SECURITY AND DATA PROTECTION IN ARTIFICIAL INTELLIGENCE
Sažetak
The development of artificial intelligence contributes to the digital transformation of the entire society, improving numerous processes, automation and better decision-making. In addition to the many opportunities it offers, it also brings with it great risks in data security. The problem is further complicated by unauthorized access to data processed by artificial intelligence models, data theft, ethical dilemmas and lack of algorithm transparency. This paper analyzes artificial intelligence through different fields and the problems it can cause. A special emphasis is on the research into user attitudes, which shows us what kind of knowledge respondents have about artificial intelligence and all the risks it can cause. The results help us to see what the biggest problems regarding the use of such models are. The work provides guidelines for minimizing risks and creating problems, while dictating the trend for responsible use of artificial intelligence for legally correct purposes.
Reference
Brandtzaeg, P. B., & Følstad, A. (2017). Why do people use chatbots? Internet Science, 377–392. https://doi.org/10.1007/978-3-319-70284-1_30
Cao, L. (2022). AI in finance: Challenges, techniques, and opportunities. ACM Computing Surveys, 55(3), 1–38. https://doi.org/10.1145/3502289
Castelfranchi, C. (2013). Alan Turing’s “Computing Machinery and Intelligence”. Topoi, 32(2), 193–199. https://doi.org/10.1007/s11245-013-9182
Danielsson, J., Macrae, R., & Uthemann, A. (2019). Artificial intelligence and systemic risk. SSRN Electronic Journal, 1–9. https://doi.org/10.2139/ssrn.3410948
Diligenski, A., Prlja, D., & Cerović, D. (2018). Pravo zaštite podataka. Institut za uporedno pravo.
https://www.rts.rs/magazin/tehnologija/5208016/cetbot-zanimanja-vestacka-inteligencija-radna-mesta.html (29.01.2025)
Đurica, N., & Soleša, D. (2017). Percepcija i stavovi studenata prema obrazovanju na daljinu. Ekonomija: teorija i praksa, 10(3), 1–15. https://doi.org/10.5937/etp1703001D
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2019). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
Etzioni, A., & Etzioni, O. (2017). Incorporating ethics into artificial intelligence. The Journal of Ethics, 21(4), 403–418. https://doi.org/10.1007/978-3-319-69623-2_15
Kamaruddin, S., Mohammad, A. M., Mohd Saufi, N. N., Wan Rosli, W. R., Othman, M. B., & Hamin, Z. (2023). Compliance to GDPR data protection and privacy in artificial intelligence technology: Legal and ethical ramifications in Malaysia. 2023 International Conference on Digital Transformation (ICDT), Greater Noida, India, 11–12 May 2023, 11–12. https://doi.org/10.1109/ICDT57929.2023.10150615
Kandolo, W. (2024). Ensuring AI data access control in RDBMS: A comprehensive review. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 8400–8407.
Martinelli, F., Marulli, F., Mercaldo, F., Marrone, S., & Santone, A. (2020). Enhanced privacy and data protection using natural language processing and artificial intelligence. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020, 1–8. https://doi.org/10.1109/IJCNN48605.2020.9206801
Mitrou, L. (2018). Data protection, artificial intelligence and cognitive services: Is the General Data Protection Regulation (GDPR) “artificial intelligence-proof”? SSRN, 1–10. https://doi.org/10.2139/ssrn.3386914
Niskanen, T., Sipola, T., & Väänänen, O. (2023). Latest trends in artificial intelligence technology: A scoping review. JAMK University of Applied Sciences, 1–26. https://doi.org/10.48550/arXiv.2305.04532
Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., et al. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine, 15(11), e1002686. https://doi.org/10.1371/journal.pmed.1002686
Sartor, G., & Lagioia, F. (2020). The impact of the General Data Protection Regulation (GDPR) on artificial intelligence. European Parliament, Brussels. https://doi.org/10.2861/293
Shokri, R., & Shmatikov, V. (2015). Privacy-preserving deep learning. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS), 1310–1321. https://doi.org/10.1145/2810103.2813687
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 12(4), 5–33. https://doi.org/10.1080/07421222.1996.11518099
Zha, D., Bhat, Z. P., Lai, K.-H., Yang, F., Jiang, Z., Zhong, S., & Hu, X. (2024). Data-centric artificial intelligence: A survey. ACM Computing Surveys. https://doi.org/10.1145/3711118
Zheng, X., Zhu, M., Li, Q., Chen, C., Tan, Y., & Hide. (2018). FinBrain: When finance meets AI 2.0. arXiv, 1–12. https://doi.org/10.48550/arXiv.1808.08497
