ULOGA IL-17 U MODULACIJI ANTITUMORSKE IMUNOSTI I PROGRESIJI KARCINOMA POVEZANIH SA KOLITISOM

  • Marina M Jovanovic Klinicki Centar Kragujevac, Interna klinika, Centar za gastroenterohepatologiju
  • Gordana Radosavljevic Centar za Molekulsku medicinu i ispitivanje matičnih ćelija, Fakultet medicinskih nauka Kragujevac, Srbija

Sažetak


Kolorektalni karcinom je jedan od najčešćih maligniteta u svetu. Smatra se da nastaje na podlozi zapaljenske bolesti creva. Pro-inflamatorni citokini koje oslobađaju maligne ćelije ali i tumor infiltrišući leukociti doprinose nastanku, rastu i progresiji tumora.

Značajna uloga T limfocita u antitumorskom odgovoru je dobro poznata. CD4+ Th limfociti mogu se podeliti na više funkcionalnih fenotipova: T helper 1 (Th1), T helper 2 (Th2), T helper 17 (Th17), na osnovu sposobnosti da sekretuju različite citokine. Th1 limfociti imaju značajnu ulogu u indukciji ćelijskog imunskog odgovora, dok Th2 limfociti suprimiraju ćelijsku imunost pojačavanjem humoralnog imunskog odgovora. Th17 limfociti su važni za nastanak zapaljenja, jer obezbeđuju „regrutovanje“ neutrofilnih leukocita i makrofaga. Polarizacija T imunskog odgovora ima višestruk uticaj na rast tumora. Iako ima dokaza da Th2 citokini mogu da dovedu do akutnog odbacivanja tumora, Th1 citokini obezbeđuju daleko bolji antitumorski efekat i sami mogu da obezbede dugotrajan antitumorski odgovor CD8+T limfocita. Međutim, uloga IL-17 u patogenezi karcinoma povezanim sa kolitisom (engl. colitis-associated cancer, CAC) nije u potpunosti definisana. Cilj ovog rada jeste da razjasni ulogu IL-17 u modulaciji antitumorske imunosti i progresiji kolorektalnog karcinoma.

Reference

Girardin A, McCall J, Black MA, Edwards F, Phillips V, Taylor ES, Reeve AE, Kemp RA. Inflammatory and regulatory T cells contribute to a unique immune micro-environment in tumor tissue of colorectal cancer patients. Int J Cancer. 2012; doi: 10.1002/ijc.27855.

Jaiswal M, LaRusso NF, Gores GJ. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol 2001; 281:626-34.

Macarthur M, Hold GL, El-Omar EM. Inflammation and Cancer: Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol 2004; 286:515-20.

Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454: 436-44.

Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nature 2006; 6: 24-37.

Vujanovic NL, Basse P, Herberman RB and Whiteside TL. Antitumor Functions of Natural Killer Cells and Control of Metastases. METHODS: A Companion to Methods in Enzymology 1996; 9: 394-408.

Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M, Ohta A, Koda T and Nishimura S. The critical role of Th1-dominant immunity in tumorimmunology. Cancer Chemother. Pharmacol. 2000; 46: 52-61.

Plunkett TA, Correa I, Miles DW and Taylor-Papadimitriou J. Breast cancer and the immune system: opportunities and pitfalls. J. Mammary. Gland. Biol. Neoplasia. 2001; 6: 467-475.

Ito N, Nakamura H, Tanaka Y and Ohgi S. Lung carcinoma: analysis of T-helper type 1 and 2 cells and T-cytotoxic type 1 and 2 cells by intracellular cytokine detection with flow cytometry. Cancer. 1999; 85: 2359-2367.

Dobrzanski MJ, Reome JB, Hylindand JC, Rewers-Felkins KA. CD8-Mediated Type 1 Antitumor Responses Selectively Modulate Endogenous Differentiated and Nondifferentiated T Cell Localization, Activation, and Function in Progressive Breast Cancer. J. Immunol. 2006; 177: 8191-8201.

Ellyard JI, Simson L, Parish CR. Th2-mediated anti-tumour immunity: friend or foe? Tissue Antigens 2007; 70: 1-11.

Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med. 1997; 186: 65-70.

Smith CM, Wilson NS, Waithman J et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 2004; 5: 1143-1148.

Radosavljević GD, Jovanović IP, Kanjevac TV, Arsenijević NN. The role of regulatory T cells in modulation of anti-tumor immune response. Srp Arh Celok Lek. 2011; 139 in press.

Lizée G, Radvanyi LG, Overwijk WW, Hwu P. Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin Cancer Res 2006; 12: 4794-4803.

Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345-352.

Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348-2357.

Mosmann TR, Sad S. The expanding universe of Tcell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138-146.

Harrington LE, Hatton RD, Mangan PR. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005; 6: 1123-1132.

Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383: 787.

Kolls JK and Linden A. Interleukin 17 family members and inflamation. Immunity 2004; 21: 467-476.

McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 2006; 27: 17-23.

Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(1) T cells in the antitumor immune response. J Exp Med 1998 ; 188: 2357-2368.

Fallarino F, Grohmann U, Bianchi R, Vacca C, Fioretti MC and Puccetti P. Th1 and Th2 cell clones to a poorly immunogenic tumor antigen initiate CD8_ T celldependen tumor eradication in vivo. J. Immunol. 2000; 165: 5495- 5501.

Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M, Ohta A, Koda T and Nishimura S. The critical role of Th1-dominant immunity in tumorimmunology. Cancer Chemother. Pharmacol. 2000; 46: 52-61.

Kacha AK, Fallarino F, Markiewicz MA, Gajewski TF: Cutting edge: spontaneous rejection of poorly immunogenic P1.HTR tumors by Stat6-deficient mice. J Immunol 2000; 165: 6024-6028.

Fallarino F, Gajewski TF: Cutting edge: differentiation of antitumor CTL in vivo requires host expression of Stat1. J Immunol 1999; 163: 4109-4113.

Lowes MA, Bishop GA, Crotty K, Barnetson RS, Halliday GM: T helper 1 cytokine mRNA is increased in spontaneously regressing primary melanomas. J Invest Dermatol 1997; 108: 914-919.

Tsung K, Meko JB, Peplinski GR, Tsung YL, Norton JA: IL-12 induces T helper 1-directed antitumor response. J Immunol 1997; 158: 3359-3365.

Hu HM, Urba WJ, Fox BA: Gene-modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a type 2 to a type 1 cytokine profile. J Immunol 1998; 161: 3033-3041.

Pellegrini P, Berghella AM, Del Beato T, Cicia S, Adorno D, Casciani CU: Disregulation in TH1 and TH2 subsets of CD4+ T cells in peripheral blood of colorectal cancer patients and involvement in cancer establishment and progression. Cancer Immunol Immunother. 1996; 42: 1-8.

Ostrand-Rosenberg S, Grusby MJ, Clements VK: Cutting edge: STAT6-deficient mice have enhanced tumor immunity to primary and metastatic mammary carcinoma. J Immunol 2000; 165: 6015-6019.

Kobayashi M, Kobayashi H, Pollard RB, Suzuki F: A pathogenic role of Th2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma. J Immunol. 1998; 160: 5869-5873.

Tan TT, Coussens LM: Humoral immunity, inflammation and cancer. Curr Opin Immunol. 2007; 19: 209-216.

Johansson M, Tan T, de Visser KE, Coussens LM: Immune cells as anti-cancer therapeutic targets and tools. J Cell Biochem. 2007; 101: 918-926.

Lowes MA, Bishop GA, Crotty K et al. T helper 1 cytokine mRNA is increased in spontaneously regressing primary melanomas. J Invest Dermatol. 1997; 108: 914-919.

Wagner SN, Schultewolter T, Wagner C et al. Immune response against human primary malignant melanoma: a distinct cytokine mRNA profile associated with spontaneous regression. Lab Invest. 1998; 78: 541-550.

Evans C, Dalgleish AG, Kumar D. Immune suppression and colorectal cancer. Aliment Pharmacol 2006; 24:1163-77.

Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, Kilpatrick L, Yilmazer A, Paish EC, Ellis IO, Patel PM, Jackson AM. IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 2008; 10: 95.

Starnes T, Robertson Mj, Sledge G, Kelich S, Nakshatri H et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol 2001; 167: 4137–4140.

Yao Z, Spriggs Mk, Derry Jm, Strockbine L, Park Ls et al. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine 1997; 9: 794–800.

Yao Z, Fanslow WC, Seldin MF et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity. 1995; 3: 811-821.

Fossiez F, Djossou O, Chomarat P et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996; 183: 2593-2603.

Jovanovic DV, Di Battista JA, Martel-Pelletier J et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-b and TNF-a, by human macrophages. J Immunol. 1998; 160: 3513-3521.

Teunissen MB, Koomen CW, de Waal Malefyt R, Wierenga EA, Bos JD. Interleukin-17 and interferon- γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol. 1998; 111: 645-649.

Chabaud M, Fossiez F, Taupin JL, Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol. 1998; 161: 409-414.

Kurasawa K, Hirose K, Sano H et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum. 2000; 43: 2455- 2463.

Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003; 52: 65-70.

Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008; 172: 146-155.

Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 2000; 12: 1092-1099.

Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A, Claret E, Sastre-Garau X, Couturier J, Mosseri V, Vives V, Banchereau J, Fridman WH, Wijdenes J, Lebecque S, Sautès-Fridman C. Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res. 1999; 59: 3698-3704.

Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2003; 101: 2620-2627.

Kato T, Furumoto H, Ogura T, Onishi Y, Irahara M, Yamano S, Kamada M, Aono T. Expression of IL-17 mRNA in ovarian cancer. Biochem Biophys Res Commun. 2001; 282: 735-738.

Hirahara N, Nio Y, Sasaki S, Minari Y, Takamura M, Iguchi C, Dong M, Yamasawa K, Tamura K. Inoculation of human interleukin-17 gene-transfected Meth-A fibrosarcoma cells induces T cell-dependent tumor-specific immunity in mice. Oncology 2001; 61: 79-89.

Hirahara N, Nio Y, Sasaki S, Takamura M, Iguchi C, Dong M, Yamasawa K, Itakura M, Tamura K. Reduced invasiveness and metastasis of Chinese hamster ovary cells transfected with human interleukin-17 gene. Anticancer Res. 2000; 20: 3137-3142.

Benchetrit F, Ciree A, Vives V, Warnier G, Gey A, Sautès-Fridman C, Fossiez F, Haicheur N, Fridman WH, Tartour E. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 2002; 99: 2114-2121.

Jovanovic I, Radosavljevic G, Mitrovic M, Lisnic Juranic V, McKenzie ANJ, Arsenijevic N, Jonjic S. and Lukic ML. ST2 Deletion Enhances Innate and Acquired Immunity to Murine Mammary Carcinoma. Eur J Immunol 2011; 41: 1902-1912.

Wrόbel t, mazur g, jazwiec b, kuliczkowski k. Interleukin-17 in acute myeloid leukemia. J Cell Mol Med 2003; 7: 472–474.

Wägsäter D, Löfgren S, Hugander A, Dimberg J. Expression of interleukin-17 in human colorectal cancer. Anticancer Res 2006; 26 : 4213–4216.

Lyon De, Mccain Nl, Jeanne W. Cytokine Comparisons Between Women With Breast Cancer and Women With a Negative Breast Biopsy. Nurs Res 2008; 57: 51–58.

G. Radosavljevic, B. Ljujic, I. Jovanovic, Z. Srzentic, S. Pavlovic, N. Zdravkovic, M. Milovanovic, D. Bankovic, M. Knezevic, Lj. Acimovic, N. Arsenijevic. Interleukin-17 may be a valuable serum tumor marker in patients with colorectal carcinoma. Neoplasma 2010; 57: 135-144.

Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011; 407: 348-54.

Ma C, Dong X. Colorectal cancer-derived Foxp3(+) IL-17(+) T cells suppress tumour-specific CD8+ T cells. Scand J Immunol. 2011; 74: 47-51.

Coussens LM,Werb Z.Inflammation and cancer. Nature 2002; 420: 860-867.

Gupta RB, Harpaz N, Itzkowitz S, et al.Histologicinflammationis a risk factor for progression to colorectal neoplasia in ulcerative colitis: acohortstudy. Gastroenterology 2007; 133: 1099-1105.

Rutter M, Saunders B, Wilkinson K, et al. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 2004; 126: 451-459.

Chen Z, Laurence A, Kanno Y, et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci 2006; 103: 8137-8142.

Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim HY. Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis. 2012; 33: 931-6.

Dermot P.B, Rotter I.J, Mei L, Dubinski M. et al. Genetic Epistasis of IL23/IL17 Pathway Genes in Crohn’s Disease. Inflamm Bowel Dis 2009; 15: 883-889.

Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for Tcell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116: 1310-1316.

Langowski JL, Kastelein RA, Oft M. Swords into plowshares: IL-23 repurposes tumor immune surveillance. Opinion Trends in Immunology 2007; 28(5): 207-12.

Shime H, Yabu M, Akazawa T et al. Tumor secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. The Journal Of Immunology 2008; 180: 7175-83.

Hölttä V, Klemetti P, Sipponen T, Westerholm-Ormio M, Kociubinski G. et al. IL-23/IL-17 immunity as a hallmark of Crohn's disease. Inflamm Bowel Dis 2008;14(9):1175-84.

Shen W, Durum Scott. Synergy of IL-23 and Th17 Cytokines: New Light on Inflammatory Bowel Disease. Neurochemical Research 2009; 11(9):1075-82.

Ljujic B, Radosavljevic G,Jovanovic I, Pavlovic S, Zdravkovic N, Milovanovic M, Acimovic Lj, Knezevic M, Bankovic D, Zdravkovic D, and Arsenijevic N. Elevated Serum Level of IL-23 Correlates with Expression of VEGF in Human Colorectal Carcinoma. Arch Med Res 2010; 41: 182-189.

Zhang B, Rong G, Wei H, et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun 2008; 26: 533-537.

Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15: 1016-1022.

Kortylewski M, Xin H, Kujawski M, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 2009; 15: 114-123.

Takahashi H, numasaki M, Lotze MT, Sasaki H. Interleukin-17 enhances bFGF-, HGF- and VEGF-induced growth of vascular endothelial cells. Immunol Lett 2005; 98: 189-193.

Alexandrakis MG, Pappa CA, Miyakis S, Sfiridaki A, Kafousi M et al. Serum interleukin-17 and its relationship to angiogenic factors in multiple myeloma. Europ J Inter Med 2006; 17: 412-416.

Objavljeno
2013/09/30
Rubrika
Pregled literature