HIGH EFFICIENCY PUBLIC TRANSPORTATION SYSTEM: ROLE OF BIG DATA IN MAKING RECOMMENDATIONS
Abstract
Big data has a huge impact on urban planning and cities morphology. Big data is utilized to appraise the requirements of the shared transport structure, by focusing on funding and portability plans inside the key cities. The research provides a recommendation-making system (RMS) focused on suggesting transport methods to automobile consumption by detailing a huge volume of transport methods information originating from various products. The research focuses on the utilization of big data to come down with shared transport, and presents a structural understanding for gathering, combining, aggregating, incorporating, disseminating, and controlling information from numerous origins. Information extraction methods are utilized, allowing the evaluation of both organized big data, that follows developed benchmarks like CRISP-DM, and disorganized, readily offered big data. Investigational information has been gathered from a representative of phones and automatic vehicle location devices in the region. The suggested RMS allowed to examine the temporal and spatial scope of shared transport facilities, and suggested plans to enhance the transportation.
References
Alrumiah, S. S., & Hadwan, M. (2021). Implementing big data analytics in e-commerce: Vendor and customer view. IEEE Access, 9, 37281-37286. https://doi.org/10.1109/ACCESS.2021.3063615
Antons, D., & Breidbach, C. F. (2018). Big data, big insights? Advancing service innovation and design with machine learning. Journal of Service Research, 21(1), 17-39. https://doi.org/10.1177/1094670517738373
Aversa, J., Hernandez, T., & Doherty, S. (2021). Incorporating big data within retail organizations: A case study approach. Journal of retailing and consumer services, 60. https://doi.org/10.1016/j.jretconser.2021.102447
Ayed, A. B., Halima, M. B., & Alimi, A. M. (2015). Big data analytics for logistics and transportation. 4th international conference on advanced logistics and transport (pp. 311-316). IEEE. https://doi.org/10.1109/ICAdLT.2015.7136630
Babar, M., & Arif, F. (2019). Real-time data processing scheme using big data analytics in internet of things based smart transportation environment. Journal of Ambient Intelligence and Humanized Computing, 10(10), 4167-4177. https://doi.org/10.1007/s12652-018-0820-5
Balbin, P. P., Barker, J. C., Leung, C. K., Tran, M., Wall, R. P., & Cuzzocrea, A. (2020). Predictive analytics on open big data for supporting smart transportation services. Procedia Computer Science, 176, 3009-3018. https://doi.org/10.1016/j.procs.2020.09.202
Biuk-Aghai, R. P., Kou, W. T., & Fong, S. (2016). Big data analytics for transportation: Problems and prospects for its application in China, (pp. 173-178). https://doi.org/10.1109/TENCONSpring.2016.7519399
Brajesh, S. (2016). Big data analytics in retail supply chain. In Big Data: Concepts, Methodologies, Tools, and Applications (pp. 1473-1494). IGI Global.
Bresciani, S., Ciampi, F., Meli, F., & Ferraris, A. (2021). Using big data for co-innovation processes: Mapping the field of data-driven innovation, proposing theoretical developments and providing a research agenda. International Journal of Information Management, 60, 102347. https://doi.org/10.1016/j.ijinfomgt.2021.102347
Chiang, L. L., & Yang, C. S. (2018). Does country-of-origin brand personality generate retail customer lifetime value? A Big Data analytics approach. Technological Forecasting and Social Change, 130, 177-187. https://doi.org/10.1016/j.techfore.2017.06.034
Fiore, S. E. (2019). An integrated big and fast data analytics platform for smart urban transportation management. IEEE Access, 7, 117652-117677.
Ghasemaghaei, M., & Calic, G. (2020). Assessing the impact of big data on firm innovation performance: Big data is not always better data. Journal of Business Research, 108, 147-162. https://doi.org/10.1016/j.jbusres.2019.09.062
Ghofrani, F., He, Q., Goverde, R. M., & Liu, X. (2018). Recent applications of big data analytics in railway transportation systems: A survey. Transportation Research Part C: Emerging Technologies, 90, 226-246. https://doi.org/10.1016/j.trc.2018.03.010
Gobble, M. M. (2013). Big data: The next big thing in innovation. Research-technology management, 56(1), 64-67. https://doi.org/10.5437/08956308X5601005
Gohar, M., Muzammal, M., & Rahman, A. U. (2018). SMART TSS: Defining transportation system behavior using big data analytics in smart cities. Sustainable cities and society, 41, 114-119. https://doi.org/10.1016/j.scs.2018.05.008
Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004
Hao, S., Zhang, H., & Song, M. (2019). Big data, big data analytics capability, and sustainable innovation performance. Sustainability, 11(24), 7145.
He, G. (2021). Enterprise E-commerce marketing system based on big data methods of maintaining social relations in the process of E-commerce environmental commodity. Journal of Organizational and End User Computing (JOEUC), 33(6), 1-16.
Hussein, W. N., Kamarudin, L. M., Hussain, H. N., Zakaria, A., Ahmed, R. B., & Zahri, N. A. (2018). The prospect of internet of things and big data analytics in transportation system. Journal of Physics: Conference Series. IOP Publishing.
Issa, N. T., Byers, S. W., & Dakshanamurthy, S. (2014). Big data: the next frontier for innovation in therapeutics and healthcare. Expert review of clinical pharmacology, 7(3), 293-298. https://doi.org/10.1586/17512433.2014.905201
Ittmann, H. W. (2015). The impact of big data and business analytics on supply chain management. Journal of Transport and Supply Chain Management, 9(1), 1-9. https://hdl.handle.net/10520/EJC169773
Kayser, V., Nehrke, B., & Zubovic, D. (2018). Data science as an innovation challenge: From big data to value proposition. Technology Innovation Management Review, 8(3), 16-25. http://doi.org/10.22215/timreview/1143
Keskar, V., Yadav, J., & Kumar, A. (2021). Perspective of anomaly detection in big data for data quality improvement. Materials Today: Proceedings, 51(1), 532-537. https://doi.org/10.1016/j.matpr.2021.05.597
Lee, H. L. (2018). Big data and the innovation cycle. Production and Operations Management, 1642-1646.
Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia cirp, 16, 3-8. https://doi.org/10.1016/j.procir.2014.02.001
Lekhwar, S., Yadav, S., & Singh, A. (2019). Big data analytics in retail. In Information and communication technology for intelligent systems (pp. 469-477). Springer, Singapore.
Leveling, J., Edelbrock, M., & Otto, B. (2014, December). Big data analytics for supply chain management. In 2014 IEEE international conference on industrial engineering and engineering management (pp. 918-922). IEEE. https://doi.org/10.1109/IEEM.2014.7058772
Li, L., & Zhang, J. (2021). Research and analysis of an enterprise E-commerce marketing system under the big data environment. Journal of Organizational and End User Computing (JOEUC), 33(6), 1-19.
Montoya-Torres, J. R., Moreno, S., Guerrero, W. J., & Mejía, G. (2021). Big data analytics and intelligent transportation systems. IFAC-PapersOnLine, 54(2), 216-220. https://doi.org/10.1016/j.ifacol.2021.06.025
Morabito, V. (2015). Managing change for big data driven innovation. In Big Data and Analytics (pp. 125-153). Springer, Cham.
Neilson, A., Ben Daniel, I., & Tjandra, S. (2019). Systematic Review of the Literature on Big Data in the Transportation Domain: Concepts and Applications. Big Data Research, 17, 35-44. https://doi.org/10.1016/j.bdr.2019.03.001
Nguyen, T., Li, Z. H., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 80, 254-264. https://doi.org/10.1016/j.cor.2017.07.004
Niebel, T., Rasel, F., & Viete, S. (2019). BIG data–BIG gains? Understanding the link between big data analytics and innovation. Economics of Innovation and New Technology, 28(3), 296-316. https://doi.org/10.1080/10438599.2018.1493075
Shakya, S., & Smys, S. (2021). Big Data Analytics for Improved Risk Management and Customer Segregation in Banking Applications. Journal of ISMAC, 3(3), 235-249. https://doi.org/10.36548/jismac.2021.3.005
Silva, E., Hassani, H., & Madsen, D. (2020). Big Data in fashion: transforming the retail sector. Journal of Business Strategy, 41(4), 21-27. https://doi.org/10.1108/JBS-04-2019-0062
Trabucchi, D., & Buganza, T. (2018). Data-driven innovation: Switching the perspective on Big Data. European Journal of Innovation Management, 22(1), 23-40. https://doi.org/10.1108/EJIM-01-2018-0017
Wise, J. (2022). How much data is created everyday in 2022? https://earthweb.com/ (21.05.2022).
Wright, L. T., Robin, R., Stone, M., & Aravopoulou, D. E. (2019). Adoption of big data technology for innovation in B2B marketing. Journal of Business-to-Business Marketing, 26(3-4), 281-293. https://doi.org/10.1080/1051712X.2019.1611082
Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017). Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 13-53. https://doi.org/10.1080/17538947.2016.1239771
Yu, R., Wu, C., Yan, B., Yu, B., Zhou, X., Yu, Y., & Chen, N. (2021). Analysis of the impact of big data on e-commerce in cloud computing environment. Complexity, 1-12. https://doi.org/10.1155/2021/5613599
Zhang, X., & Guo, P. (2021). Research on E-Commerce Logistics and Traditional Industry Integration Mode Based on Big Data. Journal of Physics: Conference Series (p. 042052). IOP Publishing.
Zheng, X., Chen, W., Wang, P., Shen, D., Chen, S., Wang, X., & Yang, L. (2015). Big data for social transportation. IEEE Transactions on Intelligent Transportation Systems, 17, 620-630.
Zhu, L., Yu, F. R., Y., W., Ning, & Tang, B. T. (2019). Big Data Analytics in Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems, 20(1), 383-398.
Zhuang, W., Wang, M. C., Nakamoto, I., & Jiang, M. (2021). Big Data Analytics in E-commerce for the US and China Through Literature Reviewing. Journal of Systems Science and Information, 9(1), 16-44. https://doi.org/10.21078/JSSI-2021-016-29