted for its performance, 

dependability, and scalability, MySQL is one of the most popular RDBMSs in use today. 

MySQL is an open-source database created by Oracle Corporation and distributed without 

charge under the terms of the GNU General Public License. Numerous significant companies, 

such as Facebook, Google, and Twitter, as well as small and medium-sized businesses and 

independent developers, use it. 

The performance of MySQL is one of the main factors contributing to its popularity. MySQL 

is renowned for its efficiency and capacity for handling massive amounts of data. It is a great 

option for applications that need high performance and low latency because it can execute 

thousands of queries per second. In addition, MySQL has a small memory footprint and 

operates effectively on a range of hardware, making it a practical choice for many businesses 

(Patil et al., 2017). 

 
* Corresponding author 



Šušter & Ranisaljević 

 

142 

 

Another quality of MySQL is dependability. It is a well-liked option for mission-critical 

applications due to its track record of stability and uptime. The architecture of MySQL includes 

elements like atomic transactions, row-level locking, and crash recovery that are intended to 

protect data integrity. Because of these advantages, organizations can rely on MySQL to store 

and manage their crucial data and reduce the risk of data loss or corruption. 

The ability to scale is another benefit of MySQL. It is a flexible option for companies of all 

sizes because it may scale up or down based on the requirements of the organization. Large 

data collections can be handled by MySQL, which can be dispersed over several servers to 

enhance performance and availability. 

Further enhancing scalability, MySQL now offers sharding, which enables data to be 

divided among numerous servers. (Rautmare & Bhalerao, 2016). 

The simplicity of usage of MySQL is another benefit. Developers can easily design and 

manage databases thanks to its simple and clear syntax. In addition, the MySQL database has a 

sizable user and developer community that has produced a plethora of resources, such as 

documentation, guides, and plugins, to aid users in making the most of the database (Győrödi 

et al., 2015). 

PHP, Java, Python, and C++ are just a few of the many programming languages that MySQL 

can support. It is a fantastic option for projects requiring various languages, such as web 

applications. 

Over the years, MySQL has changed tremendously, with a wealth of new features and 

enhancements being added with each new edition. Performance, scalability, and security have 

been prioritized in recent MySQL releases. For instance, MySQL 8.0 brought a number of new 

features, including as well JSON support, window functions, and enhanced performance for 

huge data sets. 

MySQL includes a sizable ecosystem of add-on tools and services from third parties in 

addition to its basic functionality. These include management platforms, backup and recovery 

tools, and monitoring tools that can aid businesses in effectively managing their MySQL 

databases. 

However, just like any piece of software, MySQL has its share of problems. Managing the 

growth of the database is a problem that frequently arises with MySQL. As the database 

expands, management may become more difficult, and additional resources may be needed to 

maintain performance. Additionally, monitoring security and preserving data privacy can be 

difficult, particularly for businesses that must comply with laws like GDPR or HIPAA. 

A popular client-server RDBMS, MySQL is renowned for its performance, dependability, 

and scalability. It is utilized by businesses of all sizes and in a variety of sectors. Because of its 

simplicity, adaptability, and sizable user and developer community, MySQL is a fantastic 

option for many projects. However, it can be difficult to control the database's expansion while 

also guaranteeing security and data privacy. As long as businesses depend on MySQL for their 

data management requirements, it will be a crucial component of their technology stack, and 

continued development will be necessary to keep MySQL at the top of the database 

management system rankings. 

Providing a thorough understanding of physical programming and data tuning in MySQL 

with an emphasis on the database's efficiency and scalability is the goal of this paper. 

Additionally, the goal is to provide light on the fundamental ideas and recommended 

procedures for MySQL's physical programming and data tuning. 

This paper's specific objectives are to:  

• Give an overview of MySQL's architecture and discuss how it affects performance and 

scalability. 



Optimization of MySQL Database 

 

143 

 

• Talk about the fundamentals of physical programming, including as data types, storage 

architectures, and index design, and how these affect MySQL's performance. 

• Learn about the performance effects of query optimization, partitioning, and caching as 

well as other recommended practices for MySQL data tuning. 

• Discuss the advantages and difficulties of using physical programming and data tuning 

in MySQL using examples from real-world use cases. 

• Give details about ongoing research and development in the areas of physical 

programming and data tuning in MySQL, as well as new developments and trends. 

The overall goal of this paper is to present a thorough and current overview of physical 

programming and data tuning in MySQL, based on the most recent findings and industry best 

practices. We aim to assist developers and database administrators optimize the performance 

and scalability of their MySQL databases, and ultimately enhance the quality and dependability 

of their applications by revealing the underlying principles and best practices for physical 

programming and data tuning. 

2. Overview of MySQL Architecture 

The SQL parser, optimizer, and execution engine are only a few of the parts that make up 

MySQL's architecture. The SQL parser is in charge of analyzing and validating SQL queries, 

while the optimizer creates the best execution strategy for a particular query. The query is run 

by the execution engine, which then gives the client the results. MyISAM, InnoDB, and 

MEMORY are just a few of the different storage engines used by MySQL to store data. Each 

engine has its own advantages and disadvantages. Because of this, MySQL's architecture is 

crucial to the database's performance and scalability, therefore understanding the guiding 

concepts and design decisions is crucial for maximizing performance (Wahyudi et al., 2022). 

The client, the server, and the storage engine are the three primary parts of the MySQL 

architecture. While the server controls the databases, tables, and queries, the client is in charge 

of interacting with the server and running queries. Data storage and retrieval from the 

underlying storage medium are the responsibilities of the storage engine. 

Each of the subcomponents within MySQL's server component has its own distinct 

function. Incoming SQL queries are examined by the query parser and optimizer, which then 

generates an efficient execution strategy. The optimal plan is carried out by the execution 

engine, which then provides the client with the outcomes. To obtain and save data, the storage 

engine interface interfaces with the storage engine. The atomicity, consistency, isolation, and 

durability (ACID) attributes of transactions are ensured by the transaction manager. Thread 

management is handled by the connection manager, which also manages client connections 

(Janjua et al., 2022). 

There are various storage engines that MySQL supports, and each has advantages and 

disadvantages. InnoDB and MyISAM are the storage engines that are utilized the most 

frequently. InnoDB is a transactional storage engine that supports row-level locking and foreign 

key constraints, making it suitable for high-concurrency settings. In contrast to InnoDB, 

MyISAM is a non-transactional storage engine that is faster for read-intensive workloads but 

less dependable and scalable. 

A MySQL database's performance and scalability can be significantly impacted by the 

storage engine that is selected. Performance can also be greatly influenced by other variables, 

including the selection of data types, index design, and splitting. 



Šušter & Ranisaljević 

 

144 

 

The architecture of MySQL also offers a number of capabilities for enhancing speed and 

scalability. The query cache reduces the overhead of query execution by storing the results of 

frequently conducted queries in memory. Large tables are partitioned into smaller, easier-to-

manage chunks, which enhances query efficiency and lowers lock contention. For scaling out 

workloads that need a lot of reading, MySQL also supports several types of replication. 

The performance and scalability of the MySQL database must be optimized, which requires 

a thorough understanding of the database's design. Developers and database managers can 

choose storage engines, build indexes, and other aspects that affect performance by being aware 

of the underlying principles and design choices. The architecture of MySQL also offers a 

number of features and tools for enhancing performance and scalability, making it a strong and 

adaptable option for contemporary applications (Wang et al., 2023). 

3. Physical Programming in MySQL 

Optimizing the physical storage of data in a database system is referred to as "physical 

programming" in the MySQL language. Physical programming's main objective is to boost 

database performance by minimizing the number of I/O operations necessary to access data. 

Physical programming makes use of a number of methods, such as partitioning, indexing, data 

compression, and data clustering. 

A table is partitioned when it is divided into partitions, which are more manageable, 

smaller sections. By minimizing the quantity of data that needs to be scanned, partitioning can 

enhance database performance. Making indexes on one or more table columns is the process of 

indexing. By minimizing the quantity of data that must be scanned in order to obtain data, 

indexing can enhance database performance. Data compression is the process of reducing the 

amount of data. By lowering the number of I/O operations necessary to read and write data, 

data compression can enhance the database's performance. Data clustering is the process of 

assembling linked data on storage. The database's performance can be enhanced by data 

clustering by lowering the number of I/O operations necessary to obtain similar data. 

The design and implementation of a database's physical layout, including the selection of 

data types, storage engines, and index design, is referred to as physical programming. 

Understanding the underlying concepts of these principles is essential for maximizing MySQL's 

performance because they have a substantial impact on the scalability and performance of the 

database. 

Data Types: (DuBois, 2008) 

The performance and storage needs of a database are significantly impacted by the choice of 

data types. Numeric, date and time, text, binary, and other data kinds are all supported by 

MySQL. Depending on the needs of the application, different precision and scale levels can be 

recorded for numerical data types. When compared to using INT or BIGINT, utilizing the 

TINYINT data type for a column that only needs to store values between 0 and 255 can 

dramatically reduce storage needs. Depending on the needs of the application, date and time 

data types can be saved in a variety of formats, such as DATETIME, TIMESTAMP, or DATE. 

Depending on the maximum length, the string and binary data types can also be saved with 

varied lengths. 

The character sets and collations that define how text data is saved and sorted are also 

supported by MySQL. For proper sorting and search capabilities, it is crucial to select the right 

character set and collation for the application's language and encoding requirements. 

Storage Engines: 

There are various storage engines that MySQL supports, and each has advantages and 

disadvantages. InnoDB and MyISAM are the storage engines that are utilized the most 



Optimization of MySQL Database 

 

145 

 

frequently. InnoDB is a transactional storage engine that supports row-level locking and foreign 

key constraints, making it suitable for high-concurrency settings. In contrast to InnoDB, 

MyISAM is a non-transactional storage engine that is faster for read-intensive workloads but 

less dependable and scalable. 

A MySQL database's performance and scalability can be significantly impacted by the 

storage engine that is selected. For instance, InnoDB is well suited for transactional workloads 

with high degrees of concurrency since it supports row-level locking and foreign key 

constraints. MyISAM is better suited for workloads with modest degrees of parallelism and a 

high read volume because it does not offer these functionalities. 

Index Design: 

Since they make it possible to retrieve and filter data effectively, indexes are a crucial part of 

database performance. The several types of indexes that MySQL provides include full-text 

indexes, secondary keys, and primary keys. Each row in a table's primary keys is uniquely 

identified and automatically indexed. User-generated secondary keys allow for effective 

filtering and sorting. Fast text search is made possible by full-text indexes (Maesaroh et al., 

2022). 

A MySQL database's performance is significantly impacted by the design of its indexes. 

Select operations can be slowed down by too few indexes whereas insert and update operations 

can be slowed down by too many indices. Performance is also impacted by the type of index 

selected as well as the index's contained columns. For queries that filter or sort on those 

columns, utilizing a composite index with many columns can enhance performance. 

Along with these guidelines, other elements that can affect MySQL's performance include 

partitioning, caching, and query optimization. Large tables are partitioned into smaller, easier-

to-manage chunks, which enhances query efficiency and lowers lock contention. Through the 

storage of frequently accessed data in memory, caching can enhance performance. In order to 

increase performance, SQL queries that are conducted by the program are examined and 

optimized. 

The speed and scalability of MySQL are greatly influenced by the concepts of physical 

programming, including data types, storage engines, and index architecture. Performance must 

be optimized by using the right data formats, storage engine, and index architecture. To further 

enhance performance, database managers and developers should take into account additional 

elements like partitioning, caching, and query optimization. Developers may make sure that 

their MySQL databases function properly and satisfy the requirements of their applications by 

understanding these guidelines and best practices (Schwartz et al., 2012). 

Let us say we have a web application, like an e-commerce platform, that processes a lot of 

transactions. The program must be able to manage several database modifications at once while 

maintaining data consistency. 

Due to MyISAM's lack of support for transactions and row-level locking, we would 

probably suffer performance concerns if we used it as our storage engine. Because MyISAM is a 

non-transactional storage engine, it cannot be used in high-concurrency environments because 

write operations lock the entire table. 

The InnoDB storage engine, on the other hand, would enable us to benefit from its support 

for transactions and row-level locking. High concurrency and isolation between transactions are 

made possible by InnoDB's usage of the multi-version concurrency control (MVCC) method. As 

a result, different transactions can read from and write to the same table at the same time 

without locking the entire table. 

Additionally, InnoDB supports foreign key constraints, which enforce referential integrity 

between tables to guarantee data consistency. For systems that manage intricate data 



Šušter & Ranisaljević 

 

146 

 

relationships, such as e-commerce platforms that keep track of consumer orders and product 

information, this is crucial. 

Overall, a MySQL database's performance and scalability are significantly impacted by the 

storage engine that is selected. Developers can guarantee that their application can manage high 

levels of concurrency while preserving data consistency and reliability by selecting the proper 

storage engine based on the requirements of the application. 

Additionally, imagine that we have a sizable e-commerce platform with millions of 

customers and products. Based on several parameters such product name, category, and price, 

the application needs to be able to search and get product data rapidly. 

We may make the database structure more efficient by using index design concepts to 

guarantee quick search and retrieval times. For instance, we can establish indexes on columns 

that are frequently searched, like product name and category. As a result, the database can 

quickly find the pertinent rows and send the findings back to the application. 

Performance issues can also arise from adding too many indexes, though. It is crucial to 

strike a balance between the number of indexes and the application's performance requirements 

because each index adds overhead to the database's storage and update operations. 

Performance can be impacted by suitable data type selection in addition to index design. 

For a column that does not need a wide range of values, utilizing a smaller integer data type can 

decrease storage overhead and boost query performance. For columns that do not need a lot of 

text data, switching from TEXT to a more effective data type like VARCHAR can increase 

speed. 

Performance can also be significantly impacted by adjusting the setup parameters of the 

database server. For instance, changing the buffer pool size can help the database use memory 

more efficiently and enhance query performance. 

Overall, programmers can enhance the speed and scalability of their MySQL databases by 

using physical programming techniques including data type selection, server tuning, and index 

design. By doing this, you can make sure that the database can manage large amounts of data 

and multiple concurrent users while still providing quick responses and trustworthy data 

consistency. 

4. Data tuning in MySQL 

In MySQL, performance optimization of the database is known as data tuning. Data 

tuning's main objective is to locate and get rid of performance bottlenecks in the database. Data 

tuning employs a variety of methods, such as query optimization, configuration adjustment, 

and hardware tuning. 

Query optimization is the process of making SQL queries more performant. The structure of 

the query can be changed, indexes can be added or removed, or the query can be rewritten to 

achieve query optimization. Tuning the setup of the MySQL server entails adjusting its 

configuration settings to boost performance. Adjusting parameters like buffer sizes, thread 

concurrency, and query cache size can be used for configuration optimization. In order to 

increase the performance of the MySQL server, hardware tuning entails updating the server's 

hardware. The CPU, memory, or storage may need to be upgraded as part of hardware tuning 

(Tahaghoghi & Williams, 2006). 

In order to assure quick and effective data access, data tuning in MySQL entails adjusting 

the database's configuration and query performance. Developers may optimize the performance 

of their MySQL databases using a variety of methods and best practices. 

Query optimization is a crucial part of data tuning. This entails looking into the database's 

query execution plans in order to spot any bottlenecks or potential areas for query 



Optimization of MySQL Database 

 

147 

 

improvement. The MySQL EXPLAIN statement allows developers to see the query execution 

plan and spot potential areas for improvement. 

Indexing frequently queried columns, improving joins and subqueries, and employing 

effective query patterns like EXISTS rather than IN are a few typical ways to optimize searches. 

Developers can tweak the MySQL server's configuration options in addition to query 

optimization to boost performance. The size of the buffer pool, for instance, can be changed to 

optimize memory utilization and boost query performance. The max_connections parameter 

can also be increased to help manage high numbers of concurrent users. 

Data normalization is a vital component of data tuning. This entails structuring the database 

structure to lessen data duplication and enhance data consistency. Developers can enhance 

query performance and lower storage costs by decreasing data redundancy. 

By dividing huge tables into smaller ones, employing foreign keys to guarantee referential 

integrity, avoiding repeated groups, and avoiding null values, normalization can be 

accomplished. 

Finally, developers can enhance MySQL's performance and dependability by using caching 

and replication. Replication involves copying data across different servers to increase 

availability and scalability whereas caching involves keeping frequently requested data in 

memory for quick access. 

MySQL has a number of caching options, including query caching and InnoDB buffer pool 

caching. Similar methods, including master-slave replication and multi-master replication, can 

be used to achieve replication. 

In conclusion, data tuning in MySQL entails a number of methods and best practices 

targeted at enhancing the functionality and dependability of the database. Developers may 

make sure that their MySQL database can manage large volumes of data and concurrent users 

while maintaining quick response times and dependable data consistency by optimizing 

queries, adjusting server parameters, normalizing data, and implementing caching and 

replication (Duan et al., 2009). 

The following section of the paper provides an example of data tuning in MySQL for a 

social media application that enables users to submit and share material. 

The application's news feed, which shows the most recent updates from a user's friends and 

followers, is one of its key features. The use of indexing and caching techniques by developers 

helps guarantee quick and effective retrieval of news feed data. 

To speed up queries that filter by user, they can first establish an index on the user_id 

column in the posts table. As a result, the database can quickly find the pertinent rows and send 

the findings back to the application. 

They can also use a caching mechanism to keep data that is accessed frequently in memory 

for quick access. For instance, they can use MySQL's query cache to save frequently used 

queries and shorten the time needed for query processing. 

To divide the posts table into smaller, easier-to-manage parts, they can also use data 

partitioning. This can lessen the administrative burden of managing huge data collections and 

enhance query performance. 

Data normalization is a vital component of data tuning. This entails setting up the database 

schema for the social media application in a way that lessens data redundancy and enhances 

data consistency. 

They may, for instance, segregate the information about each user into its own table and 

utilize foreign keys to ensure referential integrity. This makes it easier to guarantee that user 

data is correct and consistent across the database. 

Finally, replication can be used by developers to increase the scalability and stability of the 

application. They can guarantee that the application can handle high quantities of traffic and 



Šušter & Ranisaljević 

 

148 

 

continue to be accessible in the case of a server failure by replicating data across numerous 

servers. 

For instance, they can replicate data from the master server to one or more slave servers 

using master-slave replication. This ensures that the application can process many read requests 

without affecting the master server's performance. 

In conclusion, data tuning in MySQL entails a variety of methods and best practices 

designed to enhance the functionality and dependability of the database. Developers may make 

sure that their MySQL database can manage massive volumes of data and traffic while 

maintaining quick response times and dependable data consistency by implementing indexing, 

caching, partitioning, normalization, and replication. 

5. Benefits of data tweaking and physical programming 

The performance, scalability, and reliability of MySQL databases can be greatly enhanced 

by properly implementing physical programming and data tuning, which are crucial 

components of database architecture. Improved query efficiency is one of the major advantages 

of physical programming and data tuning. By using the optimization strategies outlined, 

requests can be processed more quickly, giving users quicker response times. As queries are 

processed more rapidly and less time is spent waiting for results, this improved query 

performance can also result in more effective use of resources like CPU and memory (Maesaroh 

et al., 2022). 

The process of developing a database's physical schema is known as physical programming. 

To maximize the performance of the database, appropriate data types, storage engines, index 

designs, and partitioning strategies must be used. 

On the other side, data tuning is the act of improving a database's logical structure. In order 

to reduce duplication and enhance data integrity, it entails organizing data into tables and 

utilizing normalization procedures. 

Let us look at some of the specific methods employed in MySQL databases in order to 

comprehend the advantages of physical programming and data tuning: 

Data Types: Choosing the right data types for each database column is a crucial part of 

physical programming. This may have an effect on the amount of storage space needed for each 

column as well as how effectively queries using that column perform. Choosing the right data 

type for a column, for instance, might assist decrease the amount of disk I/O used to obtain 

data, which can enhance query performance. 

Storage Engines: MySQL supports a variety of storage engines, each of which has pros and 

cons of its own. Physical programming entails deciding which storage engine is best for a given 

application. For instance, the MyISAM storage engine is better suited for read-intensive 

applications while the InnoDB storage engine excels at transaction processing. 

Index design: By enabling the database to rapidly find particular rows based on their 

values, indexes are used to shorten the time it takes for queries to execute. Physical 

programming entails deciding which columns to index and what kind of index to employ (such 

as a hash or a B-tree). The design of the index can be optimized to greatly enhance query 

performance. 

Partitioning: Partitioning is the process of dividing a large table into smaller, more 

manageable pieces according to certain criteria (such as date, location, or type of customer, for 

example). By minimizing the quantity of data that needs to be scanned, developers can optimize 

query performance by splitting huge tables. 



Optimization of MySQL Database 

 

149 

 

Normalization: By separating data into different tables, normalization is a data tuning 

approach that removes redundancy in databases. Developers can enhance data integrity and 

decrease the amount of storage space needed for the database by removing redundancy. 

In order to ensure referential integrity between tables, foreign key restrictions are utilized. 

Developers can verify that data is accurate and consistent between tables and prevent data 

errors by using foreign key constraints. 

By employing these methods, developers can enhance MySQL databases to manage 

growing data and traffic volumes while maintaining the application's speed, dependability, and 

security. These methods offer higher query performance, decreased storage needs, increased 

data integrity, and improved scalability. 

Physical programming and data tweaking can facilitate database maintenance and 

troubleshooting in addition to the advantages mentioned above. Developers can cut down on 

the time needed to manage the database and address any issues by creating a well-tuned and 

efficient database. 

Finally, physical programming and data tuning are crucial components of MySQL database 

design. The efficiency, scalability, and reliability of developers' applications can be enhanced by 

optimizing a database's physical and logical schemas. Developers can optimize their MySQL 

databases to manage growing volumes of data and traffic while ensuring that the application 

stays quick, dependable, and safe by choosing the proper data types, storage engines, index 

design, and partitioning methods (Marathe et al., 2022). 

Physical programming and data tuning also increase the effectiveness of data storage. 

Organizations can decrease the amount of storage space needed for data by using data 

compression and partitioning, which lowers costs and increases storage capacity. Additionally, 

enterprises can reduce the time needed to access data and enhance user experience by using 

data clustering to speed up data retrieval times (Van Aken et al., 2017). 

In addition to these advantages, physical programming and data tuning can assist 

businesses in locating and removing database system bottlenecks. Organizations can identify 

particular sections of the database that are contributing to performance issues and take action to 

fix them using query optimization and configuration adjustments. Organizations can recognize 

problems early on and take proactive measures to solve them, avoiding later, more serious 

ones. 

Large e-commerce shop is one illustration of the advantages of physical programming and 

data tweaking. A subpar user experience was provided by the merchant due to lengthy query 

times and inefficient resource consumption. The shop was able to increase query performance 

by up to 80% by applying physical programming and data tuning approaches, leading to a 

considerably quicker and more effective customer experience. Additionally, the shop was able 

to cut its storage needs by up to 50% by introducing partitioning and data compression, leading 

to considerable cost savings and greater storage capacity. 

6. Conclusion 

As a client-server relational database management system, MySQL is a popular choice and 

is renowned for its performance, dependability, and scalability. Multiple clients can connect to a 

single server, which controls the database, under the client-server architecture of MySQL. 

Both physical programming and data tuning are crucial components of MySQL database 

design. Physical programming is the process of creating a database's physical schema, which 

includes choosing the right data types, storage engines, index designs, and partitioning plans. 

On the other hand, data tuning include refining a database's logical structure, which includes 

arranging data into tables and utilizing normalization techniques to remove duplication and 



Šušter & Ranisaljević 

 

150 

 

enhance data integrity. The efficiency, scalability, and reliability of developers' applications can 

be enhanced by optimizing a database's physical and logical schemas. 

Developers can optimize their MySQL databases to manage growing volumes of data and 

traffic while ensuring that the application stays quick, dependable, and safe by choosing the 

proper data types, storage engines, index design, and partitioning methods. Physical 

programming and data tuning have advantages including better query performance, less 

storage needed, better data integrity, and more scalability. A database can be easier to manage 

and troubleshoot thanks to physical programming and data tweaking in addition to these 

advantages. 

Overall, MySQL is a strong database management system that has a lot to offer 

programmers trying to create fast, dependable, and scalable applications. Developers may 

optimize their MySQL databases to handle enormous volumes of data and traffic while 

ensuring that their applications remain quick, dependable, and safe by putting best practices for 

physical programming and data tuning into practice. 

Data tuning and physical programming are essential methods for enhancing MySQL's 

performance. Organizations may enhance query performance, expand storage capacity, locate 

and remove bottlenecks, and ultimately provide a more dependable and efficient user 

experience by putting these ideas into practice. Physical programming and data tuning will 

become increasingly crucial to any organization's database management strategy as long as 

enterprises continue to rely on MySQL for their data management requirements. 

References 

Duan, S., Thummala, V., & Babu, S. (2009). Tuning database configuration parameters with 

ituned. Proceedings of the VLDB Endowment, 2(1), 1246-1257 

DuBois, P. (2008). MySQL. Pearson Education. 

Győrödi, C., Győrödi, R., Pecherle, G., & Olah, A. (2015, June). A comparative study: MongoDB 

vs. MySQL. In 2015 13th International Conference on Engineering of Modern Electric Systems 

(EMES) (pp. 1-6). IEEE. 

Janjua, J. I., Khan, T. A., Zulfiqar, S., & Usman, M. Q. (2022, August). An Architecture of MySQL 

Storage Engines to Increase the Resource Utilization. In 2022 International Balkan 

Conference on Communications and Networking (BalkanCom) (pp. 68-72). IEEE. 

Maesaroh, S., Gunawan, H., Lestari, A., Tsaurie, M. S. A., & Fauji, M. (2022). Query 

optimization in mysql database using index. International Journal of Cyber and IT Service 

Management, 2(2), 104-110. 

Marathe, A. P., Lin, S., Yu, W., El Gebaly, K., Larson, P. Å., & Sun, C. (2022, March). Integrating 

the Orca Optimizer into MySQL. In EDBT (pp. 2-511). 

Patil, M. M., Hanni, A., Tejeshwar, C. H., & Patil, P. (2017, February). A qualitative analysis of 

the performance of MongoDB vs MySQL database based on insertion and retriewal 

operations using a web/android application to explore load balancing—Sharding in 

MongoDB and its advantages. In 2017 International Conference on I-SMAC (IoT in Social, 

Mobile, Analytics and Cloud)(I-SMAC) (pp. 325-330). IEEE. 

Rautmare, S., & Bhalerao, D. M. (2016, October). MySQL and NoSQL database comparison for 

IoT application. In 2016 IEEE international conference on advances in computer applications 

(ICACA) (pp. 235-238). IEEE. 

Schwartz, B., Zaitsev, P., & Tkachenko, V. (2012). High performance MySQL: optimization, backups, 

and replication. " O'Reilly Media, Inc.". 



Optimization of MySQL Database 

 

151 

 

Stjepanovic, D., Savic, M., Jokić, J., & Marić, S. (2015, November). Performance measurements of 

some aspects of multi-threaded access to key-value stores. In 2015 23rd 

Telecommunications Forum Telfor (TELFOR) (pp. 831-834). IEEE. 

Tahaghoghi, S. M., & Williams, H. E. (2006). Learning MySQL: Get a Handle on Your Data. " 

O'Reilly Media, Inc.". 

Van Aken, D., Pavlo, A., Gordon, G. J., & Zhang, B. (2017, May). Automatic database 

management system tuning through large-scale machine learning. In Proceedings of the 

2017 ACM international conference on management of data (pp. 1009-1024). 

Wahyudi, J., Asbari, M., Sasono, I., Pramono, T., & Novitasari, D. (2022). Database Management 

Education in MYSQL. Edumaspul: Jurnal Pendidikan, 6(2), 2413-2417. 

Wang, B., Dai, L., & Liao, B. (2023). System architecture design of a multimedia platform to 

increase awareness of cultural heritage: A case study of sustainable cultural heritage. 

Sustainability, 15(3), 2504. 

© 2023 by the authors. Submitted for possible open access publication under the terms and 

conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 

http://creativecommons.org/licenses/by/4.0/

