Prediktivni značaj mijeloperoksidaze za nastanak postoperativnih vaskularnih komplikacija

  • Bojan Vučinić
  • Dragče Radovanović
  • Dragan Čanović
  • Marko Spasić
  • Mladen Pavlović
  • Bojan Milošević
  • Saša Dimić
  • Boban Mitrović
  • Nikola Petković

Sažetak


Nova saznanja o delovanjima mijeloperoksidaze u toku inflamatornog procesa povezanog sa infekcijama i vaskularnim lezijama ukazuju na njenu ulogu u stanju oksidativnog stresa i endotelne disfunkcije kao i na njen prediktivni značaj za nastanak kardiovaskularnih insulta. Produkti delovanja mijeloperoksidaze predstavljaju inegrativni mehanizam koji povezuje lezije tkiva, infekcijski, inflamatorni proces, oksidativni stres, endotelnu disfunkciju i nastanak vaskularnih insulta (najčešći su arterijska i venska tromboza i konsekutivne embolije). Najčešće komplikacije operativnog hirurškog lečenja su vaskularne. Posmatrano sa konzervativnog stanovišta najčešće su arterijska i venska tromboza, ali šire gledano dehiscencija sutura bi se mogla smatrati posledicom poremećene mikrocirkulacije. Sama operativna procedura kao i osnovni patološki supstrat dovode do aktivisanja inflamatorne kaskade sa aktivisanjem ćelija mijeloidne loze pri čemu dolazi do oslobađanja i aktivisanja mijeloperoksidaze koja pored antimikrobnog ispoljava mnogostruka vaskularna delovanja. Povećana koncentracija mijeloperoksidaze u plazmi i do tri meseca pre kliničke ekspresije vaskularnog insulta ukazuje na njen prediktivni značaj. Aktuelna istraživanja predočavaju na mogućnost uspešnog korigovanja posledica delovanja mijeloperoksidaze i prevenciju vaskularnih komplikacija

Reference

Hansson M, Olsson I, Nauseef W.M. Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys 2006; 445:214-24.

Lau D, Baldus S. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharm Therap 2006; 111:16-26.

Klebanoff S.J. Myeloperoxidase: friend and foe. J Leukoc Biol 2005; 77:598-625.

Naghavi M, Libby P, Falk E, Casscells W, Litovsky J.R, Badimon J.J, et al. From vulnerable plaque to vulnerable patient. Circulation 2003; 108:1664-78.

Nicholls S.J, Hazen S.L. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005; 25:1102-11.

Malle E, Marsche G, Panzenboeck U, Sattler W. Myeloperoxidase-mediated oxidation of high-density lipoproteins: fingerprints of newly recognized potential proatherogenic lipoproteins. Arch Biochem Biophys 2006; 445: 245-255.

Gujral JS, Liu J, Farhood A, Hinson JA, Jaeschke H. Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 2004; 286: G499-G507.

Kontush A, Chapman M.J. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis Pharmacol Rev 2006; 58:342-74.

Nicholls S, Zheng L, Hazen S.L. Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc Med 2005; 15:212-9.

Marsche G, Furtmuller P.G, Obinger C, Sattler W, Malle E. Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro. Cardiovasc Res 2008; 79:187-94.

Undurti, A., Huang, Y., Lupica, J. A., Smith, J. D., DiDonato, J. A. and Hazen, S. L. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem 2009; 284, 30825-30835

Talib, J., Pattison, D. I., Harmer, J. A., Celermajer, D. S. and Davies, M. J. High plasma thiocyanate levels modulate protein damage induced by myeloperoxidase and perturb measurement of 3-chlorotyrosine. Free Radical Biol. Med 2012; 53:20-29

Wang Z, Nicholls S. J, Rodriguez E. R, Kummu O, Horkko S, Barnard J, Reynolds W. F, Topol E. J, DiDonato J. A. and Hazen S. L. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med 2007; 13:1176-1184

Hawkins, C. L., Pattison, D. I., Stanley, N. R. and Davies, M. J. Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation. Biochem. J 2008; 416:441-452

van Dalen, C. J., Whitehouse, M. W., Winterbourn, C. C. and Kettle, A. J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem. J 1997; 327:487-492

H Guttenberger, HJ Leis, F Tatzber,GWaeg, RJ Schaur. Free Radic Biol Med 1998; 24: 1139-1148

Zhang, G.X., Kimura, S., Nishiyama, A., Shokoji, T., Rahman, M., Abe, Y. ROS during the acute phase of Ang II hypertension participates in cardiovascular MAPK activation but not vasoconstriction. Hypertension 2004: 43: 117-124.

Garner B, Witting PK, Waldeck AR, Christison JK, Raftery M, Stocker R. Oxidation of high density lipoproteins. I. Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by alpha-tocopherol. J Biol Chem. 1998;273(11):6080-719.

Mohiuddin I., Chai H., Lin P.H., Lumsden A.B., Yao Q., Chen C. Nitrotyrosine and chlorotirosine: clinical significance and biological functions in the vascular system. J Surg Res. 2006; 133:143-9.

Hazen S.L., Heinecke J.W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 1997; 99:2075-81.

Shao B., Oda M.N., Oram J.F., Heinecke J.W. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr Opin Cardiol 2006; 21:322-8.

Abu-Soud H.M., Hazen S.L.: Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem. 2000; 275: 37524-32.

Yang J., Ji R, Cheng Y., Sun J.Z., Jennings L.K., Zhang C.: L-arginine chlorination results in the formation of a nonselective nitric-oxide synthase inhibitor. J Pharmacol Exp Ther 2006; 318:1044-9.

Baldus S., Rudolph V., Roiss M., Ito W.D., Rudolph T.K., Eiserich J.P., et al. Heparins increase endothelial nitric oxide bioavailability by liberating vesselimmobilized myeloperoxidase. Circulation 2006; 113:1871-8.

Liu, R. Q., Geren, L., Anderson, P., Fairris, J. L., Peffer, N., McKee, A., Durham, B. & Millet, F. Design of ruthenium-cytochrome c derivatives to measure electron transfer to cytochrome c peroxidase. Biochimie 1995; 77: 549-561.

Brevetti G., Schiano V., Laurenzano E., Giugliano G., Petretta M., Scopacasa F., Chiariello M.: Myeloperoxidase, but not C-reactive protein, predicts cardiovascular risk in peripheral arterial disease. Eur Heart J 2008; 29(2):224-30.

Dominguez-Rodriguez A., Samimi-Fard S., Abreu-Gonzalez P., Garcia-Gonzalez M.J., Kaski J.C.: Prognostic value of admission myeloperoxidase levels in patients with ST-segment elevation myocardial infarction and cardiogenic shock. Am J Cardiol 2008; 101:1537- 40.

Khan S.Q., Kelly D., Quinn P., Davies J.E., Ng L.L. Myeloperoxidase aids prognostication together with N-terminal pro-B-type natriuretic peptide in high-risk patients with acute ST elevation myocardial infarction. Heart 2007; 93:826-31.

Meuwese M.C., Stroes E.S., Hazen S.L., van Miert J.N., Kuivenhoven J.A., Schaub R.G., et al.: Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol 2007; 50: 159-65.

Ndrepepa G., Braun S., Mehilli J., von Beckerath N., Schomig A., Kastrati A. Myeloperoxidase level in patients with stable coronary artery disease and acute coronary syndromes. Eur J Clin Invest 2008; 38:90-6.

Hazen S.L.: Myeloperoxidase and plaque vulnerability. Arterioscler Thromb Vasc Biol. 2004; 24:1143-6.

Stefanescu A., Braun S., Ndrepepa G., Koppara T., Pavaci H., Mehilli J., et al.: Prognostic value of plasma myeloperoxidase concentration in patients with stable coronary artery disease. Am Heart J 2008; 155:356-60.

Kubala L., Lu G., Baldus S., Berglund L., Eiserich J.P.: Plasma levels of myeloperoxidase are not elevated in patients with stable coronary artery disease. Clin Chim Acta 2008; 394:59-62.

Rudolph V., Steven D., Gehling U.M., Goldmann B., Rudolph T.K., Friedrichs K., et al. Coronary plaque injury triggers neutrophil activation in patients with coronary artery disease. Free Radic Biol Med 2007; 42:460-5.

Naruko T., Ueda M., Haze K., van der Wal A., van der Loos C.M., Itoh A., et al.: Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002; 106:2894-900.

Baldus S., Heitzer T., Eiserich J.P., Lau D., Mollnau H., Ortak M., et al. Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion. Free Radic Biol Med. 2004; 37:902-11.

Shih J., Datwyler S.A., Hsu S.C., Matias M.S., Pacenti D.P., Lueders C., et al.: Effect of collection tube type and preanalytical handling on myeloperoxidase concentrations. Clin Chem 2008; 54:1076-9.

Leckie M.J., Gomma A.H., Purcell I.F., Nyawo B., Dewar A., Okrongly D., et al.: Automated quantitation of peripheral blood neutrophil activation in patients with myocardial ischaemia. Int J Cardiol. 2004; 95: 307-13.

Shishehbor M.H., Aviles R.J., Brennan M.L., Fu X., Goormastic M., Pearce G.L., et al.: Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA. 2003; 289:1675-80.

Objavljeno
2016/10/24
Rubrika
Pregledni članak