Intestinalne matične ćelije

  • Sanja B Bojić Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za genetiku
  • Miodrag Stojković Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za genetiku
  • Bojana Simović Marković Univerzitet u Kragujevcu, Fakultet medicinskih nauka
  • Ana Volarević Univerzitet u Kragujevcu, Fakultet medicinskih nauka

Sažetak


Tkivo koje najbrže proliferiše u organizmu je epitel gastrointestinalnog trakta. Sve terminalno diferentovane ćelije intestinuma potiču od iste populacije multipotentnih ćelija koje se nalaze unutar intestinalnih kripti. U literaturi se pominju dva osnovna modela pozicije matičnih ćelija unutar intestinalnih kripti, model '' + 4 pozicije'' po kome se matične ćelije nalaze neposredno iznad Panetovih ćelija i model ''stem ćelijske zone'' po kome se matične ćelije nalaze između samih Panetovih ćelija dok ćelije iznad Panetovih predstavljaju njihove direktne potomke. Do sada je identifikovano više različitih markera intestinalnih matičnih ćelija ali ni jedan od njih nije specifičan isključivo za intestinalne matične ćelije što otežava njihovu identifikaciju i izolaciju. Svrha ovog članka je revizija dosadašnjih saznanja i literature o markerima, nišama, izolaciji i kultivaciji intestinalnih matičnih ćelija.

Biografije autora

Sanja B Bojić, Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za genetiku

doktor medicine

Miodrag Stojković, Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za genetiku
Prof. dr
Bojana Simović Marković, Univerzitet u Kragujevcu, Fakultet medicinskih nauka
doktor medicine
Ana Volarević, Univerzitet u Kragujevcu, Fakultet medicinskih nauka
dipl.psiholog

Reference

Lipkin M. Growth and development of gastrointestinal cells. Annu Rev Physiol 1985; 47:175–97.

Cheng H, Leblond C. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V Unitarian theory of the origin of the four epithelial cell types. Am J Anat 1974; 141:537–62.

Potten C, Hendry J. Differential regeneration of intestinal proliferative cells and cryptogenic cells after irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1975; 27:413-24.

Powell D, Mifflin R, Valentich J, Crowe S, Saada J, West A. Myofibroblasts II. Intestinal subepithelial myofibroblasts. Am J Physiol. 1999; 277:C183-201.

Mifflin R, Pinchuk I, Saada J, Powell D. Intestinal myofibroblasts: targets for stem cell therapy. Am J Physiol Gastrointest Liver Physiol 2011; 300: G684–696.

Sato T, Van Es J, Snippert H, et al. Paneth cells constitute the niche for Lgr-5 stem cells in intestinal crypts. Nature 2011; 469(7330):415–418.

Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 2006; 7(5):349-59.

Potten C, Kovacs L, Hamilton E. Continuous labeling studies on mouse skin and intestine. Cell Tissue Kinet 1974; 7:271–283.

Potten C. Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 1977; 269:518–21.

Garrison AP, Helmrath MA, Dekaney CM. Intestinal stem cells. J Pediatr Gastroenterol Nutr. 2009; 49(1):2-7.

Scoville D, Sato T, He X, Li L. Current view: intestinal stem cells and signaling. Gastroenterology 2008; 134:849–64.

Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008; 40:915–20.

Kayahara T, Sawada M, Takaishi S, et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett 2003; 535:131–5.

Potten C, Booth C, Tudor G, et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 2003; 71:28–41.

Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T. Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 2005; 306:349–56.

Barker N, van Es J, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449:1003–7.

Van der Flier L, van Gijn M, Hatzis P, et al. Transcription factor Achaete Scute-Like 2 controls intestinal stem cell fate. Cell 2009; 136:903–12.

He X, Zhang J, Tong W, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat Genet 2004; 36: 1117–1121.

Gregorieff A, Pinto D, Begthel H, Destree O, Kielman M, Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 2005; 129:626–638.

Van der Flier L, Sabates-Bellver J, Oving I, et al. The Intestinal Wnt/ TCF Signature. Gastroenterology 2007; 132: 628–632.

Giannakis M, Stappenbeck T, Mills J, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem 2006; 281: 11292–11300.

Fujimoto K, Beauchamp R, Whitehead R. Identification and isolation of candidate human colonicclonogenic cells based on cell surface integrin expression. Gastroenterology 2002; 123:1941–1948.

Beaulieu J. Differential expression of the VLA family of integrins along the crypt-villus axis in the human small intestine. J Cell Sci 1992; 102:427–436.

Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998; 19:379–83.

Sato T, Vries R, Snippert H, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459:262–5.

Goldstein A, Brewer K, Doyle A, Nagy N, Roberts D. BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev 2005; 122:821–33.

Objavljeno
2014/02/21
Rubrika
Pregled literature