HABENULARNI KOMPLEKS EPITALAMUSA - FUNKCIONALNO-ANATOMSKI ASPEKTI

  • Neda M Ognjanović Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za anatomiju i sudsku medicinu

Sažetak


SAŽETAK

Habenularni kompleks predstavlja parnu strukturu epitalamusa, sastavljenu iz dva jedra, medijalnog (nc. habenularis medialis - MHb) i lateralnog (nc. habenularis lateralis - LHb). Po svojoj anatomskoj poziciji, ali i neuronskim vezama predstavlja ''raskrsnicu'' u kojoj se ukrštaju putevi limbičkog sistema i bazalnih ganglija. Habenularni kompleks čoveka učestvuje u kontroli moždanog sistema zadovoljstva i ima jako važnu ulogu u emocionalnim procesima. Vrši regulaciju aktivnosti dopaminergičkih, serotonergičkih, noradrenergičkih i holinergičkih neurona moždanog stabla i njihovu transmisiju u strukturama uključenim u kognitivne procese i učestvuje u oblikovanju motornih odgovara, delujući kroz motivacione procese. Disfunkcija ovog kompleksa može biti značajna za nastanak različitih neuroloških i mentalnih poremećaja. Lezije na habenulama dovode do kognitivnih i motornih disfunkcija, promene ponašanja, promene u odgovoru na bol, stres, poremećaja sna, raspoloženja, pažnje, neadekvatnog donošenja odluka zasnovanih na nagradi. Poslednjih godina uočava se porast interesovanja naučnika za ovu moždanu strukturu, s obzirom da predstavlja ciljno područje novih terapijskih metoda lečenja psihijatrijskih i neuroloških oboljenja.

Ključne reči: habenularni kompleks, epitalamus, mentalni poremećaji

ABSTRACT

The habenular nuclear complex presents bilateral part of epithalamus, consisting of medial (nc. habenularis medialis - MHb) and lateral (nc. habenularis lateralis - LHb) habenular nucleus. According to its anatomical position and neuronal connections presents a ''crossroads'' of pathways of the limbic system and basal ganglia. The human habenular complex is involved in control of brain reward system and it is considered to play a very important role in emotional processes. It is involved in regulation of the activity of dopaminergic, serotonergic, noradrenergic and cholinergic neurons of the brainstem and their transmission in structures involved in cognitive processes, and participate in determination of behaviour and motor responses, acting through motivational processes. Dysfunction of the complex may be important for the development of a variety of neurological and mental disorders. Lesions of habenular complex lead to cognitive and motor dysfunction, behavioural changes, changes in response to pain, stress, sleep disorders, mood and attention disorders and inadequate value-based decision-making. In recent years, there is a growing interest of scientists in this brain structure, as it represents the target area of new therapeutic methods of treatment of psychiatric and neurological disorders.

Key words: habenular complex, epithalamus, mental disorders

Reference

Concha ML, and Wilson SW. Asymmetry in the epithalamus of vertebrates. J. Anat. 2001; 199: 63–84.

Andres KH, von During M, Veh RW. Subnuclear organization of the rat habenular complexes. J Comp Neurol 1999; 407: 130–150.

Geisler S, Andres KH, Veh RW. Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat. J Comp Neurol 2003; 458: 78–97.

Morris JS, Smith KA, Cowen PJ, Friston KJ and Dolan RJ. Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 1999; 10: 163–172.

Lecourtier L and Kelly PH. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 2007; 31: 658–672.

Herkenham M, Nauta WJ. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. Journal of Comparative Neurology 1977;173:123–146.

Geisler S, Trimble M. The lateral habenula: no longer neglected. CNS Spectrums 2008; 13: 484–489.

Herkenham M, Nauta WJ. Efferent connections of the habenular nuclei in the rat. Journal of Comparative Neurology 1979; 187: 19–47.

Araki M, McGeer PL, Kimura H. The efferent projections of the rat lateral habenular nucleus revealed by the PHA-L anterograde tracing method. Brain Research 1988; 441: 19–330.

Hikosaka О, Sesack SR, Lecourtier L and Shepard PD. Habenula - Crossroad between the Basal Ganglia and the Limbic System. J Neurosci. 2008; 28 (46): 11825–11829.

Phillipson O, Pycock C. Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Experimental Brain Research. 1982; 45 (1): 89-94.

Gottesfeld Z. Origin and distribution of noradrenergic innervation in the habenula: A neurochemical study. Brain Res. 1983; 275 (2): 299-304.

Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H. Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 2012; 520 (18): 4051-4066.

Ellison G. Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry. European Neuropsychopharmacology 2002; 12 (4): 287-297.

Rønnekleiv O, Møller M. Brain-pineal nervous connections in the rat: An ultrastructure study following habenular lesion. Experimental Brain Research 1979; 37 (3):551-562.

Kim U, Chang S. Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus. J Comp Neurol. 2005;483(2):236-50.

Viswanath H, Carter AQ, Baldwin PR, Molfese DL and Salas R. The Medial Habenula: Still Neglected. Front. Hum. Neurosci. 2014; 7: 931.

Bianco IH and Wilson SW. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Phil. Trans. R. Soc. B 2009; 364: 1005–1020.

Poller WC, Bernard R, Derst C, Weiss T, Madai VI, Veh RW. Lateral habenular neurons projecting to reward-processing monoaminergic nuclei express hyperpolarization activated cation (HCN) channels. Neuroscience 2011; 193: 205–216.

Lecourtier L, Defrancesco A, Moghaddam B. Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release. Eur J Neurosci 2008; 27: 1755–1762.

Bernard R and Veh RW. Individual Neurons in the Rat Lateral Habenular Complex Project Mostly to the Dopaminergic Ventral Tegmental Area or to the Serotonergic Raphe Nuclei. J. Comp. Neurol. 2012; 520: 2545–2558.

Brinschwitz K, Dittgen A, Madai VI, Lommel R, Geisler S, Veh RW. Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain. Neuroscience 2010; 168: 463–476.

Omelchenko N., Bell R, Sesack SR. Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur. J. Neurosci. 2009; 30: 1239–1250.

Nair SG, Strand NS, Neumaier JF. DREADDing the lateral habenula: A review of methodological approaches for studying lateral ha habenula function. Brain Res 2013; 1511: 93-101.

Wang RY, Aghajanian GK. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 1977; 197: 89–91.

Ji H and Shepard PD. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J. Neurosci. 2007; 27: 6923–6930.

Hikosaka O. The habenula: from stress evasion to value based decision-making. Nat Rev Neurosci 2010; 11: 503–513.

Sutherland RJ. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 1982; 6: 1–13.

Ullsperger M and von Cramon DY. Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J. Neurosci. 2003; 23: 4308–4314.

Shepard PD, Holcomb HH and Gold JM. Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. Schizophr. Bull. 2006; 32: 417–421.

Gallistel CR, Gomita Y, Yadin E and Campbell KA. Forebrain origins and terminations of the medial forebrain bundle metabolically activated by rewarding stimulation or by reward-blocking doses of pimozide. J. Neurosci. 1985; 5: 1246–1261.

Matsumoto M and Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007; 447: 1111–1115.

Lecourtier L, Deschaux O, Arnaud C, Chessel A, Kelly PH, Garcia R. Habenula lesions alter synaptic plasticity within the fimbria-accumbens pathway in the rat. Neuroscience 2006; 141: 1025–1032.

Nakamura K, Hikosaka O. Role of dopamine in the primate caudate nucleus in reward modulation of saccades. J Neurosci 2006; 26: 5360–5369.

Hikosaka O. Basal Ganglia Mechanisms of Reward-oriented Eye Movement. Ann N Y Acad Sci 2007; 1104: 229–249.

Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 2007; 445: 643–647.

Lecourtier L, Kelly PH. Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacology 2005; 30: 484–496.

Carvey PM, Kao LC, Klawans HL. The effect of bilateral kainic acid-induced lateral habenula lesions on dopamine-mediated behaviors. Brain Res 1987; 409: 193–196.

Tronel S, Sara SJ. Mapping of olfactory memory circuits: region-specific c-fos activation after odorreward associative learning or after its retrieval. Learn Mem 2002; 9: 105–111.

Lecourtier L, Neijt HC, Kelly PH. Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. Eur J Neurosci 2004; 19: 2551–2560.

Meng H, Wang Y, Huang M, Lin W, Wang S, Zhang B. Chronic deep brain stimulation of the lateral habenula nucleus in a rat model of depression. Brain Res 2011; 1422: 32-38.

McCarthy MJ and Welsh DW. Cellular Circadian Clocks in Mood Disorders. Journal of Biological Rhythms 2012; 27 (5): 339-352.

Yang LM, Hu B, Xia YH, Zhang BL and Zhao H. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav.Brain Res. 2008; 188: 84–90.

Li B, Piriz J, Mirrione M et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 2011; 470: 535–539.

Li K, Zhou T, Liao L et al. βCaMKII in lateral habenula mediate score symptoms of depression. Science 2013; 341: 1016–1020.

Aizawa H, Yanagihara S, Kobayashi M et al. The synchronous activity of lateral habenular neurons is essential for regulating hippocampal theta oscillation. J. Neurosci. 2013; 33: 8909–8921.

Aizawa H, Cui W, Tanaka K and Okamoto H. Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci. 2013; 7: 826.

Caldecott-Hazard S, Mazziotta J, Phelps M. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. J Neurosci 1988; 8: 1951–1961.

Shumake J, Gonzalez-Lima F. Brain systems underlying susceptibility to helplessness and depression. Behav Cogn Neurosci Rev 2003; 2: 198–221.

Sugama S, Cho BP, Baker H, Joh TH, Lucero J, Conti B. Neurons of the superior nucleus of the medial habenula and ependymal cells express IL-18 in rat CNS. Brain Res. 2002; 958 (1): 1-9.

Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B and Bernstein HG. Evidence for structural abnormalities of the human habenula complex in affective disorders but not in schizophrenia. Psychol.Med. 2010; 40: 557–567.

Hall P, Spear FG, and Stirland D. Diurnal variation of subjective mood in depressive states. Psychiatr Q 1964; 38: 529-536.

Savitz JB, Nugent AC, Bogers W et al. Habenula volume in bipolar disorder and major depressive disorders.A high resolution magnetic resonance imaging study. Biol. Psychiatry 2011; 69: 336–343.

Rosenthal NE, Sack DA, Gillin JC et al. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 1984; 41: 72-80.

Hattar S, Kumar M, Park A et al. Central projections of melanopsin expressing retinal ganglion cells in the mouse. J Comp Neurol 2006; 497: 326-349.

Ecker JL, Dumitrescu ON, Wong KY et al. Melanopsin-expressing retinal ganglioncell photoreceptors: cellular diversity and role in pattern vision. Neuron 2010; 67: 49-60.

Zhao H and Rusak B. Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience 2005; 132: 519-528.

Guilding C, Hughes AT, and Piggins HD. Circadian oscillators in the epithalamus. Neuroscience 2010; 169: 1630-1639.

Tavakoli-Nezhad M and Schwartz WJ. Hamsters running on time: is the lateral habenula a part of the clock? Chronobiol Int 2006; 23: 217-224.

Paykel ES. Depression: major problem for public health. Epidemiol. Psichiatr. Soc. 2006; 15; 4–10.

Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 2007; 370: 851–858.

Rakofsky JJ, Holtzheimer PE, Nemeroff CB. Emerging targets for antidepressant therapies. Curr. Opin. Chem. Biol. 2009; 13: 291–302.

Mayberg HS, Lozano AM, Voon V et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45: 651–660.

Benabid AL. Deep brain stimulation for Parkinson's disease. Curr. Opin. Neurobiol. 2003; 13: 696–706.

Leone M, Franzini A, Felisati G et al. Deep brain stimulation and cluster headache. Neurol. Sci. 2005; 26 (Suppl 2): s138–s139.

Morrell M. Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? Curr. Opin. Neurol. 2006; 19: 164–168.

Wallace BA, Ashkan K, Benabid AL. Deep brain stimulation for the treatment of chronic, intractable pain. Neurosurg. Clin. N. Am. 2004; 15: 343–357.

Sartorius A and Henn FA. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med.Hypotheses 2007; 69: 1305–1308.

Sartorius A, Kiening KL, Kirsch P et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy–refractory patient. Biol. Psychiatry 2010; 67: e9–e11.

Cenci MA, Kalen P, Mandel RJ, Bjorklund A. Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat. Brain Res. 1992; 581: 217–228.

Kalen P, Lindvall O, Björklund A. Electrical stimulation of the lateral habenula increases hippocampal noradrenalin release as monitored by in vivo microdialysis. Experimental Brain Research 1989; 76: 239–245.

Kalen P, Strecker RE, Rosengren E, Bjorklund A. Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivomicrodialysis: role of excitatory amino acids and GABA. Brain Res. 1989b; 492: 187–202.

Li T, Qadri F, Moser A. Neuronal electrical high frequency stimulation modulates presynaptic GABAergic physiology. Neurosci. Lett. 2004; 371: 117–121.

Hoyer C, Kranaster L, Sartorius A, Hellweg R, Gass P. Long- term course of brain-derived neurotrophic factor serum levels in a patient treated with deep brain stimulation of the lateral habenula. Neuropsychobiology 2012; 65(3): 147–152.

Oral E, Aydin MD, Aydin N et al. How olfaction disorders can cause depression? The role of habenular degeneration. Neuroscience 2013; 240: 63–69.

Schneider TM, Beynon C, Sartorius A, Unterberg AW, Kiening KL. Deep brain stimulation of the lateral habenular complex in treatmentresistant depression: traps and pitfalls of trajectory choice. Neurosurgery 2013; 72 (2 Suppl Operative): 184-193.

Kiening K, Sartorius A. A new translational target for deep brain stimulation to treat depression. EMBO Mol Med 2013; 5: 1151–1153.

Sandyk R. Pineal and habenula calcification in schizophrenia. Int. J. Neurosci. 1992; 67: 19–30.

Caputo A, Ghiringhelli L, Dieci M et al. Epithalamus calcifications in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 1998; 248: 272–276.

Mori I, Diehl AD, Chauhan A, Ljunggren HG and Kristensson K. Selective targeting of habenular, thalamic midline and monoaminergic brainstem neurons by neurotropic influenza A virus in mice. J. Neurovirol. 1999; 5: 355–362.

Ellison G. Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res. Brain Res. Rev. 1994; 19: 223–239.

Carlson J, Armstrong B, Switzer RC III and Ellison G. Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weal kink in brain across multiple drugs of abuse. Neuropharmacology 2000; 39: 2792-2798.

Carlson J, Noguchi K and Ellison G. Nicotine produces selective degeneration in the medial habenula and fasciculus retroflexus. Brain Res 2001; 906: 127-134.

Quick MW, Ceballos RM, Kasten M, McIntosh JM, Lester RA. α3β4 subunit - containing nicotinic receptors dominate function in rat medial habenula neurons. Neuropharmacology. 1999; 38(6): 769-783.

Sheffield EB, Quick MW, Lester RA. Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. Neuropharmacology 2000; 39 (13): 2591-2603.

Salas R, Sturm R, Boulter J, De Biasi M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. The Journal of Neuroscience. 2009; 29(10): 3014-308.

Salas R, Pieri F, De Biasi M. Decreased signs of nicotine withdrawal in mice null for the β4 nicotinic acetylcholine receptor subunit. The Journal of neuroscience. 2004; 24 (45): 10035-10039.

Frahm S, Ślimak MA, Ferrarese L, et al. Aversion to nicotine is regulated by the balanced activity of β4 and α5 nicotinic receptor subunits in the medial habenula. Neuron. 2011; 70(3): 522-535.

Geisler S, Geisler S1, Marinelli M et al. Prominent activation of brainstem and pallidal afferents of the ventral tegmental area by cocaine. Neuropsychopharmacology 2008; 33: 2688–2700.

Objavljeno
2015/01/04
Rubrika
Pregled literature