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Summary 
Numerous epidemiological studies have shown that increased bone 
fragility and a higher risk of fractures are present in the aged, which 
reduces their quality of life and represents a significant socio-eco-
nomic burden for the healthcare system. However, morphological 
and structural determinants underlying increased bone fragility have 
yet to be fully explained. This paper aimed to provide an overview 
of modern studies that dealt with determinants of increased bone 
fragility, analyzing different hierarchical levels of bone tissue orga-
nization (macro-, micro-, and nano-levels) in aged individuals and 
individuals with chronic comorbidities (mainly in individuals with 
chronic liver disease, renal disorders, and type 2 diabetes mellitus). 
Also, variable frequency of fractures at different skeletal sites in aged 
persons and individuals with chronic diseases was shown, indicating 
that aging-related bone loss is not a uniform process. A complete un-
derstanding of the spatial pattern of impaired bone quality can aid 
in the targeted evaluation of individualized fracture risk. Establishing 
a firm connection between the results of the clinical assessment of 
bone status and the analysis of numerous structural and mechanical 
bone properties (on various hierarchical levels) can represent a solid 
base for developing adequate guidelines and algorithms for preven-
tion and treatment of increased bone fragility in aged individuals and 
individuals with chronic diseases.
Keywords: bone fragility, ageing, bone fracture, hierarchical bone 
organization, bone strength
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INTRODUCTION

Bone fractures are a significant public health concern that 
affects a considerable proportion of the global population, 
mainly aged individuals, but also individuals with various 
chronic comorbidities (1,2). Aging-related bone fragility 
can result in serious health consequences, leading to dis-
ability, reduced quality of life, and increased mortality (3,4). 
In addition, aging-related bone fragility has significant so-
cioeconomic consequences (5). As a population ages, the 
number of individuals at risk for fractures increases, which 
puts greater demands on healthcare resources due to an 
increased need for hospital admissions, rehabilitation, and 
long-term care (6–8). Given that bone fractures are pre-
ventable, it is essential to fully understand how they occur, 
and which factors contribute to increased bone fragility in 
aged individuals and individuals with chronic comorbidi-
ties. By addressing the issue of aging-related bone fragility, 
we can improve individuals’ health and well-being, reduce 
healthcare costs, and promote healthy aging.

Bone fractures in aged individuals most frequently 
appear at the femoral neck, radius, and vertebral column, 
with a predilection to affect postmenopausal women 
(9–11). Moreover, bone fractures in these individuals 
commonly occur due to low-energy trauma (predomi-

nantly due to a fall from a standing height) (12,13). If we 
want to fully understand the reasons for increased bone 
fragility in aged individuals (especially those aged 65 
years and over) (14) and individuals with chronic dis-
eases, we should consider two main factors: 1) the me-
chanical loads applied and 2) bone strength (resistance 
to fracture) (15,16). It is known that a mechanical impact 
generated during low-energy trauma per se could not be 
sufficient to cause bone fracture (17). Hence, the leading 
cause behind increased bone fragility in aged individu-
als must originate from characteristics of the bone itself. 
So, we must reject the common perception of bone as a 
simple unviable mineral connective tissue that provides 
structural support, protects internal organs, and facili-
tates movement, and put our best efforts into understand-
ing bone as metabolically active and dynamic tissue.

STRUCTURAL MORPHOLOGY OF BONE 
TISSUE: SHORT OVERVIEW

Since bone tissue is a living and dynamic system made of 
complex nanocomposite material, it has different struc-
tural organization and morphology at different length 
scales (Figure 1), allowing it to withstand mechanical 

Figure 1. A schematic representation of the bone tissue hierarchical organization and methodology used for multi-scale bone assessment
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loads while maintaining its structural integrity (18,19). 
Firstly, macroscopic observation shows the bone shape, 
size, and geometry (Figure 1), while cross-sectional 
analysis allows a distinction between two bone com-
partments: cortex (outer layer of bone tissue with a low 
porosity) and cancellous bone (porous bone tissue con-
sisting of a network of interconnected bone trabeculae) 
(20). Microscopic evaluation of bone tissue reveals basic 
morpho-structural units predominantly found in cortical 
bone, known as osteons (21,22). Most of the bone volume 
is occupied by the bone matrix, inhabited by cells with 
specific functions: bone-forming cells called osteoblasts, 
bone-resorbing cells called osteoclasts, and the most 
numerous cells that act as bone remodeling orchestra-
tors known as osteocytes (18,23). Going further to the 
submicroscopic level, it is evident that osteons consist of 
several concentric rings known as lamellae, while one la-
mella is made of many collagen fibers (Figure 1). At the 
nano-level, it is evident that each collagen fiber comprises 
many collagen fibrils immersed in an inorganic mineral 
component – hydroxyapatite crystals (19,24). Mineral-
ized crystals and collagen fibers are combined in a highly 
organized manner to ensure that resistance to mechani-
cal load is beyond the sum of mechanical characteristics 
of individual bone constituents (25,26).

Since bone is subject to morphological changes dur-
ing aging (27,28) and various chronic diseases (such as 
chronic liver diseases, renal disorders and type 2 diabetes 
mellitus) (29–31), it is essential to investigate which bone 
characteristics (and at what hierarchical level of organiza-
tion) could contribute to aging-related and disease-relat-
ed bone fragility. Even though modern science is witness-
ing a significant breakthrough in technical inventions of 
bone-assessing medical imaging (Figure 1) (32), entirely 
accurate, reliable, and clinically relevant methods to as-
sess bone fragility in aged individuals and individuals 
with chronic comorbidities are yet to be invented.

CLINICAL ASSESSMENT OF FRACTURE RISK: 
ADVANTAGES AND LIMITATIONS

Although recent attempts have been made to create a 
roadmap for improving global musculoskeletal health 
(33), there are still many unresolved issues in clinical as-
sessments of fracture risk. Namely, the “golden standard” 
in the clinical estimation of the fracture risk is areal bone 
mineral density (aBMD) obtained by dual-energy X-ray 
absorptiometry (DXA). It is defined as bone mineral 
content (BMC; g) per analyzed bone area. The peak of 
aBMD values is reached in late adolescence, after which 
it remains stable, and then bone mass starts to decline 
(7,18,34). Aging-related bone loss is gradual in men, while 
accelerated bone loss is pronounced in postmenopausal 
women (13,35) due to the negative net bone balance (a 
decline in bone formation could not compensate for bone 

resorption) driven by hormonal dysregulation (34). Also, 
increasing the outer diameter and thinning of the cortical 
bone (periosteal apposition and endosteal resorption oc-
cur in a sex-specific manner during aging), contributing 
to increased bone fragility in aged individuals (36–38).

It is clear that a single two-dimensional parameter, 
such as aBMD, cannot fully ref lect the fracture risk since 
many studies have suggested that eliminating low aBMD 
in aged individuals would reduce the risk of fractures only 
modestly (13,39). Moreover, the bone mass of individu-
als who sustained a bone fracture and those who did not 
experience bone fracture overlap considerably, indicating 
that bone mass and aBMD are insufficient for individu-
al fracture risk prediction. Also, it has been known that 
some pharmaceutical agents used to treat osteoporosis 
positively affect bone strength and decrease fracture risk 
without increasing aBMD (40,41), indicating the neces-
sity of using other bone characteristics in individualized 
fracture risk assessment.

Several attempts have been made to overcome the 
limitations of using aBMD for fracture risk assessment. 
Among them, DXA-based hip structure analysis (HSA) 
of the proximal femora allowed for estimating specific 
biomechanical indices of femoral bone strength (42,43). 
Indeed, despite its limitations, the HSA showed better 
sensitivity to predict hip fracture than areal BMD mea-
surements alone (44) and improved understanding of the 
changes in bone strength components in aging and chron-
ic diseases (45,46). Realizing that bone internal architec-
ture is essential for fracture risk assessment, another valu-
able clinical tool, known as trabecular bone score (TBS), 
was developed (47,48). This grey-level textural measure-
ment indirectly estimates bone microarchitecture from 
DXA images of lumbar vertebral column. Recent clinical 
studies have confirmed the fracture-discriminating abil-
ity of TBS in a substantial number of postmenopausal 
women (47,48). However, a significant limitation of this 
methodology is that it could be applied to one skeletal site 
only (L1-L4 vertebrae)(49). Also, another clinical frac-
ture risk assessment tool, known as Fracture Assessment 
Tool (FRAX) was developed to demonstrate the 10-year 
probability of a hip fracture and of a major osteoporotic 
fractures (50,51), but it fails to recognize the impact of 
other non-skeletal fracture risk determinants (balance 
disturbances, reduced vision, and altered motor coordi-
nation that can cause an increased risk of falling) (50,51). 

In clinical settings, histomorphometric analysis of 
transiliac bone biopsy samples has been used to quan-
titatively evaluate the bone status and effects of certain 
anti-osteoporotic therapies of bone tissue collected from 
aged patients (52–54) and patients with chronic comor-
bidities (55,56). Besides histomorphometry being an 
invasive procedure that allows 2D micro-scale bone as-
sessment (Figure 1), concerns remain because the iliac 
crest is not representative of various skeletal sites, given 
that osteoporosis is not a uniform process throughout the 
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skeleton. In addition, a modern noninvasive 3D in vivo 
method for clinical bone assessment at the distal radius 
and tibia is high-resolution peripheral quantitative com-
puted tomography (HR-pQCT) (57–59). The radius and 
the tibia undergo different mechanical loading patterns 
(60) and have different fracture risks concerning age and 
sex, however these fractures are not the most frequent 
and not the most severe ones either. Nevertheless, numer-
ous studies used HR-pQCT to address cortical and tra-
becular properties of the tibia and the radius in aged in-
dividuals (9,18). Also, an increasing number of studies is 
using HR-pQCT to reveal altered cortical and trabecular 
micro-architectural properties in individuals with diabe-
tes mellitus (61), chronic kidney disorders (62) and liver 
diseases (63). Even though HR-pQCT analyses could 
provide better predictive accuracy of fracture risk assess-
ment beyond aBMD measurements, it is yet to develop 
full potential due to high associated cost, limited voxel 
size (82 µm), and inability to access the most relevant 
fracture sites (proximal femora and vertebral column) 
(18). Considering the shortcomings of current methodol-
ogy, it is of great importance to develop a better diagnos-
tic algorithm that would allow reliable clinical fracture 
risk assessment in aged population and individuals with 
various chronic comorbidities.

MULTI-SCALE BONE ANALYSIS: REVIEW 
OF CURRENT LITERATURE AND FUTURE 
RESEARCH DIRECTIONS

Various factors (skeletal and non-skeletal) contribute to 
changes in fracture risk in aged individuals and individu-
als with chronic comorbidities that cannot be detected 
through bone mineral density. Commonly described as 
non-skeletal factors associated with higher fracture risk 
in aged individuals are sarcopenia, higher risk of falls, 
poor vision, altered motor coordination, therapeutic side 
effects, and disease complications (50). Among skeletal 
factors, the most significant attention in modern research 
is paid to impaired “bone quality”— generally referring 
to intrinsic bone properties (beyond aBMD) that inf lu-
ence mechanical performance (15,16). 

In previous years, the relative contribution of micro-
scale bone quality features to bone strength has been ex-
amined extensively. Namely, the aging-related trabecu-
lar micro-architectural decline is presented as  a loss of 
trabecular elements, declined trabecular connectivity 
coupled with trabecular thinning observed at the proxi-
mal femora, vertebral bodies, the radius and tibia of aged 
individuals (64–66). Along with trabecular micro-archi-
tectural bone loss (Figure 2), increased cortical porosity 

Figure 2. Small-length bone fragility determinants associated with ageing: graphic summary. Note significantly deteriorated bone micro-ar-
chitecture (a) and altered bone tissue mineral content in aged individual (b). Moreover, osteocyte lacuno-canalicular network disruptions, 
increased number of mineralized osteocyte lacunas - micropetrosis (c), coupled with larger mineral crystal size (d) were demonstrated to 
contribute to aging-related bone strength reduction. However, the particular effects of various chronic diseases on these bone quality features 
are yet to be fully elucidated.



| 71

Aging-related bone fragility determinants

(originating from accumulation of incompletely closed 
osteons and resorption cavities) and cortical thinning are 
proven to contribute to bone fragility in aged individuals 
(11,64) and individuals with chronic liver diseases (29) 
and renal disorders (55). Moreover, it is becoming clear 
that spatial distribution of skeletal alterations and de-
cline in intrinsic bone properties contribute to increased 
susceptibility to bone fracture in a site-specific manner 
(7,67). Namely, our team noted significantly different 
micro-architectural properties in the proximal femora, 
with different aging patterns between genders: the most 
prominent effect of aging in males was noted in the su-
perolateral femoral neck (common fracture-initiating 
site), while the intertrochanteric region was most severe-
ly affected in females (65). These results support epide-
miological data about the various occurrence of cervical 
and intertrochanteric fractures in older men and women 
(65). Also, having observed various levels of micro-archi-
tectural decline in the proximal femora, our team noted 
that the effect of chronic alcoholic liver diseases was not 
uniform, supporting epidemiological data about the as-
sociation between chronic liver disease and heavy alcohol 
consumption and increased incidence of unstable inter-
trochanteric femoral fracture (46). Also, it was reported 
that duration, stage and severity of the disease could be 
an  important risk factor for advanced bone alterations in 
individuals with chronic liver diseases (63,68). Lastly, it 
was revealed that vascular complications were important 
risk factor for femoral bone microstructural decline in in-
dividuals with type 2 diabetes mellitus (69), while hemo-
dialysis was reported as a major risk factor for bone loss in 
patients with chronic kidney disease (70).

Conversely, the role of submicro- and nano-scale fea-
tures is more difficult to study, especially in vivo or in 
clinical settings, pointing out that many questions related 
to these bone properties need to be explored to complete 
the bone fragility puzzle in aged individuals and individu-
als with chronic comorbidities. Recent studies revealed 
a shift to higher bone mineralization, reduced osteocyte 
lacunar density, and increased number of mineralized os-
teocyte lacunae (micropetrosis), coupled with deteriora-
tion in the lacuno-canalicular network which reduces the 
connectivity between osteocytes in the aged individuals 
(71–74). Moreover, a few state-of-the-art studies report-
ed that increased mineral crystal size (Figure 2) could 
contribute to a decline in aging-related bone strength 

(24,27). On the other hand, micropetrosis was only re-
cently investigated in individuals with chronic kidney 
disease (75), and its role in bone fragility of individuals 
with chronic liver diseases and type 2 diabetes is yet to 
be explored. Moreover, further research is needed to fully 
understand the contribution of each bone fragility deter-
minant on various hierarchical levels of bone tissue (es-
pecially in relation to specific chronic disease), given that 
these data are a valuable resource that could (in integra-
tion with clinical data) make a solid base for generating 
specific algorithms for timely preventive and therapeutic 
measures for bone fragility related to aging and various 
chronic diseases.

CONCLUSION

Increased bone fragility is a common health problem in 
aged population and individuals with chronic diseases 
(especially chronic liver and kidney disease, and type 2 
diabetes mellitus). Numerous studies have contributed 
to understanding the morpho-structural base of skeletal 
damage caused by aging and disease, but innumerable 
ambiguities remain. Thus, further research is necessary to 
solve the bone fragility puzzle in these individuals. Con-
sidering the need for patient-specific clinical guidelines 
for the prevention and treatment of compromised bone 
strength and its complications, the long-term benefit of 
multi-scale and advanced assessment of bone fragility 
could be in developing a specific diagnostic algorithm that 
will help to reliably predict bone strength based on the in-
formation available in the clinical context of each patient.
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STRUKTURNE DETERMINANTE POVEĆANE KOŠTANE FRAGILNOSTI KOD 
STARIJIH OSOBA: VIŠESTRUKE PERSPEKTIVE
Jelena Jadzic 1, Marija Djuric 1

Sažetak

Mnogobrojne epidemiološke studije su pokazale da je 
povećana fragilnost kosti i veći rizik od preloma prisutan 
kod starijih osoba, što redukuje kvalitet života i pred-
stavlja značajan socio-ekonomski teret za zdravstveni 
sistem. Ipak, mofrološke i strukturne determinante koje 
leže u osnovi povećane koštane fragilnosti ovih osoba 
nisu u potpunosti razjašnjene. U ovom radu dat je pre-
gled rezultata savremenih studija koje su se bavile de-
terminantama povećane koštane fragilnosti analizirajuči 
različite hijerarhijske nivoe organizacije koštanog tkiva 
(makro-, mikro- i nano-nivo) kod starijih osoba i osoba 
sa hroničnim oboljenjima (prevashodno sa hroničnim 
oboljenjima jetre, hroničnim bolestima bubrega i šećer-
nom bolesti tipa 2). Takođe, pokazana je  varijabilna uče-

stalost  preloma na različitim skeletnim mestima starijih 
osoba i osoba sa hroničnim oboljenjima, što ukazuje na 
to da gubitak kvaliteta kosti nije uniforman proces. Pot-
puno razumevanje prostornog obrasca narušenosti kva-
liteta koštanog tkiva može pomoći u ciljanoj evaluaciji 
rizika od preloma kod svakog pojedinačnog pacijenta. 
Uspostavljanje veze između rezultata kliničke procene 
koštanog statusa i analize brojnih strukturnih i mehanič-
kih svojstava kosti (na različitim hijerarhijskim nivoima) 
može da predstvalja osnovu za razvoj adekvatnih vodiča 
i algoritama za prevenciju, dijagnozu i lečenje poveća-
ne koštane fragilnosti kod starijih i osoba sa hroničnim 
oboljenjima.

Ključne reči: fragilnost kosti, starenje, prelom kosti, hijerarhijska organizacija koštanog tkiva, čvrstina kosti
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